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Abstract

This paper presents a detailed critique of some current gold standards for the stat-
istical analysis of experimental data in psycholinguistics. A series of examples il-
lustrates (1) the disadvantages of reducing numerical variables to factors and the
importance of including available covariates in the model, (2) the advantages of us-
ing multilevel models instead of the traditional by-subject and by-item procedures
and the quasi-F test, and (3) the relevance of logistic models for binary data such
as the error measure in decision tasks.

1 Introduction

The most commonly used statistical technique in psycholinguistics is analysis
of variance. Generally, experimental research is planned in terms of factorial
contrasts. Factorial designs are widely believed to be superior to multiple
regression. Learning how to construct a data set with a factorial contrast
while matching for a range of continuous predictors such as frequency of oc-
currence is regarded as an essential skill for experimental studies. As most
psycholinguistic studies present a range of items to many different subjects,
experimental data sets routinely undergo the averaging procedures of the by-
subject and by-item analyses, applied indiscriminately not only to continuous
variables such as response latencies, but also to dichotomous variables such
as the accuracy measure. Many researchers seem to believe that the accepted
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statistical methods currently in use, and generally enforced by the journals,
are the best that modern statistics has to offer.

The purpose of this study is to question the validity of this cluster of ideas
and assumptions. It addresses two misconceptions in considerable detail: the
overreliance on factorial designs when regression designs or analysis of covari-
ance should be used (section 2), and the reliance on by-subject and by-item
analyses of repeated measurement data where multilevel modeling provides a
more insightful alternative (section 3). A third misconception is addressed in
section 4, namely, that standard least squares analysis of variance would be
appropriate for dichotomous response variables such as the accuracy measure.

2 The cost of dichotomization and factorization

Studies investigating language processing are faced with many numerical vari-
ables, both discrete (e.g., frequency of occurrence, word length in letters, sen-
tence length in number of words, neighborhood size, age of acquisition) and
continuous (e.g., word duration in ms, fundamental frequency in Hz). Nearly
all studies addressing the potential role of such variables make use of factorial
designs. In order to ascertain whether variable X codetermines processing in-
dependently of variables Y and Z, current practice is to carefully select words
scoring either high or low on X while matching for Y and Z, pairwise, or in
the mean for the high and low sets. Examples of studies using this methodo-
logy for word frequency, morphemic frequency, and syllable frequency effects
in the mental lexicon, spanning some twenty years of reseach, are Taft (1979),
Balota and Chumbley (1984), Levelt and Wheeldon (1994), Jescheniak and
Levelt (1994), Sereno and Jongman (1995), Baayen, Dijkstra, and Schreuder
(1997), Clahsen, Eisenbeiss, and Sonnenstuhl (1997), Hyönä and Pollatsek
(1998), and Bertram, Schreuder, and Baayen (2000). It is widely believed that
this is the most powerful means of ascertaining the independent effect of vari-
ables such as frequency of occurrence that are correlated with many other
potentially relevant predictors.

Unfortunately, this belief is incorrect. Cohen (1983), in a paper entitled The

cost of dichotomization, demonstrated that when a numerical predictor X is
partitioned into a high versus a low group, for instance by creating a high and
a low factorial contrast by splitting the data at the mean of X, this results in
a substantial loss in power. Such dichotomization at the mean amounts to a
degradation in the measurement of X. Precise numerical information on X is
discarded in favor of a simple factorial contrast: ‘high’ versus ‘low’, or equi-
valently, 1 versus 0. Cohen showed that for bivariate normal distributions,
dichotomization at the mean leads to a reduction in explained variance by
a factor 0.637. More than one third of the variance that could have been ex-
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plained using a regression analysis is left unexplained by the factorial analysis.
This reduction in explained variance goes hand in hand with a reduction in
power. Cohen shows that for a bivariate normal population with ρ = 0.30, a
regression analysis using a sample of 80 cases has a probability of 0.78 of cor-
rectly rejecting the null hypothesis. Dichotomization reduces this probability
to 0.57. A similar warning can be found in Harrell (2001), who states that

Many researchers make the mistake of assuming that categorizing a continu-
ous variable will result in less measurement error. This is a false assumption,
for if a subject is placed in the wrong interval, this will be as much as a
100% error. Thus the magnitude of the error multiplied by the probability
of an error is no better with categorization. (page 6)

To make this more concrete, consider a longitudinal language acquisition study
in which the utterances of several children are recorded for 2 years at monthly
intervals. Suppose that the number of passive forms in the recordings is the
dependent variable of interest, and that the researcher is interested in the
question whether passives are used more frequently as children become older.
Dichotomazition at mean age would amount to replacing the actual ages of
the children during the first year by the factor level ”young” and their actual
ages during the second year by the factor level ”high”. The counts for the 12
observations in each of the two levels of Age could then be compared using a
t-test. The point made by Cohen (1983) is that a regression analysis in which
number of passives is modeled directly as a function of Age is more powerful.
In other words, when the values of a numerical predictor are available, it is
disadvantageous to dichotomize such a predictor.

When designing experiments, a related question arises when it is known that
the dependent variable Y is influenced by one or more correlated numerical
predictors X1, X2, . . .. Many studies opt for analysis of variance, and construct
a factorial contrast in X1 while matching for X2, X3, . . .. The idea seems to
be that by investigating an extreme contrast in X1 while matching for the
other variables, the possibility of detecting an effect of X1 on Y is maximized.
In what follows, we first consider the case in which there is one continuous
predictor for Y , and then proceed to the case when there are two continuous
predictors. I will use the term ‘factorization’ to denote the construction of a
factorial contrast for extreme values of a predictor, to be distinguished from
dichotomization, where a range of values is already available but split on mean
or median and then assigned to ‘high’ and ‘low’ factor levels.

In the situation that there is a single relevant predictor X, building a factorial
contrast for extreme values of X can be a useful strategy. An example is
shown in the top left panel of Figure 1. The left panel shows an example of
a dependent variable (Y ) that is a linear function of X. We can construct a
factorial contrast in X by assigning the first 5% of the ranked values of X
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Figure 1. Contrasting the lowest 5% and the highest 5% of the values of X for a
linear and a quadratic function of X1 ∈ (−10, 6.6), and for a logarithmic function
of X2 ∈ (0, 1000).

to the low condition, and the last 5% of the ranked data points of X to the
high condition. These two conditions are marked by the vertical lines in the
upper left panel of Figure 1. The first row of Table 1 lists the proportion of
simulation runs in which a t-test with 15 items from the low and 15 items
from the high condition correctly suggests a significant effect (p < 0.05). It
also lists the corresponding proportion for a regression analysis based on 30
randomly sampled items (see the appendix for further details). The factorial
test clearly out-performs the regression by nearly a factor of two.

The high power of the factorization comes at a price, however. First of all,
generalization is limited to the extreme ranges of X that were sampled. To
see this, consider the upper right panel of Figure 1, which shows an example
of a variable Y that is a quadratic function of X. The observations in the first
and last 5% of the ranked data values of X are again assigned to the high
and low conditions, which are marked by vertical lines, as before. The means
for the low and high conditions are very similar to the means in the linear
example in the upper left panel. It is important to note that in both cases, a
factorial contrast will allow the researcher to assess whether there is an effect
of X on Y , but not much else. No inference is possible about the remaining
90% of the data points. It is impossible to ascertain the nature of the relation
of X and Y , whether it is linear or nonlinear. Even though a contrast between

4



Table 1
Proportion of 100 simulation runs in which a factorial t-test testing for differences in
the mean of Y for fifteen values in each of the listed 5% ranges of X and a regression
analysis based on a random selection of thirty values of X report a significant effect
(α = 0.05).

5% ranges X t-test regression

low high

linear function 1 20 0.49 0.22

quadratic function 1 20 0.41 0.40

logarithmic function 1 20 0.57 0.18

logarithmic function 2 19 0.26 0.18

the high and low groups may have been established, no prediction is possible
for the values of X that fall outside the high and low conditions. The predicted
mean values might fall in the interval bounded by the means of the high and
low conditions, as in the upper left panel of Figure 1. However, the maximum
value of Y might be reached for a non-extreme value of X, as illustrated for
the quadratic function in the upper right panel.

A second disadvantage of factorization is that it need not be more power-
ful than regression. The second row of Table 1 illustrates this point for the
quadratic example. For this example, the power of the (quadratic) regression
analysis is very similar to that of the factorial analysis.

A third disadvantage of factorization is that the cutoff points for the low and
high conditions are often arbitrary. Consider the lower left panel of Figure 1,
which shows a logarithmic dependency on X. A factorial contrast based on
the extreme deciles is again much more powerful than a regression analysis, as
shown in the third row of Table 1, but in this case the high mean in the low
condition is atypical compared to the neighboring data points. Researchers
concerned about atypical values being observed for the extreme values of X
might consider a factorial contrast on the basis of the second and nineteenth
5% ranges of X. For the logaritmic example of Figure 1, however, this more
conservative procedure leads to a drastic reduction in power, as illustrated by
the last line of Table 1.

The results for the regression analyses in Table 1 are based on the appro-
priate regression models (linear, quadratic, loglinear). The lower right panel
of Figure 1 illustrates how non-parametric scatterplot smoothers such as the
one developed by Cleveland (1979), see also Haerdle (1991), can bring non-
linearities to light and guide the formulation of the regression model, even for
fairly small numbers of observations.
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Figure 2. A simulated dataset with a factorial contrast in X matched in the mean
for Y (r(X,Y ) = 0.50).

In the light of these considerations, factorization is useful when obtaining data
is costly and when documenting the existence of an effect is the sole purpose
of the experiment, for instance, when the experiment is run to falsify some
specific theory that crucially hinges on the presence or absence of an effect
of a given predictor. It should be kept in mind, however, that regression may
find non-linear relations in situations where factorial designs will never do so,
for instance, when a factorial contrast is built around the extremes zero and
π for the sine function on the interval (0, π).

Thus far, we have considered the case in which there is one continuous pre-
dictor for the dependent variable. Next consider the case in which a dependent
variable Z is a function of two continuous predictors, X and Y . In practise,
the situation often arises that such predictors are correlated. For instance,
word frequency, number of meanings, word length, mean bigram frequency,
number of orthographic neighbors, and morphological family size are all cor-
related lexical variables (see, e.g., Baayen, Feldman, & Schreuder, 2003). Is it
the case that factorization of X while matching for Y has the highest power
for detecting an effect of X on Z? Many studies proceed along these lines.
For instance, Taft (1977) and Bertram, Baayen, & Schreuder (1999), investig-
ating frequency effects with visual lexical decision, factorially contrasted one
frequency count (e.g., the frequency of the base word) while matching the
other frequency count (e.g., the frequency of the complex word itself). Unfor-
tunately, this procedure, instead of increasing power, may lead to a substantial
decrease in power, as illustrated by the following simulation.
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For each of 100 simulation runs, a data set was generated in which the de-
pendent variable was a linear function of two correlated normally distributed
predictors, X and Y , and an error term. From the 200 data points in a simu-
lated data set, some 60 points were selected such that they were matched in
the mean on Y . Half of these data points had a high value for X and half had
a low value for X. Figure 2 shows an example of such a simulated data set. For
each small band of Y values, the values of the high and low sets were at least
0.75 standard deviation of X apart. This reflects an often encountered situ-
ation in which, due to the correlation of X and Y , it is impossible to obtain
sufficient items for factorial contrasts without overlapping intervals for the
high and low conditions. Two sets of simulations were run, one set in which
the beta coefficient of X was set to 3, and one in which this beta coefficient
was set to zero. This made it possible to estimate power as well as type I error
rate. Further details of this simulation are reported in the appendix.

Table 2
Power and type I error rate for a simulated data sets (100 runs), comparing a

regression analysis based on a random sample of some 60 items, an analysis of
variance of a factorial design with some 30 items in the high and low sets of X, and
a regression analysis run on the data of the factorial design (α = 0.05).

power type I error

regression 0.89 0.05

factorial regression 0.75 0.05

analysis of variance 0.40 0.01

For each simulated data set, three analyses were performed: an analysis of
variance for the high versus low contrast of X, with in each set the same
number of items (approximately 30, depending on the simulation run), a re-
gression analysis based on the same items of the factorial design (labeled
‘factorial regression’ in Table 2), and a regression analysis based on a number
of randomly selected data points equal to the number of items in the factorial
analysis. Table 2 shows that the power of the regression analysis exceeds the
power of the factorial analysis by a factor two. Inspection of the type I error
rate shows, moreover, that in addition to a lack of power, the factorial design
is too conservative as well — its Type I error rate equals 0.01 instead of 0.05
for α = 0.05. Table 3 illustrates, furthermore, that the amount of variance
explained by the factorial model is an order of magnitude smaller than that
of the regression models. Note that the ‘factorial regression’, a ‘post-hoc’ re-
gression run on the data points of the factorial design, has higher power and
explanatory value than the factorial analysis.

Summing up, what this example illustrates is that it is counterproductive to
try to achieve with a factorial analysis what should be done with regression.
Instead of attempting to nullify the effect of covariates by means of matching
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Table 3
Mean r2 for the regression and factorial models for the simulated data sets of

Table 2.

present absent

regression 0.60 0.46

factorial regression 0.49 0.34

analysis of variance 0.06 0.01

in the mean, the covariate should be brought straight into the model. This
provides the regression model with the best means for assessing ’nuisance’
variability, and for separating this variability from that due to the predictor
variable of interest. The use of multiple regression, moreover, also allows the
use of random samples, instead of the highly non-random samples of factorial
studies. In addition, the practical problem of finding enough items under mul-
tiple matching constraints evaporates. Balota, Cortese, Sergent-Marshall, and
Spieler (2003) discuss a number of additional reasons for not using factorial
designs when regression is possible. Particularly noteworthy is their emphasis
on the neglected role of explanation and predictive precision in psycholinguist-
ics:

. . . researchers should not be limited by the search for reliable effects and
interactions, but also should attempt to determine how much variance a
factor can account for. The primary driving force in the literature should
no longer be if a variable has an impact on lexical processing, but also con-
sider how much of an independent contribution the variable has on lexical
processing. (page 9)

3 The cost of prior averaging

Inappropriate factorization and dichotomization is not the only practise in
current psycholinguistics that involves the systematic loss of measurement in-
formation. The by-subject and by-item analyses that are currently the norm
in psycholinguistic studies also bring along systematic data loss. It is widely
believed that these averaging techniques are the best that current statistics
has to offer. For instance, Raaijmakers, Schrijnemakers, & Gremmen (1999)
reiterated the point made by Clark (1973), namely, that one common experi-
mental design requires the quasi-F test. For another design, they recommend
averaging by-subject. These recommendations build on what statistical the-
ory had to offer in the 1940s and 1950s. However, these methods have various
disadvantages that mathematical statisticians have addressed since then. The
development of multilevel models, initiated in the 1970s (Lindley & Smith,
1972) has resulted in stable and well-studied algorithms that are now widely
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accepted in the statistical community (see, e.g., Bryk & Raudenbusch, 1992,
Goldstein, 1995, Pinheiro & Bates, 2000, and Venables & Ripley, 2003). In
what follows, I will introduce the main concepts of multilevel modeling, be-
ginning with multilevel regression, followed by an example of a multilevel full
factorial, and concluding with two more complicated designs, the Latin Square
design discussed by Raaijmakers et al. (1999), and a design for which tradi-
tional analysis of variance would require a quasi-F test.

3.1 Multilevel regression

Consider a regression model in which the dependent variable, say RT, is a
linear function of three predictor variables X, Y , and Z. Suppose that this
model is tested for 20 items and that the experiment is run with 10 subjects.
How might the results of this experiment be analysed?

One possibility is to calculate the mean RT for each item, averaging over
the responses of the 10 subjects to that item. I will refer to this as the item
regression. A second possibility is to run a regression analysis on the pooled
data of all 10 subjects, without bringing the factor Subject explicitly in the
model. I will refer to this as the ‘simple regression’ model. Simple regression
should not be used, as observations from the same subject will in general not
be independent. Consequently, the residual errors will not be independent but
partially correlated, violating a basic assumption of regression and analysis of
variance. A third alternative is discussed by Lorch and Myers (1990). They
describe two equivalent models, of which the conceptually simpler one is known
as random regression. In random regression, a separate regression model is fit
to the data obtained for each individual subject. In the present example, we
have 10 subjects, so 10 different regression models need to be fitted. Each
regression model has four parameters: the intercept, and the coefficients for
X, Y , and Z. In order to evaluate whether a predictor variable, say X, is
significant, a t-test is performed on the 10 coefficients estimated for X.

Multilevel regression can be conceptualized as an extension of the random
regression model. There are two important ways in which multilevel regression
goes beyond random regression. The first is that only one model is fit to
the data, instead of ten, in such a way that the fixed effects (the effects of
X, Y , and Z) and the random effect (the Subject effect) are separated out
on different levels. The fixed effects level of the model specifies how a unit
change in one of the predictors affects the dependent variable when the other
variables are held constant. The random effects level captures the variability
associated with the subjects. Subjects generally differ with respect to their
average response latencies. These differences are accounted for by means of
a random variable with mean zero and unknown standard deviation. This
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unknown standard deviation is the (one and only) parameter in the multilevel
model that accounts for the variability in the average response speed of the
subjects. Given this parameter, estimates can be derived of the adjustments
that have to be made to the intercept (specified in the fixed effect part of
the model) such that the predictions for an individual subjects are as precise
as possible. An important difference with a classical single-level regression
model is that incorporation of subject as a factor in a classical (general linear)
model requires a number of parameters equal to the number of subjects minus
one, even though in theory a random effect is fully determined by its standard
deviation. In multilevel regression, by contrast, only one parameter is required,
the standard deviation of the subject random effect, as required. Thus, the
multilevel model for n subjects and m items,

RTij =

fixed effects
︷ ︸︸ ︷

β0 + β1X1i + β2X2i + β3X3i +

random effects
︷︸︸︷

bj + εij (1)

i = 1, 2, . . . , m; j = 1, 2, . . . , n,

bj ∼ N(0, σ2
b ), εij ∼ N(0, σ2

ε ),

has 6 parameters, the regression coefficients β0, β1, β2, β3, and the standard
deviations of the random effects, σb and σε.

The second important difference between random regression and multilevel
regression lies in the way in which the estimates of the coefficients are obtained.
In random regression, the coefficients estimated for a given subject are exactly
unbiased estimates of the true effects of the predictors when the model fits.
However, the parameters derived from one dataset are not necessarily optimal
for prediction to new datasets. The problem that arises for prediction is that
the model will overfit the data. Typically, low predictions will be too low, and
high predictions will be too high. In other words, the estimated parameters
tend to shrink towards the mean in a new sample. This shrinkage is an adverse
result of traditional modeling. The following simple simulation illustrates the
problem. Consider an experiment with 10 subjects and 20 items, for which
response latency RT is prediced from a single predictor X. Let

RTij =

fixed effects
︷ ︸︸ ︷

400 + 5Xi +

random effects
︷︸︸︷

bj + εij (2)

i = 1, 2, . . . , 20; j = 1, 2, . . . , 10,

bj ∼ N(0, σ2
b ), εij ∼ N(0, σ2

ε ),

where bj (the subject random effect) and εij (the residual error) are normally
distributed random variables with zero mean and standard deviations σb = 20
and σε = 50 respectively. The left panel of Figure 3 plots the intercepts es-
timated for the different subjects in a random regression model, ordered from
low to high. (A similar plot can be made for the estimated slopes.) The true
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Figure 3. Ranked estimated random effects (labelled with subject numbers) and
the true subject random effects (corresponding circles) in random regression (left
panel) and in multilevel regression (right panel). In the multilevel regression, the
estimates are shrunk in the direction of the mean. The horizontal lines denote the
true mean (at 400) and its (slightly higher) sample estimate. The asterisks in the left
panel represent estimated intercepts in a second experiment with the same subject
random effect.

intercept β0 is represented by a horizontal line (RT = 400). The circles repres-
ent the true subject effects, the bj in (2). According to the random regression
model, subjects S4 and S5 would have extremely low estimated intercepts,
while subject S1 would have a very high estimated intercept, as shown by the
labeled estimates. Although optimal in the least squares sense, these estim-
ates are clearly way off, and in another experiment with the same subjects,
the estimates will tend to regress towards the mean. This is illustrated by
the asterisks, which represent a second experiment with the same subjects,
and therefore with exactly the same random effect bj but different residuals
εij . Note that the estimated intercepts for subjects S4 and S1 in this second
experiment are closer to the mean, and that the estimate for S5 is again an
outlier but this time in the opposite direction.

The right panel of Figure 3 graphs the estimated intercepts for the subjects
in a multilevel regression model. The estimated intercepts are much closer
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Table 4
Power and type I error for simulated RTs in multiple regression (100 simulation
runs).

Z present

α technique X Y Z

0.05 multilevel regression 0.20 0.98 0.28

0.05 item regression 0.18 0.95 0.25

0.05 random regression 0.20 0.85 0.23

0.01 multilevel regression 0.10 0.83 0.12

0.01 item regression 0.06 0.75 0.08

0.01 random regression 0.04 0.68 0.09

Z absent

α technique X Y Z

0.05 multilevel regression 0.12 0.94 0.04

0.05 item regression 0.09 0.90 0.03

0.05 random regression 0.09 0.92 0.07

0.01 multilevel regression 0.03 0.87 0.01

0.01 item regression 0.00 0.70 0.01

0.01 random regression 0.03 0.69 0.02

to their true values than in the random regression model. What multilevel
regression does, in other words, is to pre-shrink the estimates, bringing them
closer to the true values and making more precise prediction possible.

Multilevel regression is not only preferable to random regression for its im-
proved estimates of the random effects in the model, it is also somewhat more
powerful, without giving rise to inflated Type I error rates. This is illustrated
in Table 4. The upper half of this table lists the proportions of simulation
runs (out of a total of 100 runs) in which the three predictors in a multiple
regression model were correctly judged to be significant, for α = 0.05 and for
α = 0.01. Details of this simulation can be found in the appendix. Note that
the power of multilevel regression is at least as high as, and often higher, than
the power of item regression and random regression. The lower half of Table 4
again reports the number of simulation runs in which a predictor was reported
to be significant. This time, the underlying model had nonzero slopes for X
and Y , but zero slope for Z, i.e., in this series of simulation runs, Z was not
a predictor. As can be seen in the last column of Table 4, the proportion of
runs in which Z is incorrectly judged to be significant is less than 0.05 when
α = 0.05 and 0.01 when α = 0.01, as required. This simulation study illus-
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trates the combination of slightly increased power and nominal Type I error
rates that characterizes multilevel regression.

Thus far, we have only considered the simplest possible random effect struc-
ture in a multilevel model, namely, the random effect that accounts for dif-
ferences among the subjects with respect to the intercept. However, subjects
may also be differentially sensitive to predictor variables. Such interactions
between subject and predictor variables can be modeled with great precision
in multilevel modeling. The following example illustrates this for a real data
set reported in Meeuwissen, Roelofs, and Levelt (in press). (I am indebted
to Dr. Meeuwissen to making these data available to me). Naming latencies
were obtained for digital clock times in Dutch, for a total of 20 subjects. The
predictor of interest was the number of morphemes in the word to be named.
This number of morphemes turned out to be a significant predictor in the ex-
pected direction: Naming latencies increased with the number of morphemes.
Another experimental variable, however, turned out to be significant as well,
the number of trials to which a subject had already responded in the exper-
iment. As the number of trials increased, i.e., as subjects proceeded through
the experiment, their response latencies decreased significantly.

At this point, the reader might wonder why one would want to include num-
ber of trials as a covariate. If the experiment was properly counterbalanced,
shouldn’t the effect of number of trials have been averaged out? The answer
to this question is that counterbalancing guarantees that, in this example,
the effect of number of morphemes is not confounded with the order in which
the items appear in the experimental lists. Counterbalancing neutralizes bad
side effects, but it does not account for the variance due to effects of habitu-
ation and effects of fatigue that might be present in the experiment. Bringing
number of trials explicitly into the model formulation has three advantages.
First, it enhances prediction accuracy. Second, since a greater proportion of
the variance is accounted for, the residual error is smaller. As the residual
error codetermines the standard error of the estimated coefficients, explain-
ing more variance by bringing number of trials into the model enhances the
probability of detecting a significant effect for number of morphemes. Third,
explicit modeling of number of trials allows the researcher better insight in
task-related effects in the experiment.

In the digital clock times naming experiment, a complex set of interactions
emerged involving subject and number of trials. First of all, not all subjects
evidenced the facilitatory main effect of number of trials. For some subjects,
there was no observable effect of trial. In addition, there were two subjects
for whom number of trials was in fact inhibitory. Figure 4 is a trellis graph
visualizing this variability. Trellis plots are displays which contain one or more
panels, arranged in a grid-like structure (a trellis), developed for data visualiz-
ation by Cleveland (see, e.g., Becker, Cleveland, Shyu, & Kaluzny, 1995, and

13



Trial Number

lo
g 

R
T

5.5

6

6.5

7

0 200 400 600

S1 S10

0 200 400 600

S11 S12

0 200 400 600

S13

S14 S15 S16 S17

5.5

6

6.5

7
S18

5.5

6

6.5

7
S19 S2 S20 S3 S4

S5 S6

0 200 400 600

S7 S8

0 200 400 600

5.5

6

6.5

7
S9

Figure 4. Trellis graph for digital clock naming times as a function of number of
trials.

Becker, Cleveland, & Shyu, 1996). Trellis graphs often allow the researcher
more insight into the structure of the data than formal statistical tests of
some limited null hypothesis. Here, we use a trellis graph to obtain a visual
summary of the relation between RT and trial number for the different sub-
jects in the experiment. In this trellis graph, each panel represents a subject.
The points in a given panel represent the items, placed in the plane spanned
by trial number on the horizontal axis and by log RT on the vertical axis.
The solid lines in the panels are loess non-parametric regression lines (Clev-
eland, 1979; see also Venables & Ripley, 1994, chapter 10). The digital clock
times experiment was run jointly with another experiment, which explains
why subjects are exposed to only early or only late trials. Note that number
of trials tends to be roughly linear (further research might explore regression
splines to account for potential nonlinearities, see, for instance, Harrell, 2001)
and is negatively correlated with RT for a majority of subjects. This is in line
with the significant main effect of number of trials in the multilevel model.
However, there are subjects for which number of trials is not predictive (e.g.,
subject S10). For subject S15, number of trials is positively correlated with
RT.

The model for this data set (with X denoting trial number and Y denoting
number of morphemes, and with i ranging over items, j over subjects, and t
over trials) is
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log RTij =

fixed effects
︷ ︸︸ ︷

6.2365 − 0.0002Xt[ij]) + 0.0162Yi +

random effects
︷ ︸︸ ︷

bj + bt[ij],j + εij , (3)

i = 1, 2, . . . , n; j = 1, 2, . . . , 20; t = 16, 17, . . . , 609;

bj ∼ N(0, 0.15682), bt[ij],j ∼ N(0, 0.00032), εij ∼ N(0, 0.20202),

where t[ij] denotes the trial number for subject j responding to item i — due
to counterbalancing, the trial number t[ij] is different for each combination
of Subject and Item. Note that we have a model with two random effects
involving subjects. For each subject, we have an adjustment to the intercept
(bj), as well as an adjustment to the beta coefficient of the number of trials
(bt[ij],j). (For subject S15, for instance, this adjustment is large and posit-
ive, and reverses a negative slope into a positive slope.) Since there are two
adjustments for a given subject, these adjustments might be correlated. Un-
like random regression (or standard simple regression), multilevel regression
provides the tools for investigating whether a parameter for the correlation
between the adjustments for the intercept and the adjustments for number of
trials needs to be included in the model. For the digital clock times naming
data, such an extra parameter turned out to be significant: The adjustments
(technically, the Best Linear Unbiased Predictors or BLUPs) for the intercept
and the adjustments for number of trials were significantly negatively correl-
ated (r = −0.473), as shown in Figure 5. Each circle in this plot represents a
subject. Subjects with a greater positive BLUP for the intercept are the slower
subjects. These are the subjects for which the BLUP for number of trials tends
to be negative, for them, number of trials is more facilitating than for the sub-
jects with negative BLUPs for the intercept. This random effects structure
tells us something about how subjects performed the experiment, with slower,
perhaps more careful subjects, gradually optimizing their performance as the
experiment proceeded.

Summing up, multilevel regression yields more precise estimates, it has en-
hanced power combined with nominal type I error rates, and it allows more
fine-grained control of the random effects structure in the model than tradi-
tional regression techniques such as random regression or item regression.

3.2 Multilevel analysis of variance

Analysis of variance can be understood as a special case of multiple regression
(see, e.g., Chatterjee, Hadi, & Price, 2000, chapter 5) when dummy coding
is used to represent factor levels. As in multilevel regression, fixed effects
and random effects are separated out on different levels. In what follows, an
example of a factorial multilevel model with a fairly complex random effect
structure is presented first. Next, a Latin square design is analyzed. This
section concludes with a comparison of multilevel modeling with quasi-F ratios
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Figure 5. The negative correlation between the Best Linear Unbiased Predictors
(BLUPs) for number of trials and the intercept in the digital clock times naming
data.

and by-subject and by-item analyses.

3.2.1 An introductory example

In Taiwanese, tones that are normally realized with different contours of fun-
damental frequency (F0) may, in particular contexts, be realized with very
similar F0 contours. Some theorists believe that this neutralization of the F0
contour is absolute. If so, neutralized tones should be indistinguishable to the
hearer. However, it might also be the case that this neutralization is incom-
plete. If so, the F0 contours of neutralized tones would still be acoustically
distinct. Myers and Tsay (2002) measured the F0 of three words (items) pro-
duced in the absence or presence of a listener by 17 speakers (subjects) at
three points in the word (beginning, center, end) for two tones (yin, yang).
If neutralization is absolute, these two tones should have indistinguishable
fundamental frequencies. (I am indebted to Professor Myers for making these
data available to me.)

There are three fixed effects in this design: Tone (with levels yin and yang),
Point (with levels early, center, and late), and Listener (present versus ab-
sent). In addition, there are two sources of random variation, Subject and
Item. The traditional procedure in psycholinguistics is to run two separate
analyses of variance, one on means obtained by averaging over items, and one
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Table 5
The 95% confidence intervals for the parameters of a multilevel model fit to the
data on Taiwanese tone. sd() denotes standard error.

lower estimate upper

Intercept 4.748 4.809 4.871

Tone (contrast yang: yin) 0.003 0.016 0.029

Point (contrast beginning: end) -0.052 -0.040 -0.029

Point (contrast beginning: center) -0.048 -0.037 -0.025

sd(Intercept) 0.081 0.120 0.177

sd(Tone) 0.009 0.015 0.026

sd(Listener) 0.020 0.030 0.044

sd(Point) 0.006 0.011 0.019

sd(Item) 0.045 0.058 0.075

sd(Residual Error) 0.042 0.044 0.047

on means obtained by averaging over subjects. These separate analyses are
run because in classical analysis of variance this design does not allow the
calculation of a unique F value for testing the effect of Tone. Tone might be
tested against the interaction of Tone by Subject, or against the interaction
of Tone by Item.

A multilevel analysis of variance obviates the need to run separate by-subject
and by-item analyses. As in the previous example of multilevel regression,
we separate the fixed effects from the random effects, with Subject as the
main grouping factor for the random effects. By nesting the random effect of
Item under Subject, we can account for Item effects as well as for possible
interactions of Subject by Item. Table 5 lists the parameters of the multilevel
model fit to these data, together with their 95% confidence intervals. Tone and
Point emerged as significant main effects. The main effect of Tone suggests
that tone neutralization might be incomplete.

It turned out that subjects were differentially sensitive not only to the items,
but also to Tone, Listener, and Point. This was modeled by including ad-
ditional random effects for these three fixed effects, all nested under subject,
and all independent of each other and of the item random effect. Table 5 also
lists the standard deviations of these random effects along with their 95%
confidence intervals.

Figure 6 is a trellis graph plotting predicted versus observed log F0 for each
subject in the experiment. There is one subject, S3, for which observed and
expected F0 are uncorrelated, as shown by the zero slope of the nonparametric

17



observed log F0

pr
ed

ic
te

d 
lo

g 
F

0

4.6

4.8

5.0

5.2

4.6 4.8 5.0 5.2

S1 S13

4.6 4.8 5.0 5.2

S14 S15

4.6 4.8 5.0 5.2

S16

S19 S21 S23 S24

4.6

4.8

5.0

5.2
S28

4.6

4.8

5.0

5.2
S29 S3 S4 S5 S6

S8 S9

4.6 4.8 5.0 5.2

Figure 6. Observed and expected F0 for the data on Taiwanese tone neutralization.

regression line. For all other subjects, the data points cluster tightly around
the nonparametric regression lines. Although there is some variation in the
slopes, the predictions of the model are adequate, even when there is little
variation in F0, as for subjects S6 and S8. The visual impression of a tight
fit is supported by a high r2 equal to 0.918. When the individual data points
are predicted from a traditional by-subject analysis of variance model model,
r2 reduces to 0.763, indicating a loss of 15.5% of explained variance. The by-
subject and the by-item analyses also underestimate the significance of the
effect of Tone. The p-value for Tone is 0.0232 according to F1, and 0.0210
according to F2, while the multilevel model reports a p-value of 0.0105.

What is striking about the multilevel model is its parsimony in terms of num-
ber of parameters. The multilevel model has 10 parameters in all (listed in
Table 5), whereas for instance the by-subject analysis requires 204 parameters
(one for each data point after averaging over items) in order to test the effect
of Tone against the interaction of Tone by Subject.

The next subsections discuss the possibilities of multilevel modeling for two
simpler designs that received detailed attention in the study by Raaijmakers,
Schrijnemakers, and Gremmen (1999).

3.2.2 A Latin Square design

Raaijmakers et al. (1999) discussed a simple Latin Square design for which they
argued that the by-subject analysis would be appropriate. In their example,
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12 items were presented at different stimulus onset asynchronies (SOA) to
12 subjects. The items were divided into three subsets, which were rotated
across the three SOAs (short, medium, long). A given subject was exposed
to exactly one presentation of each item, and each subset of four items was
presented once in each of the SOA conditions.

The problem that this design poses is that a standard least squares decom-
position does not allow the effect of SOA to be tested. The solution offered
by Raaijmakers et al. is to average, for each subject, the four RTs in each
of the three subsets. After this averaging process, the effect of SOA can
be tested against the residual mean squares. For their data set, they report
F (2, 18) = 0.7781, p = 0.4741.

Before addressing the question of what multilevel model might be fitted to
this kind of data, it is useful to discuss the difference between crossing the
random effect of Item with the random effect of Subject, and nesting Item

under Subject. When considering items in relation to subjects, there are two
strategies that can be followed. The first strategy is to assume that a given item
will have exactly the same effect across all subjects. Since different subjects
may have had different experience with different items, see, e.g., Gardner,
Rothkopf, Lapan, and Lafferty (1987) and also Quené & van den Berg (2001),
the assumption that a given item will have exactly the same effect across all
subjects may be too strong. In order to allow differences between subjects
with respect to a given item into the model, an interaction term for Item

by Subject will therefore often be added to the model. This first strategy
amounts to crossing items with subjects together with the interaction of these
two random effects. Traditional analysis of variance with Subject and Item

random effects proceeds from the assumption that Subject and Item are
crossed.

The second strategy is not to commit oneself to the strong a-priori assumption
that there should be a ’main effect’ of Item across the subjects, but to proceed
from the idea that the Item effect might be quite different for the individual
subjects. This idea can be implemented by nesting Item under Subject. Nest-
ing does not imply the necessary absence of a common effect of Item in the
model. Such a common effect, if present, will be captured implicitly. Mul-
tilevel modeling presupposes this less restrictive assumption of items being
nested under subjects.

When fitting a multilevel model to the abovementioned data from Raaijmakers
et al. (1999), we begin with modeling Subject as the main grouping level of
the random effects structure. Next, we include Item as a random effect nested
under Subject, leading to the following model:
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Table 6
Power and type 1 error for 100 simulation runs of the Latin Square design of

Raaijmakers et al. (1999).

Model with effect of SOA

Subject Analysis Multilevel Analysis

alpha=05 0.42 0.50

alpha=01 0.25 0.29

Model without effect of SOA

Subject Analysis Multilevel Analysis

alpha=05 0.03 0.01

alpha=01 0.00 0.01

RTi(j)k =

fixed effects
︷ ︸︸ ︷

β0 + SOAk +

random effects
︷ ︸︸ ︷

bj + bi(j) + εi(j)k, (4)

k = 1, 2, 3 i, j = 1, 2, . . . , 12,

bj ∼ N(0, σ2
bj

), bi(j) ∼ N(0, σ2
bi(j)

), εi(j)k ∼ N(0, σ2
ε ).

The parameters of this model can be estimated, but this stretches the multi-
level approach to its limits as for each data point two random effects have to
be estimated. As a result, the confidence intervals for the standard deviations
of the nested item random effect and the residual error are huge. When ap-
plied to the data from Raaijmakers et al. (1999), a p-value is obtained that is
much more conservative: F (2, 130) = 0.1057, p = 0.8998.

With real experimental data, it is not known a-priori whether nesting or cross-
ing is more appropriate. In the case of the present data, however, it is more
likely that the simulation model that generated the data set crossed Item with
Subject, as this is the default ’world view’ underlying traditional analysis of
variance. In order to accomodate Item as crossed with Subject in a multilevel
model, we have to introduce it into the model as a fixed effect — multilevel
models do not allow crossed random effects at the main grouping level. In what
follows, I will first illustrate that this leads to the desired results by means
of a simulation. The details of this simulation can be found in the appendix.
Next, I will outline briefly why this is correct.

Table 6 lists power and Type 1 error rate for 100 simulation runs, comparing
the by-subject analysis advocated by Raaijmakers et al. (1999) and a multilevel
model with Item included as fixed effect crossed with Subject. Note that the
power of the multilevel model is greater than that of the by-subject analysis,
while at the same time its Type 1 error rate is in conformity with the nominal
values.
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Table 7
Power and Type 1 error for 100 simulation runs for the Latin Square design of
Raaijmakers et al. (1999) combined with a longitudinal effect of fatigue.

Model with effect of SOA

Subject Analysis Multilevel Analysis

alpha=05 0.46 0.55

alpha=01 0.31 0.30

Model without effect of SOA

Subject Analysis Multilevel Analysis

alpha=05 0.43 0.04

alpha=01 0.23 0.00

Perhaps the greatest advantage of using a multilevel model is that longitud-
inal effects in the experiment, such as the effects of habituation and fatigue
observed for the digital clock naming latencies in the data of Meeuwissen et
al. (2003), can be brought into the model. Table 7 illustrates that the pres-
ence of such longitudinal effects can wreak havoc with the subject analysis.
Table 7 reports power and Type 1 error rate when an effect of fatigue is built
into the simulation. Even though there is some simple counterbalancing in the
design (different subjects are exposed to different permutations of the subsets
of items), the subject analysis has a fatally high Type 1 error rate. By con-
trast, a multilevel model including trial number as covariate combines similar
power with an acceptable Type 1 error rate. Although with more extensive
counterbalancing this adverse effect can be reduced for the subject analysis, it
is only the multilevel analysis that can bring the effect of Trial directly into
the model.

Having illustrated the advantages of multilevel modeling, we now return to the
question why including Item as a fixed effect is appropriate when, as in this
simulation, Item is truly crossed with Subject in the population. To answer
this question, first note that modeling Item as fixed allows us to capture
the variation due to the items, separating it from the residual error. This
is important because in multilevel analysis of variance, as in regression, the
standard errors of the coefficients are co-determined by the residual error. The
smaller the residual error, the tighter the confidence interval of the coefficient,
and the smaller the associated p-value will be.

Next, consider the definition of a random effect as a normally distributed
random variable with zero mean and some unknown standard deviation. When
we include Item as fixed in the multilevel model, when in fact it is random,
three things happen. First, instead of having one parameter for the standard
deviation of the item random effect, we have a number of parameters equal to
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Table 8
Actual and estimated parameters for the multilevel model, estimates averaged over
100 simulation runs.

simulation estimate

standard deviation Subject 39 37.8

standard deviation Item 28 29.1

standard deviation of the error 20 20.1

intercept 534 534.1

contrast effect SOA short 5 5.2

contrast effect SOA medium -4 -4.5

effect of fatigue 4 4.0

the number of items minus one. Second, instead of having estimates of the item
adjustments (BLUPs) that are appropriately centered around zero, we have
a series of item coefficients with, in general, a non-zero mean. The reason for
this is the dummy coding of the factor Item. When contrast coding is used, for
instance, the item coefficients represent contrasts between one specific ’pivotal’
item that happens to be mapped onto the intercept (and hence has a zero
coefficient) and each of the other items. The further the true adjustment of this
pivotal item is from the mean of the item effect, i.e., the further away it is from
zero, the larger the contrasts, and hence also the greater the absolute mean
of these contrasts, will be. Third, if Item is a random effect, the fixed effect
coefficients of Item will still be normally distributed with a standard deviation
that will be an estimate of the true standard deviation of the Item random
effect. This is illustrated in Table 8, which lists the estimated parameters and
their true values in the simulation averaged over 100 simulation runs.

In other words, the only thing that is wrong with the multilevel model is that
it cannot predict to new items while it should. It fails to do so only because
the by-item adjustments are hard-wired into the model as fixed effects. We
can adjust for this, fortunately, by centering the estimated item coefficients,
not forgetting to including the zero coefficient for the pivotal item. This is
illustrated for an arbitrary simulation run in Figure 7. The left panel plots
the centered estimated effect of Item on the horizontal axis, and the true
random effect of Item on the vertical axis. Note that there is a high correlation
between the true item effects and their (centered) estimates. The right panel of
Figure 7 is a quantile-quantile plot illustrating that the estimated coefficients
of the Item effect are indeed normally distributed. This is supported by the
high p-value of the Shapiro-Wilk test for normality (p = 0.66). Therefore,
in order to obtain proper predictions for unseen, novel, items, we only need
to adjust the intercept of our model, as the current intercept is specific to
the pivotal item. We can do so by first adding, for each item, the value of
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its estimated coefficient to the intercept, followed by averaging. The resulting
mean intercept is our best guess for the intercept for an item that was not in
the experiment, and the centered estimated coefficients are now similar to the
adjustments associated with a random effect in the multilevel framework.

In other words, even though we have included Item as a fixed effect in the
model, we can still ascertain that it is in fact a random effect, and we can
adjust the model so that we can generalize from our sample of items to the
population of items. Thus, this example shows how one can go a route opposite
to the one traditionally followed, by initially proceding from the assumption
that the item effect is fixed instead of random, and subsequently relaxing that
assumption upon inspection of the estimates obtained.

When the items in an experiment are not randomly selected from the popu-
lation, for instance, because the researcher has screened the items or matched
them carefully on a number of dimensions, the a-priori assumption that Item
is a random effect may be unwarrented, especially in cases where a replica-
tion study would be hard set to obtain a second sample with a new, disjunct
set of pairs. For the dangers inherent in non-random sampling of items, the
reader is referred to Forster (2000). With respect to the present example, if
Item were a fixed effect, this would have shown up as non-normality in the
quantile-quantile plot of the item coefficients.

3.2.3 A comparison with the quasi-F test

Let’s finally consider how multilevel modeling compares to classical analysis
of variance with quasi-F ratios.

Suppose that total eye fixation durations are obtained for some region in 8
pairs of matched sentences that differ systematically with respect to some
characteristic pertaining to linguistic complexity, henceforth Treatment. Let
Treatment have two levels, simple versus complex, and assume that data are
obtained for 6 subjects, with each subject reading all 2 ∗ 8 = 16 sentences.
The question of interest is whether Treatment has an effect on total fixation
durations. Table 9 list the outcome of a simulated experiment, and Table 10
lists the mean squares and the terms contributing to these mean squares in
a standard analysis of variance decomposition (see, e.g., Clark, 1973, Raaij-
makers et al., 1999, or Cobb, 1998, chapter 13). As there is no appropriate
term (mean square) to test the effect of Treatment against — there is no
term that differs from the term for Treatment in just one random effect —
the textbook solution is to make use of a pseudo-F or quasi-F ratio FC (Satter-
thwaite, 1946; Cochran, 1951) that isolates the Treatment effect by comparing
sums of expected mean squares (EMS) that differ precisely with respect to the
Treatment effect:
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Figure 7. Centered estimated effect of Item (horizontal axis) and true random effect
of Item. The right panel is a quantile-quantile plot of the centered estimated effect
of Item.

FC(df1, df2)=
EMS(T ) + EMS(TSP )

EMS(TS) + EMS(TP )
=

(2E + 2TSP + TS + TP ) + T

(2E + 2TSP + TS + TP )

df1 =
(TSP + T )2

TSP 2/df(TSP ) + (T 2/df(T )

df2 =
(TP + TS)2

TP 2/df(TP ) + TS2/df(TS)
(5)

For this data set, Cochran’s pseudo F ratio FC equals 6.62, which, with 1.11
and 11.99 degrees of freedom, reaches significance (p = 0.0221). Clark (1973)
and Raaijmakers, Schrijnemakers, & Gremmen (1999) argue that this would
be the only appropriate statistical test.

However, tests involving pseudo F ratios are known to be very conservative,
see, e.g., Forster and Dickinson (1976) and Wickens and Keppel (1983). The
current gold standard in psycholinguistics is to carry out separate tests by
subject and by item, as this procedure is somewhat less conservative than the
test using the pseudo-F ratio. For the present data set, the combined F1 and
F2 test also suggest that the effect of treatment is significant: t1(5) = 3.9, p =
0.0115 for the Subject means, t2(7) = 3.3, p = 0.0137 for the Pair means.
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Table 9
A data set with Treatment as fixed effect and Pair and Subject as random effects.

Treatment Subj1 Subj2 Subj3 Subj4 Subj5 Subj6

Pair 1 simple 174.2 172.3 172.9 207.3 235.7 170.4

Pair 2 simple 207.2 184.7 206.2 181.9 185.9 227.5

Pair 3 simple 196.5 172.9 198.4 167.5 200.5 210.1

Pair 4 simple 205.4 222.7 205.6 207.5 227.8 246.4

Pair 5 simple 219.1 197.9 234.0 257.9 224.8 245.9

Pair 6 simple 249.6 240.8 218.8 279.9 210.3 231.6

Pair 7 simple 211.6 198.7 175.0 232.7 201.7 208.8

Pair 8 simple 226.5 208.5 197.6 212.1 231.3 234.4

Pair 1 complex 132.8 172.0 218.3 178.6 170.9 136.9

Pair 2 complex 193.0 146.3 173.4 166.6 171.9 220.9

Pair 3 complex 206.7 160.5 200.2 195.6 195.1 163.0

Pair 4 complex 150.5 200.5 195.2 182.5 183.0 201.7

Pair 5 complex 239.5 176.8 198.9 209.3 237.9 197.8

Pair 6 complex 192.7 166.3 221.5 212.3 205.2 212.8

Pair 7 complex 207.9 246.1 200.4 201.6 203.2 177.9

Pair 8 complex 250.9 182.1 217.2 229.6 201.9 225.8

Table 10
Decomposition for the data of Table 9 with Treatment as fixed effect and Subject

and sentence Pair as random effects.

Df Sum Sq Mean Sq Decomposition

T: Treatment 1 6755.0 6755.0 E+TSP+TS+TP+T

S: Subject 5 3197.7 639.5 E+TSP+ST+SP+S

P: Pair 7 21812.4 3116.1 E+TSP+TP+SP+P

TS: Treatment:Subject 5 2226.3 445.3 E+TSP+TS

TP: Treatment:Pair 7 4423.7 632.0 E+TSP+TP

SP: Subject:Pair 35 19733.9 563.8 E+TSP+SP

TSP: Treatment:Subject:Pair 35 13165.1 376.1 E+TSP

E: Residuals 0 0.0
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Table 11
Least squares decomposition for a multilevel model for the data of Table 9.

Df Sum Sq Mean Sq F value P-value

Error stratum: Subject

Residuals 5 3197.7 639.5

Error stratum: Pair nested under Subject

Pair 7 21812.4 3116.1 5.5266 0.0002

Residuals 35 19733.9 563.8

Error stratum: Pair

Treatment 1 6755.0 6755.0 17.5552 0.0001

Treatment:Pair 7 4423.7 632.0 1.6424 0.1517

Residuals 40 15391.4 384.8

Both t-tests estimate the Treatment effect at 16.8 ms.

Both the analysis of variance using quasi-F ratios as well as the by-subject and
by-item analyses are rather unsatisfactory from the point of view of statistical
modeling. The quasi-F test presupposes a model that requires 96 parameters
to estimate 96 data points. A simple list would provide a more parsimoneous
account of the data. Moreover, since the model overfits the data in the ex-
treme, prediction is impossible and neither confidence intervals nor prediction
intervals can be estimated for the coefficients. The conventional procedure of
carrying out separate subject and item analyses, by contrast, comes with the
problem that two models instead of one model are fit. Neither model provides
accurate predictions, not even for the original data points. The by-subject ana-
lysis fails for the individual items, the by-item analysis fails for the individual
subjects.

As in the preceding examples, multilevel modeling offers an alternative that
is parsimoneous in the number of parameters, and that avoids overfitting the
data. Again, we take Subject to be the main grouping factor for the ran-
dom effects structure, and Treatment to be a fixed effect. Because multi-level
modeling does not provide the option of crossing Pair as a random effect with
Subject, we will consider a multilevel model in which we include Pair as a
fixed effect while at the same time nesting Pair as a random effect under
Subject.

Table 11 presents the least squares decomposition for this multilevel model fit
to the data of Table 9, using an ordinary least-squares decomposition of the
data. The Mean Squares for the error stratum Subject, for instance, 639.5, is
identical to that listed in Table 10 for Subject. There are three fixed effects
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in this model: the fixed effect of Treatment, the fixed effect of Pair, and their
interaction. There are also three random effects in this model: Subject (mean
squares 639.5), Pair by Subject (mean squares 563.8, again as in Table 10),
and the pooled error of the interaction of Subject by Treatment and the third
order interaction. This pooled error is the error term for testing the main effect
of Treatment.

There are two things to note at this point. First, unlike in the standard de-
composition of the data shown in Table 10, we now have a non-zero error
term. Hence, we have a model that will allow prediction to new data. Second,
with this error term, we test whether the Treatment effect has explanatory
value compared to both how subjects respond to the treatment and to how
the treatment effect changes for combinations of pairs and subjects. Especially
for experiments in which the treatment effect is implemented in the pairs —
in the present example as a linguistic change in the form of one sentence of a
pair resulting in the second sentence of the pair — this is a sensible choice, as
an effect of the treatment on the subjects independently of the linguistic form
in which this treatment is administered is uncontrolled random variation just
as the third order interaction. Note that this way of testing for a Treatment

effect differs from, e.g, the quasi-F test.

Crucially, multilevel modeling allows the researcher to go beyond the analysis
of variance decomposition of Table 11, in that it provides estimates of all
the parameters of the model, not only the parameters for the fixed effects,
but also the parameters of the random effects. For the present example, these
parameters are listed in Table 12 together with their 95% confidence intervals.
An analysis of variance table (Table 13) shows very similar F -values and p-
values as Table 11, even though these estimates are arrived at computationally
in a completely different way, namely, with relativized maximum likelihood
estimation instead of by ordinary least squares estimation.

Table 12 shows that we need 19 parameters to fit 96 data points, which is a
considerable improvement over the 96 parameters required for carrying out a
quasi-F test. This table also highlights that we have estimates for the sample
effect of the sentence pairs. As in the preceding example, we can check whether
the coefficients of Pair are normally distributed. Since a Shapiro-Wilk test of
normality does not suggest any departure from normality (p = 0.6355), we
can center the coefficients of Pair while at the same time adding the mean of
these coefficients to the intercept. The new intercept, 211.18, is appropriate for
predicting fixation durations for new, unseen items. Similarly, we can inspect
the normality of the Treatment by Pair coefficients (p = 0.2996 according
to the Shapiro-Wilk test), and center these coefficients, while simultaneously
adding their mean to the Treatment effect, changing it from -20.576 to -16.777,
in order to make prediction to unseen items possible.

27



Table 12
Estimates and 95% confidence intervals for the parameters of the random and fixed
effects in the model fit to the data of Table 9.

lower estimate upper

Fixed effects

Intercept 170.757 188.816 206.875

Treatment (simple: complex) -43.467 -20.576 2.314

Pair:

contrast pair 1, pair 2 -15.452 10.070 35.593

contrast pair 1, pair 3 -23.361 2.161 27.684

contrast pair 1, pair 4 4.871 30.395 55.918

contrast pair 1, pair 5 15.578 41.102 66.625

contrast pair 1, pair 6 24.163 49.687 75.210

contrast pair 1, pair 7 -9.583 15.940 41.463

contrast pair 1, pair 8 4.068 29.592 55.115

Treatment by Pair

complex, contrast pair 1, pair 2 -32.010 0.361 32.733

complex, contrast pair 1, pair 3 -15.918 16.453 48.826

complex, contrast pair 1, pair 4 -45.441 -13.068 19.303

complex, contrast pair 1, pair 5 -31.680 0.692 33.064

complex, contrast pair 1, pair 6 -48.503 -16.131 16.241

complex, contrast pair 1, pair 7 -10.356 22.015 54.387

complex, contrast pair 1, pair 8 -12.296 20.076 52.448

Random effects

Subject 0.010 2.199 453.755

Pair within Subject 3.937 9.453 22.695

Residual 15.756 19.617 24.424

Since the interaction of Treatment by Pair is not significant, we might con-
sider an alternative model in which we remove Pair altogether from the fixed
effects structure, while retaining it as a random effect nested under Subject.
This nesting captures the main effect of Pair implicitly. This second, less re-
strictive model turns out to be slightly more conservative with respect to the
significance of the Treatment effect: F (1, 47) = 16.018, p = 0.0002. The es-
timated parameters of this second multilevel model and their 95% confidence
intervals are listed in Table 14. For this second model, r2 = 0.682, which is
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Table 13
Anova table for the fixed effects of the multilevel model fitted to the data of Table 9.

F p

Intercept F(1,40) = 6159.661 < 0.0001

Treatment F(1,40) = 17.553 0.0001

Pairs F(7,35) = 5.529 0.0002

Treatment ∗ Pair F(7,40) = 1.642 0.1517

Table 14
Estimated parameters and their 95% confidence intervals for a multilevel model fit
to the data of Table 9 with Treatment as only fixed effect.

lower estimate upper

Fixed effects

Intercept 203.569 211.184 218.800

Treatment (simplex: complex) -25.209 -16.776 -8.343

Random effects

Subject 1.023621e-09 0.378 140169753

Pair within Subject 10.941 16.277 24.214

Residual 16.775 20.535 25.137

slightly higher than that of the previous model, for which r2 = 0.649. Note
that this is achieved with just 5 instead of 19 parameters.

Inspection of the confidence intervals in Tables 12 and 14 reveals two problems,
however. First, the more restricted model in which Pair is included as a fixed
effect has a coefficient for Treatment with a 95% confidence interval including
zero. The probability that this coefficient might not be zero is only 0.0768.
This is an indication that the Treatment effect might not be fully reliable.

Second, note that the estimate of the standard deviation is not well-bounded
for the for the Subject random effect. For the multilevel model incorporating
Pair as a fixed effect, the 95% confidence interval for Subject is [0.010, 453.755],
for a standard deviation estimated at 2.199. In other words, the confidence
interval is two orders of magnitude larger than the estimate itself. This is an
indication that there might be a problem with the assumptions underlying the
model. For the model with Treatment as only fixed effect, the huge confidence
interval (ranging from practically zero to 140 million) indicates that remov-
ing the fixed effect of Pair from the model has as its consequence that the
Subject effect can no longer be properly estimated. This situation contrasts
markedly with the model fit to the data on tone neutralization in Taiwanese,
for which the 95% confidence intervals for the estimated parameters in Table 5
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were all properly bounded.

For this example, the quasi-F test as well as the by-item and by-subject tests
lead one to reject the null hypothesis that there is no Treatment effect. The
two multilevel models that we have considered support this conclusion, but
these models come with the warning that there might be a problem with the
fit. In fact, this warning is justified, as the dataset of Table 9 was generated
by a simulation model without a Treatment effect.

To illustrate the Type I error rate as well as the power for the standard stat-
istical tests and the multilevel model when Pair is included as a fixed effect
crossed with Treatment, and also as a random effect nested under Subject,
consider Table 15. (As discussed above, the assumption that Pair is (also) a
fixed effect can be relaxed when its coefficients turn out to be normally dis-
tributed.) The details of this simulation can be found in the appendix. In the
simulated data sets, Subject and Pair were actually implemented as crossed
random effects. Alternatively, Pair could have been nested under Subject.
However, since the current standards proceed from the assumption that the
two random effects are crossed, this is the way the simulated data were con-
structed. This makes it possible to illustrate the advantages and disadvantages
of multilevel modeling for data sets where it only approximates the true struc-
ture of the data.

The proportions listed in Table 15 are based on 100 simulation runs. The
column labeled F1, F2 lists the results for the common practice of requiring
both F1 and F2 to be significant. The first section of this table summarizes
the results for the case in which the simulation model actually contains both
a Treatment effect and all three pairwise interactions involving the random
effects Pair and Subject. The second section reports the results when there
are no interactions in the model. Note that for this simulation, there is little
advantage of carrying out separate F1 and F2 tests compared to the quasi-F
test.

The third and fourth sections of Table 15 illustrate performance when there is
no main effect of Treatment in the simulation model. The Type I error rate is
nominal for all models when there is no Treatment effect and no interactions,
but the Type I error rate is far above the nominal levels for the multilevel and
to some extent for the by-subject analyses when there are interactions.

What this simulation illustrates is that the multilevel model is an excellent
choice when there are no interactions involving the random effects. However,
the high Type I error rate for the multilevel model when there are interactions
illustrates that the present multilevel model with Pair nested under Subject
will tend to lead to the incorrect conclusion of a main effect of Treatment when
there is no such main effect in the simulation, in which Subject and Pair were
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Table 15
Illustration of power and type I error rate for 5 models testing for an effect of
Treatment (100 simulation runs).

With Treatment, with interactions

alpha multilevel subj item quasiF F1, F2

0.05 0.79 0.55 0.44 0.35 0.39

0.01 0.66 0.30 0.13 0.06 0.10

With Treatment, without interactions

alpha multilevel subj item quasi-F F1, F2

0.05 0.95 0.81 0.89 0.73 0.75

0.01 0.82 0.52 0.65 0.43 0.40

Without Treatment, with interactions

alpha multilevel subj item quasi-F F1, F2

0.05 0.28 0.19 0.05 0.04 0.04

0.01 0.15 0.07 0.01 0.00 0.00

Without Treatment, without interactions

alpha multilevel subj item quasi-F F1, F2

0.05 0.02 0.08 0.01 0.03 0.01

0.01 0.00 0.03 0.00 0.00 0.00

crossed rather than nested. In part, this is due to the fact that the multilevel
model only approximates the actual structure of the simulated data, testing
the Treatment effect agains a different (pooled) error term. But it is also due
to the statistical ambiguity of data sets with many interactions. The multi-
level model shows that in many cases, a data set that was in fact generated
without a Treatment effect and with subjects and pairs crossed, could just as
well have been generated by a simulation model with a Treatment effect and
with Pair nested under Subject. In other words, data sets with the present
complexity in terms of interactions will often be statistically ambiguous, in
the sense that different models might equally well have generated the data. In
the present example, we know what the generating model underlying a given
data set is. In practice, this information is not available. Given the presence
of interactions, the researcher’s confidence in the multilevel model will depend
on what empirical justification exists for either crossing Pair with Subject

or alternatively nesting Pair under Subject.

For this design, one might adopt a conservative strategy and follow the quasi-F
test or, equivalently, the combined by-subject and by-item analyses. Although
for the present example, this strategy protects against erroneously concluding
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that there is a main effect of Treatment in 14 cases (for α = 0.01), it comes
with the price of erroneously concluding that there is no such effect in 42 to
56 cases (again for α = 0.01) when in fact the effect is there. For the present
example, this conservative strategy is not particularly useful.

For cases in which the quasi-F test (or the combined F1 and F2 tests) are
more conservative than the multilevel model, it is often illuminating to in-
spect the data graphically by means of a trellis plot. Figure 8 plots the effect
of Treatment for each combination of Subject and Pair for a simulation
run without a Treatment effect in which the quasi-F test correctly reports
a non-significant effect of Treatment, whereas the multilevel model suggests
the presence of a Treatment effect. What this trellis plot shows is that there
is considerable variation as to the direction of the Treatment effect. For 29
subject-pair combinations, the effect in the simple condition is smaller than in
the complex condition. In 19 cases, the effect goes in the opposite direction.
Even though the multilevel model suggests there might be a main effect of
Treatment, the variation across subjects and sentence pairs severely restricts
the interpretation of this main effect. There is only a small majority for the
effect of Treatment leading to longer fixation durations in the complex condi-
tion, and given the substantial number of subject-item pairs in which there is
a large effect in the opposite direction, this main effect is not informative at
all. Thus, the disagreement between the quasi-F test, which argues against a
main effect, and the multilevel model, which argues in favor of a main effect,
concerns the question of whether there is a — potentially quite small — ma-
jority showing the effect in a specific direction. The answer to this question is
co-determined by the reseacher’s assumptions about whether or not the strong
assumption of crossing Pair with Subject is justified.

In fact, reporting whether or not the main effect of Treatment is significant for
this design is not informative and potentially misleading without additional
information about the interactions in the data. It is a misunderstanding to
assume that a main effect would allow the conclusion that the effect generalizes
to ’the population’. Such a conclusion is only justified in case there are no
demonstrable interactions. In the presence of interactions, the combined effect
of treatment and its interactions should be considered. When there are strong
interactions, as in Figure 8, the question whether there is a main effect of
Treatment becomes a side issue.

Although being able to report a significant main effect seems to be widely
regarded as a necessary condition for an experiment to have been successful, it
should be kept in mind that an experiment without a main effect of Treatment
but with clear interactions is not necessarily a failure. Imagine, for instance,
that a pattern similar to that shown Figure 8 is observed in medical research
on a treatment involving a new drug, with a minority of subjects showing an
effect of the drug in the desired direction, and a majority showing an adverse
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Figure 8. Fixation duration as a function of treatment for a simulated data set
where the multilevel model reports a main effect of treatment while the quasi-F test
reports no effect.

drug reaction. In such a situation, follow-up research is clearly required as to
why only some subjects benefit from the new drug. Similarly, differences in the
degree and direction of linguistic variables should be explored and understood,
rather than ignored.

The emphasis in the psycholinguistic literature on the quasi-F test (Clark,
1972, and Raaijmakers et al., 1999) and the simultaneous lack of interest in
how the interpretation of potential main effects depends on the interactions
is, from the perspective of modern exploratory data analysis, both naive and
wasteful.

4 Analyzing dichotomous variables

Experiments in which different kinds of responses are elicited, such as primed
and unprimed lexical decision, number decision, and grammaticality decision,
yield two kinds of dependent variables: latencies on the one hand, and on the
other hand a binary decision variable with values such as correct/incorrect,
singular/plural, and grammatical/ungrammatical. Most studies report ana-
lyses of such binary data using standard least squares analysis of variance and
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regression applied to proportions (e.g., proportions of errors by subject and
by item). However, it is important to choose

. . . a model whose mathematical form is appropriate for the response be-
ing modeled. This often has to do with minimizing the need for interaction
terms that are included only to address a basic lack of fit. For example,
many researchers have used ordinary least squares regression models for
binary responses, because of their simplicity. But such models allow pre-
dicted probabilities to be outside the interval [0, 1], and strange interactions
among the predictor variables are needed to make predictions remain in the
legal range. (Harrell, 2001:7)

A second reason that the ordinary least squares method is unsuitable is that
since Y is a binomial variable, its mean and variance are both linear in the
probability of Y . In other words, Y is intrinsically heteroskedastic, violating
one of the basic assumptions of ordinary least squares modeling.

The statistical model that is generally recommended for analyzing binary re-
sponse data is the logistic model. If we code binary outcomes Y as 0 (failure)
and 1 (success), a regression or analysis of variance model can be stated in
terms of the probability that Y = 1 given the predictors X1, X2, . . ., defined
as follows:

Pr(Y = 1|X1, X2, . . .) = P =
1

1 + e−(β0+β1X1+β2X2...)
. (6)

This is equivalent to modeling the log odds ratio as a linear function of the
predictors:

logit(Y = 1|X1, X2, . . .) = logitP = log(
P

1 − P
) =

=β0 + β1X1 + β2X2 . . . .

The parameters of the model are estimated by the method of maximum like-
lihood, with significance being evaluated with Z-scores instead of t-scores.
Logistic models are available in many statistical packages, and there is no
reason other than unjustified conservatism and methodological laziness not
to use them. Chatterjee et al. (2000), chapter 12, provides a very readable
introduction to logistic modeling, Harrell (2001) provides extensive examples
of more complicated data sets, including bootstrap validation and non-linear
regression.

As an illustration of the advantage of logistic modeling, consider an experiment
in which the dependent variable is the accuracy measure (correct versus in-
correct response in, for instance, lexical decision). Let’s assume that accuracy
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Table 16
Comparison of models with the error proportions as dependent variable with logistic
regression. Proportions are based on 1000 simulation runs.

α model Treatment Covariate

proportion logit proportion logit

0.05 with Treatment 0.491 0.501 0.909 0.922

0.01 with Treatment 0.252 0.258 0.763 0.805

0.05 without Treatment 0.088 0.046 0.853 0.868

0.01 without Treatment 0.015 0.008 0.680 0.712

is hypothesized to be a linear function of a binary treatment effect (singu-
lar versus plural number) and a discrete covariate (frequency of occurrence).
Traditionally, such data are reported by calculating proportions of errors over
subjects and items. In what follows, I will first compare a by-item analysis
of the error proportions with a logistic analysis of the corresponding log odds
ratios. After this, an example is provided of a single logistic analysis replacing
the standard by-subject and by-item analyses.

Table 16 lists the proportions of simulation runs for which the treatment and
frequency effects were reported as significant at the 0.05 and 0.01 significance
levels, for analyses with the error proportion as the dependent variable, as
well as for logistic analyses. All simulation models included an effect of the
frequency covariate. As shown by the last two columns of Table 16, the lo-
gistic regression is characterized by slightly superior power. As the differences
are small, in order to obtain reasonably stable estimates of the magnitude of
these differences, the proportions in Table 16 were based on 1000 rather than
100 simulation runs. (Note that this is still an example only; for solid estim-
ates, the number of simulation runs should be at least an order of magnitude
larger.) When the model contained a Treatment effect, the logistic analyses
outperformed the analysis using proportions by a tiny margin. However, when
there was no effect of Treatment in the model, the analysis using proportions
emerged with a slightly too high Type I error rate, whereas the logistic re-
gression performed as required. For the details of this simulation, the reader
is referred to the appendix.

Table 16 provides an example of the advantage of logistic regression in terms of
power and Type I error rate. The final question to be addressed in this section
is whether it is necessary to run separate by-item and by-subject analyses.
Consider a data set with the accuracy measure as dependent variable, and in
addition to the Treatment (singular versus plural) and Frequency effects of
the preceding example, an additional longitudinal effect of fatigue. We can fit
a logistic regression model to such a data set, where we use the Frequency co-
variate to bring item variability under control, and where we include Subject
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Figure 9. Log odds as a function of Treatment (upper left), Frequency (upper
right), position in the sequence of items (order) (lower left), and Subject (lower
right), with 95% confidence intervals.

as a (fixed) factor to bring subject variability explicitly into the model. (For
ordinal logistic regression, see Harrell, 2001, and Sheu, 2002). If the effect of
Subject is significant, and if the coefficients of the Subject effect are normally
distributed, then the model can be reformulated with Subject as random ef-
fect by means of centering and adjustment of the intercept. Figure 9 illustrates
the estimated marginal effects of the predictors on the log odds ratio, with
95% confidence intervals. Thus, instead of collapsing the data over subjects
or items, we can fit the model directly to the individual data points (using
the Poisson canonical link function instead of the logit, see, e.g., Venables
& Ripley, 1994:185–199), with subject variability directly under control, and
with item variability under control through the frequency covariate.

5 Concluding remarks

The main targets of the present critique of the current gold standards in
psycholinguistics can be summarized as (1) the dictatorship of the factorial
design, (2) the hegemony of prior averaging, and (3) unjustified methodological
conservatism.
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Factorial designs are commonly used where regression is more appropriate.
Dichotomization and factorization of numerical predictors, although widely
practised, lead to a loss of power and should be avoided. Psycholinguists are
generally very reluctant to include covariates in their analyses, even though
including relevant covariates is part and parcel of statistical common sense.
When relevant covariates are not taken into account, the conclusions sugges-
ted by one’s model may be unwarranted. Including available covariates is a
crucial part of the modeling process, just as checking for outliers, handling of
collinearity (see, e.g., Baayen, Feldman, & Schreuder, 2004), and addressing
potential non-linearities (see, e.g., Harrell, 2001:230).

The examples discussed in the present study provide ample illustration of the
disadvantages of the averaging procedures underlying the by-subject and by-
item analyses. Prior averaging not only leads to a loss of power, but also makes
it impossible to bring longitudinal effects in the experiment in a principled way
into the model. Moreover, accurate prediction to the individual data points
is impossible on the basis of the subject and item analyses. The quasi-F test
advocated by Clark (1973) and Raaijmakers et al. (1999) for one kind of
design is a not particularly useful alternative, due to its lack of power and the
impossibility of insightful prediction. Often, multilevel modeling will provide
a better tool for understanding the structure of the data.

Multilevel models are an excellent tool for analysing data with nested random
effects. For repeated measures designs with items and subjects, this raises
the question of whether items should be crossed with subjects or nested under
subjects. There is no reflection in the literature (with the exception of Quené &
van den Berg, 2001) about the advantages and disadvantages of crossing items
with subjects in combination with an item by subject interaction, compared
to nesting items under subjects. The traditional approach, guided by practical
expedience, is to proceed under the assumption that subjects and items are
crossed. Modeling items as crossed with subjects entails a strong assumption
about the commonality of the specific item effects across subjects that is absent
when modeling items as nested under subjects. In the multilevel approach,
one possibility is to nest items under subjects, in which case common item
effects across subjects, if present, are modeled implicitly. Alternatively, item
can initially be included as a fixed effect and at the same time as a random
effect nested under subject. If the coefficients of the fixed effect of item turn
out to be normally distributed, the model can be reformulated with item as a
random effect, to allow prediction to novel, unseen items. Of course, prediction
is meaningful only when the items in the experiment are a true random sample
from the population of items. When items have been carefully screened for
various properties, items should be analyzed as fixed, or the characteristics of
the sub-population for which prediction is envisioned should be made explicit.

From a methodological perspective, it is clear that in psycholinguistics, the
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discussion initiated by Clark (1973) has led to a situation in which the tech-
niques available in the 1970s for analysis of variance have become the gold
standard and reign supreme, as if the current gold standard of by-subject and
by-item analyses were the best that modern statistics has to offer. The import-
ance ascribed to these analyses is illustrated by the following recommendation
to its reviewers on the homepage of the Journal of Memory and Language:

In general, it is important to be confident that the results generalize over
items as well as over participants.

Classical statistics seems to be viewed as perfected and finished, with the by-
subject and by-item analyses as the optimal solution for repeated measurement
problems that are sometimes naively thought to be specific to the field of psy-
cholinguistics. Multilevel modeling and logistic modeling are shrugged away
as theoretical variations on a well-established theme with no practical benefit
for the data analyst. Likewise, the idea that trellis graphs might enhance in-
sight over and above the numbers produced by standard statistical packages
sometimes meets surprising scepticism. However, as anyone following statist-
ical developments outside the specific field of psycholinguistics (for instance,
in Psychological Methods or in Behavioral Research Methods, Instruments and

Computers, or in Venables & Ripley, 2003) will have realized, current statist-
ics has a lot more to offer, both in power and in the insight provided into the
quantitative structure of the data.

Unfortunately, those researchers who do read up on the literature or who enlist
the help of professional statisticians to analyse their data are often forced by
the review process to ostracise the resulting more sophisticated data analyses
from their paper, substituting it for the traditional by-subject and by-item
analyses. Whereas reviewers should read up on statistical techniques unknown
to them, they tend to misuse their authority to bring the statistical analyses
back in line with the current gold standard. In fact, many of my colleagues
admit knowing that they use non-optimal statistical techniques, but regard
getting the data published as more important as getting the data published
with the correct data analyses. This attitude has led to an extreme form of
unjustified methodological conservatism.

In this respect, the preface to the 14th edition of Yule and Kendall’s Intro-

duction to the theory of statistics from 1950 is instructive. Kendall explains
that

Although fewer than fifteen years have passed since the last revision, so
much has happened in the statistical world in the meantime that Mr. Yule
and I both felt that the usefulness of the book would be increased by some
further changes. (page v)

In the same vein, a lot has happened in statistics since the 1970s (logistic mod-
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els, multilevel models, classification and regression trees, regression splines,
trellis graphs, bootstrap validation), and psycholinguistic research would be-
nefit if the journals would allow researchers the freedom to make use of the
new developments, rather than impeding research by imposing standards of
the past.

Appendix

All simulations were run using the R statistical programming environment
(http://lib.stat.cmu.edu/R/CRAN/) version 1.7.0 and the nlme library of
Pinheiro and Bates (2000), version 3.1-45. Figure 9 was created with the
Design library of Harrell (2001), version 2.0-2.

Simulation example 1 (Figure 1, Table 1): A comparison of an analysis of

variance with a regression analysis. These two methods were compared for
the following models:

Y 1 =−60 + 3.8X + ε, ε ∼ N(0, 802), X ∼ Unif(−10, 6.6) (7)

Y 2 =−X2 + ε, ε ∼ N(0, 802), X ∼ Unif(−10, 6.6) (8)

Y 3 =500 − 4 log(X) + ε, ε ∼ N(0, 202), X ∼ Unif(1, 1000) (9)

For each of 100 simulation runs with 1000 random values of X, uniformly
distributed on the abovementioned intervals, 15 data points were randomly
sampled from the 5% lowest and 5% highest values of X for the factorial con-
trast, and 30 data points were randomly sampled from the full data range for
the regression analyses. For illustration purposes, the standard deviations for
the data sets shown in the bottom panels of Figure 1 were set to 10 instead
of 20.

Simulation example 2 (Figure 2, Table 2): A comparison of analysis of vari-

ance with regression for two continuous correlated predictors. In order to
construct these correlated predictors, let T1 ∼ N(3, 62), T2 ∼ N(6, 62), and
C ∼ N(25, 52), and define

X =T1 + C,

Y =T2 + C.

We consider two models, one with and one without an effect of X:

RT1 = 400 + 3X + 6Y + ε, (10)

RT2 = 400 + 0X + 6Y + ε, ε ∼ N(0, 502). (11)
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Figure 10. The geometry of item selection for simulation 2.

Figure 10 illustrates how for each simulation run a factorial contrast in X
matching in the mean for Y was constructed. The central vertical line repres-
ents the sample mean X̄, the vertical lines to its left and right are at a distance
of 1.5σ̂X of X̄. The central horizontal line is at the sample mean of Y , the
upper and lower horizontal lines are at a distance of 1.5σ̂Y of Ȳ . The dashed
lines are at a distance of 0.375σ̂X of the solid slanted lines. Items were selected
from each of the central four sections enclosed by dashed lines and horizontal
lines. This ensures that any two data points within a narrow interval of Y are
at least 0.75σ̂X apart. A number equal to the minimum of the number of data
points in any of these sections (but not exceeding 40) was randomly selected
from each of the sections. For the regression analysis, a number of data points
equal to the total number of data points in the analysis of variance was selec-
ted randomly from the complete sample.

Simulation example 3 (Table 4): Power and Type I error for multiple regression

comparing multilevel regression, item regression, and random regression. The
simulated data sets were generated by the models

RTij =

fixed effects
︷ ︸︸ ︷

400 + 3Xi + 6Yi + 4.5Zi +

random effects
︷︸︸︷

bj + εij (12)

RTij =

fixed effects
︷ ︸︸ ︷

400 + 3Xi + 6Yi + 0Zi +

random effects
︷︸︸︷

bj + εij (13)

i = 1, 2, . . . , 20; j = 1, 2, . . . , 10,

bj ∼ N(0, 42), εij ∼ N(0, 2502),
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for 20 items and 10 subjects. The predictor X always had the values 1, 2,
. . . , 20. The predictors Y and Z were (nearly) orthogonal and uniformly dis-
tributed on the interval [1, 20]. In this simulation, as in the simulations to
follow, the random effects were random samples from a population with zero
mean, without further constraints, even though the estimated random effects
are always constrained to sum to zero in the models fitted to the simulated
data. This choice is motivated by the consideration that in actual data, the
true random effects that happen to appear in the sample will seldom sum up
to zero.

Simulation example 4 (Table 6, Table 7, Figure 7): The analysis of a simple
Latin Square design. The simulated data sets were generated by the model

RTijk =

fixed effects
︷ ︸︸ ︷

534 + 4Xt[ij] + SOAk +

random effects
︷ ︸︸ ︷

bi + bj + εijk, (14)

i, j = 1, 2, . . . , 12; Xt[ij] = 1, 2, . . . , 12;

bi ∼ N(0, 282), bj ∼ N(0, 392), εijk ∼ N(0, 202),

SOA1 = 0(long), SOA2 = 5(short), SOA3 = −4(medium),

where i ranges over items, j ranges over subjects, and t[ij] is the effect of
fatigue at trial t for item i and subject j. The random effects of subject and
item were uncorrelated. For the simulations without a Treatment effect, the
coefficients for both dummy variables were set to zero. For the models without
a learning effect, the coefficient of Xt[ij] was set to zero. Multilevel modeling is
especially recommended for this kind of incomplete design (see, e.g., Venables
& Ripley, 2003:282). The multilevel model fit to this data set was

RTijk =

fixed effects
︷ ︸︸ ︷

β0 + β1Xt[ij] + SOAk + Itemi +

random effects
︷ ︸︸ ︷

bj + εijk, (15)

k = 1, 2, 3; i, j = 1, 2, . . . , 12;

bj ∼ N(0, σ2
b ), εijk ∼ N(0, σ2

ε ).

When the coefficients of Item are normally distributed, we can reformulate
this fixed effect as a random effect, leading to the model

RTijk =

fixed effects
︷ ︸︸ ︷

β ′

0 + β1Xt[ij] + SOAk +

random effects
︷ ︸︸ ︷

bj + bi + εijk, (16)

k = 1, 2, 3; i, j = 1, 2, . . . , 12;

bj ∼ N(0, σ2
bj

), bi ∼ N(0, σ2
bi
), εijk ∼ N(0, σ2

ε ),

where β ′

0 is the sum of β0 and the mean of the coefficients of Item, and where
the bi are the centered coefficients of Item.
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Simulation example 5 (Table 15) A split-plot design requiring a quasi-F test

in classical analysis of variance. Let D denote the dependent variable, let i
and j index pairs and subjects, and let T denote Treatment (T1 = 15 for the
complex condition and T2 = 0 in the simplex condition). The model generating
the data sets is

Dijk =

fixed effects
︷ ︸︸ ︷

200 + Tk +

random effects
︷ ︸︸ ︷

bi + bj + bij + bik + bjk + εijk (17)

i = 1, 2, . . . , 8; j = 1, 2, . . . , 6; k = 1, 2,

bi ∼ N(0, 72), bj ∼ N(0, 72), bik ∼ N(0, 122), bjk ∼ N(0, 42),

bij ∼ N(0, 82), εijk ∼ N(0, 202).

In the simulations without interactions, all bij , bik, bjk were set to zero. In the
simulations without a treatment effect, T1 was set to zero. All random effects
were pairwise uncorrelated. The multilevel model fit to the simulated data sets
was

Dijk =

fixed effects
︷ ︸︸ ︷

β0 + Tk + PAIRi + T · PAIRik +

random effects
︷ ︸︸ ︷

bj + bi(j) + εi(j)jk (18)

bj ∼ N(0, σ2
bj

), bi(j) ∼ N(0, σ2
bi(j)

), εi(j)jk ∼ N(0, σ2
ε ).

When centering the effects involving Pair is appropriate, this model can be
reformulated as

Dijk =

fixed effects
︷ ︸︸ ︷

β ′

0 + T ′

k +

random effects
︷ ︸︸ ︷

bj + bi + bik + bi(j) + εi(j)jk (19)

bj ∼ N(0, σ2
bj

), bi ∼ N(0, σ2
bi
),

bik ∼ N(0, σ2
bik

), bi(j) ∼ N(0, σ2
bi(j)

), εi(j)jk ∼ N(0, σ2
ε ),

where β ′

0 equals the sum of β0 and the mean of the coefficients of Pair, and
where T ′

k is the sum of Tk and the mean of the coefficients of the Pair by
Treatment interaction adjusting the k-th level of Treatment. The bi are the
centered coefficients of Pair, the bik are the centered coefficients of the Pair

by Treatment interaction.

Simulation example 6 (Table 16) Analysis of covariance using least squares

estimation for proportions and maximum likelihood estimation for logits. In
this example, the dependent variable B was binary, with values 1 and 0. Let
i and j index items and subjects, and let T denote the dummy variable for
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the Treatment contrast (T1 = 0, T2 = 1). The probabilities in this model were
defined as

p(Bijk = 1) = [1 + exp{−(−1 + 0.4Tk − 0.25Fi)}]
−1, (20)

i = 1, 2, . . . 40; j = 1, 2, . . . , 20; k = 1, 2,

with the ’frequency’ F a compound lognormal-poisson random variable with
mean 4 and standard deviation 1.5. For each subject j, the dependent variable
Bijk was set to 1 whenever a random number from the (0,1) interval was less
than p(Bijk = 1), and to zero otherwise. In the analysis without an effect of
Treatment, the coefficient 0.4 was replaced by 0.
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