"Translational symmetry breaking is antagonistic to static fluidity"
This is physics, not surrealist poetry — K Kinjo et al., "Superconducting spin smecticity evidencing the Fulde-Ferrell-Larkin-Ovchinnikov state in Sr2RuO4", Science 4/21/2022:
Translational symmetry breaking is antagonistic to static fluidity but can be realized in superconductors, which host a quantum-mechanical coherent fluid formed by electron pairs. A peculiar example of such a state is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, induced by a time-reversal symmetry–breaking magnetic field applied to spin-singlet superconductors. This state is intrinsically accompanied by the superconducting spin smecticity, spin density–modulated fluidity with spontaneous translational-symmetry breaking. Detection of such spin smecticity provides unambiguous evidence for the FFLO state, but its observation has been challenging. Here, we report the characteristic “double-horn” nuclear magnetic resonance spectrum in the layered superconductor Sr2RuO4 near its upper critical field, indicating the spatial sinusoidal modulation of spin density that is consistent with superconducting spin smecticity. Our work reveals that Sr2RuO4 provides a versatile platform for studying FFLO physics.
Read the rest of this entry »




