1. Title slide

This is a brief version of the presentation I gave at Icassp 2007 in the special session on reproducible research. My goal was to give some input based on my experience during the 5 years I served as the Editor-in-Chief of the IEEE Transactions on Image Processing. 

2. Theory vs Experimentation

This slide illustrates the way I see how different disciplines deal with the issue of reproducibility. 

In theoretical disciplines, such as mathematics for example, abstract results---theorems---are built starting from ``given truths''---axioms, on which a logical pyramid is built---a proof. Each step of the pyramid relies on the axioms as well as the other known theorems.  The validity of the proof is ascertained through peer review---examination of the proof by other mathematicians. Once through that stage, the theorem is added to the set of tools used to build other theorems. The issue of reproducibility is settled at that point; the proof allows anyone to reproduce the steps leading to the theorem. While it is certainly possible that another mathematician might come up with a shorter/more elegant/easier/... proof, the theorem is already known to be true and the steps to reaching its conclusion(s) are published and reproducible.

In experimental disciplines, such as biology for example, the reproducibility has another form. The biologist forms a hypothesis (equivalent to the mathematician's theorem, which is a hypothesis until proven), and then proceeds to prove or disprove the hypothesis by performing experiments.  Thus, what mathematicians would call a proof would, in biology, be the methodology, the set of experiments as well as the resulting data and its interpretation that would prove the hypothesis.  While, when written, such works go through the same process of peer review, the result does not become a ``theorem'' until at least another independent group is able to perform the exact same experiments and confirm the results. Of course, to truthfully replicate the experiments, the paper has to provide enough specific detail about the experiments to allow another group to mimic it---the reproducibility criterion.

While the above criteria seem simple in theory, in practice things do not always work smoothly. For example, it is quite possible for a mathematician to make a mistake in the proof of a theorem and for this mistake to go unnoticed. In the late 1990s, it took mathematicians two years to check the Andrew Wiles' proof of Fermat's Last Theorem. The original proof had a flaw which first went unnoticed and which Wiles eventually fixed.  Some not so happy examples from recent times include the stem-cell scandal; The reputed researcher Hwang Woo Suk claimed to have created tailor-made stem cell colonies which in fact did not exist. Although the results were published in one of the most famous and respectable journals---Science (which means the article went through a rigorous review process), the results were completely fraudulent.

To make matters more interesting, in the second half of the last century, a ``hybrid'' of theoretical and experimental research developed: research in computational sciences. These sciences encompass many fields, including computer science, statistics, many areas of engineering, as well as my own---signal processing. Take signal processing as an example. It is debatable whether we have adopted the good practices from either our theoretical or our experimental ancestors. In terms of theoretical rigor, we often find our publications vague, hand-waving and with simplest experiments as proof. However, to our defense, there is a number of researchers who clearly state the assumptions and develop logical proofs. On the experimental side, the situation is bleaker; In a host of our papers, no scientific methodology is followed, no comparisons to competing techniques are given and/or sample sizes are dismally small and no confidence intervals are given.

3. Issues

Cultural issues

Our culture prizes innovation above all else. In IEEE Transactions on Image Processing, you see here what the questions are.  It is clear that questions 1. and 4. bear most weight in everyone's mind.  Thus, novelty is of great importance to us. While there is nothing wrong with novelty, this criterion can lead to some strange situations. For example, in our ``publish or perish’’ environment, one may see work which is novel but seems like an arbitrary exercise. Disconnected from the real world, we state our own problems, thereby fixing the assumptions so we can get something new (just think of the Gaussian assumption in anything and everything). On the other hand, the work which uses a known algorithm and then modifies it to suit a particular application, is typically considered lower-class. While a mathematician within us might think that a known algorithm that works in a particular application and on a particular data set is a sufficient proof of concept, we should examine its intrinsic value.  A host of works developing a family of algorithms all based on the same ``mother'' algorithm, and which would work in a wide range of applications and on a wide range of data sets, would be most welcome, not to mention useful.  We do not encourage such work, however.

Educational issues

When we come to educating our students, we do not do a good job of stressing the above values. Our students are typically undertrained in statistics and as a result might think that performing one experiment on one image should suffice. They typically reimplement everything without looking to find whether such pieces of code already exist. We have no set standards on how such code should be written or shared. While we might pay lip service to RR in principle, it is very hard to enforce those rules on a daily basis.

Data issues

Many of us work on data sets which we did not acquire. We might be collaborating with biologists, geophysicists, medical doctors, etc. The data given to us is someone else's hard work and our task is typically (though this is changing as well) to perform some type of signal processing. When the paper is prepared for publications, the issue of whether the data can be made available might not depend on us.

Intellectual property issues

Many in our community work with companies and various agencies that prohibit public disclosure of the code. In the same vein, in such situations, often very little detail is given on how the actual algorithm is developed.  While this is a genuine issue, such work cannot be validated by others and should not have the same standing as the work that can be reproduced.  One may decide to believe the authors, but since the work cannot be used by others, it does not benefit anyone except the company and the authors.

Collaborative issues

Our collaborations are varied: We collaborate with our students, colleagues from the same field at our universities or in our companies, colleagues from different universities, colleagues from other fields. In each of these instances, a variety of problems might arise, some of which, such as those pertaining to data and intellectual property, have been discussed above.

4. How Do We Publish RR?
So how do we publish reproducible research? We all understand this is not going to happen overnight. We need to encourage and reward good behavior (all your parents among you know this typically works quite well).  For example, we might add a paper award for an RR paper, or have special sections of journals to publish such papers. 
5. How To Make Papers RR?
So how do we make papers RR? Here is an example I use in my group. We followed what the EPFL and Barni groups do and provide a reproducible research compendium with each journal paper published. So when we submit a journal paper, my students are required to create this page and provide everything that is needed to reproduce results in the paper. Thus we provide data if it’s ours, and if not, point to the data on the web. We provide the code with explanations and instructions on how to run it to reproduce our results. We provide any other data/information we have (tables, proofs, ….)
6. An Entirely NonRR Case Study

This is an entirely nonRR case study I conducted then. Since that time, Patrick Vandewalle, Martin Vetterli and I have written a paper for the Signal Processing Magazine, where we have conducted a much larger study (not published yet) inspired by this one. 

The data set I used consists of 15 papers published in the past few years in the IEEE Transactions on Image Processing. I chose an EDICS category that is both theoretical and experimental and have made sure all of the 15 papers both propose new theoretical models/tools and then build new algorithms based on those. I stayed away from standard-oriented EDICS categories as well as the newly introduced biomedical ones (though initially I wanted to compare against those and see if different trends emerge, I left this for future work). For all of these papers, competing algorithms exist. For some of the application fields chosen, public databases exist. I then read those 15 papers and rated them on a scale of (0, 0.5, 1) on the criteria I divided into two sets:

Algorithm and Experimental Setup: In this part, I rated papers on (a) how well they explained the algorithm details, (b) how well the data used was explained, (c) the data size, (d) details on parameters used and (e) comparison to competing algorithms. For each of these, the paper got 0 if it failed the criterion completely, 1 if the criterion was completely satisfied and 0.5 if it fell somewhere in between. Just remember this was a purely subjective exercise.

Reproducible Research: In this part, I rated papers on (a) whether they had a block-diagram of the algorithm (b) whether they had pseudo code of the algorithm, (c) whether the data was available, (d) whether the code was available and (e) whether the proof was available. In (c), if the authors used a public database and identified it earned the paper a 1. In (d), I searched both in papers as well as authors' websites to see whether the code for the algorithm was available anywhere.

7. Results of the Entirely NonRR Case Study

Looking at these numbers, we note several interesting facts: 

(a) All papers had proofs, while none had code available. 

(b) The algorithms were typically explained in sufficient detail but none of the papers had a block-diagram of the algorithm. Given that the block-diagram is usually the easiest way to visualize an algorithm, this is fairly strange. 

(c) The facts related to the details on data used, data size and availability of the data are all below average. In all of the cases where I rated data availability as 1, the authors identified a publicly available database. 

(d) Only in about half the cases were the parameters specified.  Actually, the whole set of parameters was given in fewer than half the cases and those I rated 1. There were few I rated 0.5 for specifying at least some of the parameters. 

(e) In only about a quarter of the papers did the authors actually compare the algorithm against competing algorithms.  I believe this to be the result of (b)-(d); one cannot replicate someone else's algorithm if no sufficient detail nor parameters are specified in a satisfactory way. 

(f) I was pleasantly surprised to find that in 60% of the cases, pseudo-code was available.

I then proceeded to rate myself on this study and of course my own rating would have been dismal. I would say 0 on algorithm details, data details and parameters. There is really no competing algorithm so this would be a Not Applicable (NA). I did not give you a block-diagram, pseudo code, will not make this data available, there is really no code and the proof is an NA. So you are left to believe me when I give you the above numbers.  Should you? Of course not, unless you can recreate these numbers yourself. (If you have time, you can entertain yourself with  the same exercise and see what you come up with).

