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“ i jes tn the Iterated Prisoner’s Di-
Adapted from Robert Axelrod, “The Evolution of Suafcgues mt : s Di-
ler:n‘-:ta,” in Genetic Alporithms and Simulated Annealing, ed. Lawrence Davis {London:
Pitman; Los Altos, Calif.: Morgan Kaufman, 1987), 32-41. © Robert Axelrod

In complex environments, individuals are not fully able to analyze the
situation and calculate their optimal strategy.® Instead they can be ex-
pected to adapt their strategy over time based upon what h.as been cffccf-
tive and what has not. One useful analogy to the adaptation process is
biological evolution. In evolution, strategies that have been Fclatwell): ef-
fective in a population become more widespread, and strategies that avg
been less effective become less common in the pqpul:mon. . -;1.,

Biological evolution has been highly successful in dlscovermg. complex
and effective methods of adapting to very rich‘envn'onmental sitnations.
This is accomplished by differential reproducnop of the more successful
individuals. The evolutionary process also requires that successful char-
acteristics be inherited through a genetic mechanism t.hat allowg some
chance for new strategies to be discovered. On'e genetic mechamsm_al-
towing new strategies to be discovered is mutation. Another mechanism

is crossover, whereby sexual reproduction takes some genetic material

arent and some from the other. ‘ _
fr?;'li'l: ?rfefhanisms that have allowed biological evolu'fior} to be 50 good
at adaptation have been employed in the field of amﬁc:a'l mtclhgex_lci.
The artificial intelligence technique is called the “genetic algo_n‘thn}
{Holland 1975). Although other methods of representing strategies nc}
games as finite automata have been used (Rubinstein 1986; Megiddo an
Wigderson 1986; Miller 1989; Binmore and Sa_lmuelson 1990, I:.omborg
1991), the genetic algorithm itself has not previously been used in game-
tic settings. .
the;;;es essay wigll first demonstrate the genetic algorithm in the cOntext o:;
a rich social setting, the environment formed by the strategies submitte
1 I thank Srephanie Forrest and Reiko Tanese for their help with the computer program-
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to a Prisoner’s Dilemma computer tournament. The results show that the
genetic algorithm is surprisingly successful at discovering complex and
effective strategies that are well adapted to this complex environment.
Next the essay shows how the results of this simulation experiment can
be used to illuminate important issues in the evolutionary approach to
adaptation, such as the relative advantage of developing new strategies
based upon one or two parent strategies, the role of early commitments
in the shaping of evolutionary paths, and the extent to 'which evolution-
ary processes are optimal or arbitrary.
The simulation method involves the following steps:

1. the specification of an environment in which the evolutionary process
can operate, - ‘ o

2. the specification of the genetics, including the way in which information on
the simulated chromosome is translated into a strategy for the simulated individual,

3. the design of an experiment to study the effects of alternative realities
(such as repeating the expetiment under identical conditions to see if random
mutations lead to conve;écm or divergent evolutiogafy outcomes), én_d

4. the running of the experiment for a specified number of generations on a
computer, and the statistical analysis of the results. o

The Simulated Environment

An interesting set of environmental challenges js provided by the fact that
many of the benefits sought by living things such as people are dispropor-
tionately available to cooperating groups. The problem is that although
an individual can benefit from mutual cooperation, each one can-also do
even better by exploiting the cooperative efforts of others. Over a period
of time, the same individuals may interact again, allowing for complex
patterns of strategic interactions (Axelrod and Hamilton 1981)..

- The Prisoner’s Dilemima is an elegant embodiment of the problem of
achieving mutual cooperation, and therefore provides the basis for. the
analysis. In the Prisoner’s Dilemma, two. individuals cari each either co-
operate or defect, The payoff to a player affects its reproductive success.
No matter what the other does, the selfish chaice of defection: yields a
higher payoff than cooperation. But if both: defect, both do worse than if
both had cooperated.. Tahle -1-1 shows the payoff matrix .of the Pris-
oner’s. Dilemma used in this study, - C e : S
- In-many settings, the same two individuals umay.meet more than once.
If an individual can recognize a previous intgractant and remember some
aspects of the prior outcomes, then the:strategic situation. béconies an

irerated Prisoner’s Dilemma. A strategy would take-the form of a decision
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TABLE 1-1
The Prisoner’s Dilemma
' ~ Column Player
Cooperate Defect
Cooperate R=3R=3 §=0,T=3
_ Reward for Sucker’s payoff, and
Row ‘ mutual cooperation . temptation to defect
Player Defect T=58=0 P=1,F=1
Temptation to defect Punishment for
and sucker’s payoff mutual defection

Note: The payoffs to the row chooser are listed first.

rule that specified the probability of cooperation or defection as a func-
tion of the history of the interaction so far. ‘

To see what type of strategy can thrive in a variegated environment of
more or less sophisticated strategies, I conducted a computer tournament
for the Prisoner's Dilemma. The strategies were submitted by game theo-
rists in economics, sociology, political science, and mathematics {Axelrod
1980a). The fourteen entries and a totally random strategy were paired
with each other in a round robin tournament. Some of the strategies were
quite intricate. An example is one that on each move models the behavior
of the other player as a Markov process, and then uses Bayesian inference

to select what seems the best choice for the long run. However, the result

of the tournament was that the highest average score was attained by the
simplest of all strategies, TIT FOR TAT. This strategy is simply one of coop-
erating on the first move and then doing whatever the other player did on
the preceding move. Thus TIT FOR TAT is a strategy of cooperation based
upon reciprogcity.

The results of the first round were circulated and entries for a second
round were solicited. This time there were sixty-two entries from six
countries {Axelrod 1980b). Most of the contestants were computer hob-
byists, but there were also professors of evolutionary biology, physics,
and computer science, as well as the five disciplines represented in the
first round. TIT FOR TAT was again submitted by the winner of the first
round, Anatol Rapoport. It won again. : AT

The second round of the computer tournament provides a rich envi-.

ronment in which to test the evolution of behavior. It turns out that just
eight of the entries can be used to account for how well a given rule did
with the entire set. These eight rules can be thought of as representatives
of the full set in the sense that the scores a given rule gets with them can
be used to predict the average score the rule gets over the full set. In fact,

-
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98- percent of the variance in the tournament scores is explained b

knowing a .rule’s performance with these eight representatives. So thes};
representative strategies can be used as a complex environment in which
to evaluate an evolutionary simulation. What is needed next is a way of

representing the genetic material of a population so that the evolutionary
process can be studied in detail, :

The Genetic Algorithm

The inspiration for how to conduct simulation experiments of genetics
and evolution comes from an artificial intelligence procedure developed
by computer scientist John Holland ‘and called the genetic algorithm
(Hol}and 1975;-Holland 1980; Goldberg 1989). For an excellent intro-
ductl.on to the genetic algorithm, see Holland (1992) and Riolo (1992).
The lc!ea is based on the way in which a chromosome serves a dual pur-
pose: it provides both a representation of what the organism will become
and also the actual material that can be transformed to yield new geneti'c,é
material for the next generation. ‘ :

Before going into details, it may help to give a brief overview of how
the genetic algorithm wotks, The first step is to specify a way of repre-
senting each allowable strategy as a string of genes on a chromosame that
can uncl_ergd genetic transformations, such as mutation. Then the initial
Popu.lanon is constructed from the allowable set (perhaps by simply pick-
ing at rando_m). In each generation, the effectiveness of each individual in
the populatlon is determined by running the individual in the eurrent
strategic environment. Finally, the relatively successful strategies are used
to Produce offspring that resemble: the: parents. Pairs of successful off-
spring are selected to mate and produce the offspring for the next genera-
tion. Each offspring draws pare of its genetic material from one parent
and part from another. Moreover, completely- new material is occasion-
ally. mtrt_)duced‘ through mutation. After many generations of selection
for rt.:latwely successful strategies, the result might well be a population
that is substantially more successful in the given strategic environment
than the original population. - : - :

Tq explain how the genetic algorithm can work in 2 game context
consider the strategies available for playing the iterated Prisoner’s Di:
lel:n.t.nal. To be-more specific, consider the set of strategies that are deter-
ministic and use the outcomes of the three previous moves to make a
choice in the current move, Since there are four possible olitcomes for
ea;;ch move, there are 4 x 4 x 4 = 64 different histories of the three pre-
vious. maves. Therefore, to determine its choice. of c'ooperation‘ or defec-
tion, a strategy would only need to determine what to do in each of the
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situations that could arise. This could be specified by a list of sixty-four
s and D’ (C for cooperation and D for defection). For example, one of
these sixty-four genes indicates whether the individual cooperates or de-
fects when in a rut of three mutual defections. Other parts of the chromo-
some would cover all the other situations that could arise, .

To get the strategy started at the beginning of the game, itis also neces-
sary to specify its initial premises about the three hypothetical moves that
preceded the'start of the game. To do this requires six more genes, mak-
ing a total of seventy loci on the chromosome.2 This string of seventy C's
and D’s would specify what the individual would do in every possible
circumstance and would therefore completely define a particular strategy.
The string of seventy genes would also serve as the individual’s chromo-
some for use in reproduction and mutation.

There is a huge number of strategies that can be represented in this
way. In fact, the awsuber is 2 to the 70th power, which is about 10 to the
215t power.3 An exhaustive search for good strategies in this buge collec-
tion of strategies is clearly out of the question, If a computer had exam-
ined these strategies at the rate of 100 per second since the beginning of
the universe, less than 1 percent would have been checked hy now.

To find effective strategies in such a huge set, a very powerful technique
is needed. This is where Holland’s “genetic algorithm” comes in, It was
originally inspired by biological genetics, but was adapted as a general
problem-solving technique. In the present context, it can be regarded as a
model of a “minimal genetics” that can be used to explore theoretical

aspects of evolution in rich environments. The outline of the simulation. .

program works in five stages. See Table 1-2.
1. An initial population is chosen. In the present context the initial
individuals can be represented by random strings of seventy C's and D’s.
2. Bach individual is run in the current environment to determine its
effectiveness. In the present context this means that each individual
player uses the strategy defined by its chromosome to play an iterated
Prisoner’s Dilemma with other strategies, and the individual’s score is its
average over all the games it plays.* . -
3, The relatively successful individuals are selected to have more off-
spring. The method used is to give an average individual one mating, and

2 'The six premise genes encods the presumed C or D choices made by the individual and
the other player in each of the three moves before the interaction actually begins.....

3 Some of these chromosomes give rise to equivalent strategies bacause certain genes
might cade for histories that could not arise, given how loci are set. This does nog neces-
sarily make the search process any casier, however . . '

4 The score is actually a weighted average of its scores with the cight representative rules,
the weights having been chosen to give the best representation of the entire set of strategies
in the second round of the oarnament. EENE B
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TABLE 1-1
The Basic Simulation

19

I. Set up initial population with random chromosomes
II. For each of SO generations
A. For each of 20 individuals
1. For each of the 8 representatives .
a) Use premise part of the chromosome as individual’ i
about the three previous moves » sesumprion
b} For each of 151 moves
(1) Make the individual’s choice of cooperate {C) or defect (D)
basefi upon the gene that encodes what to do given the three
ptevious moves
{2) Make the representative’s choice of C or D based upon its
own strategy a?plicd to the history of the game so far
{3) Update the individual’s score based upon the outcome of this
move (add 3 points if both cooperated, add 5 points if the
representative cooperated and the individual defected, etc.)
B. Re%roduce the next generation. co T
1. For each individual assign the likely number of matin
h . ( gs based upon
the scaling .ﬁJl.ncnon {1 for an average score, 2 for a score one i
standard deviation above average, etc.)
2. For each qf 10 matings construct two offspring from the two selected
parents using crossover and mutation o .

to give two matings to an individual who is one standard deviation more
effective than the average. An individual who is one standard deviation
below the population average would then get no matings.

-4, The s_ucccss_f_ul individuals are then randomly paired off to produce
two oflfspnng per mating. For convenience, a constant population size is
maintained. The strategy of an offspring is determined from the strafegies
of the twa parents, This is done by using two genetic operators: crossover
and mutation. ' ' S

a. Crossover is a way of constructing the chromosomes of the two
offspring from the chromosomes of two parents. It can be illustrated by
an mp}e of two parents, one of whom has seventy C's in its chromo-
some (indicating that it will cooperate in each possible situation that can
?rlse)_, an_q thg other of whom has seventy D’s in its chromosome (indicat-
ing that ic will always defect). Crossover selects one or more places to
break _th_t:.parcnbs’ chromosomes in order to construct two offspring each
of whom has some genetic material from both parents. In the example, if
a.single break occurs after the third gene, then one offspring will ha:'e«
three C’s followed by sixty-seven D', while.the other offspring will have
three. D’s followed by sixty-seven C’s. 4 : I
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b. Mutation in the offspring occurs by randomly changing a very
small proportion of the C’s to [’ or vice versa, _

5. This gives a new population. This new population will display pat-
terns of behavior that are more like those of the successful individuals of
the previous generation, and less like those of the unsuccessful ones. With
gach new generation, the individuals with relatively high scores will be
more likely to pass on parts of their strategies, whereas the relatively
unsuccessful individuals will be Jess likely to have any parts of their strat- -
egies passed on,

Simulation Resules

The computer simulations were. done using a population size of twenty
individuals per generation. Levels of crossover and mutation were chosen
averaging one crossover and one-half mutation per chromosome per gen-
eration. Each game consisted of 151 moves, the average game length used
in the tournament. With each of the twenty individuals meeting eight
representatives, this made for about 24,000 moves per generation. A run
consisted of fifty generations. Forty runs were conducted under identical
conditions to aliow an assessment of the variability of the results,

. The results are quite remarkable: from z strictly random start, the ge-

netic algorithm evolved populations whose median member was just as

having many of the properties that make TIT FOR TaT so successful, For
example, five behavioral alleles in the chromosomes evolved in the vast
majority of the individuals to give them behavioral patterns that were
adaptive in this environment and mirrored what TIT FOR TAT would do in
similar circumstances. These patterns are:

1. Don't rock the boat: continye to cooperate after three mutual coopera-
-tiens {which can be abbreviated a5 C after RRR). _

2. Be provocable; defect when the other player defects out of the blue (D
after receiving RRS). e

3. Accept an apology: continue to cooperate after cooperation has béen
restored (C after TSR). S

4. Forget: cooperate when mutyal cooperation has been restored after an

exploitation (C after SRR). o
§. Accept a rut: defect afer three mutyal defections (D a&c:_PP-P_J. .

The evolved. rules behave with specific representatives’ in much the
same way as TIT ¥OR TAT does, They did about as well ag TIT FOR TAT did
with each of the eight representatives. Just as TiT Fog TAT did, most of the
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ed rules dj
with seven of the eight Itpresentatives, Like Tyy FOR TATY, most of the
evolvec! rules do pootly only with one representative, call:ed ADJUSTER
that adjusts its rage of defection to ty to exploit the other player. In a),
95 percent of the time the evolved rules make the same choice as 1ot FOR’
TAT would make in the same situation,
~ Although most of the runs evolye Populations whose rules are

similar to 117 pog TAT, in eleven of the forty runs, the median rule gepy-

vice deveIoped in the compurer tournament, i i

» amely, to be “pjce » thar js
never to be the firse 1o defect, These highly cffectiv,e rules alwa,ys defect’
on the very_ﬁrst Move, and sometimes on the second move as well, and

Although thege rules arp highly effective, it woyld 20t accurate to say
thar_ they are .bette: than TIT pog TAT, Although they are better. in the
Particular envirohment consisting of fixed Proportions of the eight repre.-
Sentatives of the second round- of the computer tournament, they are
prob::‘tbly-n(.)t very robust in other environments, Moreovey, in a’n ecologi-
cal simulation, thege rules would be destroying the basis of their own
Success as the exploiged representative would become 2 smaller and
smaller part of the environment (Axelrod 1984, 49-52, 203-5). Al-

1 lhe Criterion fol' b.—*ng subatannaﬂy bﬂtﬂ than TIT FOR TAT it g lnﬂdlﬂn
pomw, wh!ch mmpares o TIT FOR TAT 8 weighted sCore o 423 with'
gh . f .lth thm elghr



though the genetic algorithm was sometimes able to evolve rules that are
more effective than any entry in the tournament, the algorithm was only
able to do so by trying many individuals in many generations against a
fixed environment. In sum, the genctic algorithm is very good at what
actual evolution does so well: developing highly specialized adaptations
to specific environmental settings. o

In the evolution of these highly effective strategies, the computer sim-
ulation employed sexual reproduction, where two parents contributed
genetic material to each offspring. To see what would happen with asex-
ual reproduction, forty additional runs were conducted in which only
one parent contributed genetic material to each offspring, In these runs,
the populations still evolved toward rules that did about as well as TIT
FOR TAT in most cases. However, the asexual runs were only half as likely
to evolve populations in which the median member was substantially
more effective than TIT FOR TAT.S S

So far, the simulations have dealt with populations evolving in the con-
text of a constant environment. What would happen if the environment
also changed? To examine this situation, another simulation experiment
with sexual reproduction was conducted in which the environment con-
sisted of the evolving population itself. In this experiment each iridividual
plays the iterated Prisoner’s Dilemma with each member of the popula-
tion including its own twin rather than with the eight representatives, At
any given time, the environment can be quite complex, For an individual
to do well requires that its strategy achieve a high average effectiveness
with all twenty strategies that are present in the population. Thus, as the
more effective rules have more offspring, the environment itself changes.
In this case, adaptation must be done in the face of a moving target.
Moreover, the selection process is frequency dependent, meaning that the
effectiveness of a strategy depends upon what strategies are being used by
all the members of the population. . _

The results of the ten runs conducted in this manner display a very
interesting pattern. For a typical run, see Figure 1~1. From a random
start, the population evolves away from whatever cooperation was ini-
tially displayed. The less cooperative rules do better than the more coop-
crative rules because at first there are few other players. who - are
responsive—and when the other player is unresponsive, the most effec-
tive thing for an individual to do is simply defect. This decreased cooper-
ation in turn causes everyone to get lower scores as mutual defection
becomes more and more common. However, after about ten or twenty

¢ This happened in five of the forty runs with asexual reproducrion compared to cleven

of the forty runs with sexual reproduction. This difference is significant at the .05 lavel
using the one tailed chi-squared test. oo

500 -

450
40d1

i,
§ r

300 4

250 4

200

Generations

Figure 1-1. Prisoner’s Dilemma in an Evolving Environment

ger!eratioqs the trcr_nd Starts to reverse. Some players evolve a pattern of
reciprocating what coopetation they find, and these reciprocating players

Conclqsions

A The 'gi:_ne_tic.: algo;ithm is a highly effective method of searching for.
effective Strategies in ‘a huge space of possibilities. Following Sewall

Wright (1977 452-54), the problem for evolution can be conce 1
(1977, 34); the .“M Ior evojution can be conceptualized
as-a search for relatively high points in a multidimensional fisld of gene
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combinations, where height corresponds to fitness. When the field has
many local optima, the search becomes quite difficult. When the number
of dimensions in the field becomes great, the search is even more difficul.
What the computer simulations demonstrate is that the minimal system
of the genetic algorithm is a highly efficient method for seafching such a
complex multidimensional space. The first experiment shows that even
with a seventy-dimensional field of genes, quite effective strategies can be
found within fifty generations. Sometimes the genetic algorithm found
combinations of genes that violate the previously accepted mode of oper-
ation (not being the first to defect) to achieve even Ereater effectiveness
than had been thought possible. - :

2, Sexual reproduction does indeed help the search process. This was
demonstrated by the much increased chance of achieving highly effec-
tive populations in the sexual experiment compared to the asexual
experiment.”

3. Some aspects of evolution are atbitrary, In natural settings, one
might observe that a population has little variability in a specific gene. In
other words one of the alleles for that gene has become fixed thropghout
the population. One might be tempred to assume from this that the allele
is more adaptive than any alternative allele, However, this may not be the
case. The simulation of evolution allows an exploration of this possibility
by allowing repetitions of the same conditions to see just haw much vari-
ability there is in the outcomes, In fact, the simulations show two reasons
why convergence in a population may actually be arbitrary, .. .

a. Genes that do not have much effect on the fitness of the individ-
ual may become fixed in a population because they “hitchhike” on other
genes that do (Maynard Smith and Haigh 1974). For example, jn the
simulations some sequences of three moves may very rarely occuz, so
what the corresponding genes dictate in these situations may not matter
very much. However, if the entire population are descendants of just a
few individuals, then these irrelevant genes may be fixed to the values
that their ancestors happened to share. Repeated runs of a simulation

allow one to notice that some genes become fixed in one population -

but not another, or that they become fixed in different ways in different

populations, ‘ B
b. In some cases, some parts of the chromosome are arbitrary in

7 In biology, sexual reproduction cormes at the cost of teduced fecundity, Thus, if males
provide little or no aid to offspring, a high (up to two-fold) average extea fitness has to
sierge 25 a property of sexnal reproduction if sex is to be stable, The advantage must
presumably come from tecombination but has been hard to identify in bib!lbg?. Asunuln—
tion model has demonstrared that the advantage may well lic in the necessify t6 recombine
defenses to defeat nuinerous parasites (Hamilton et al, 1990). Unlike biology, in artificial
intelligence 2pplications, the added {computational) cost of sexuality.is small., - - . |
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content, but what is not arbitrary is that they be held constant. i

fixed, othex" parts of the chromosome can :{iapt to t!fcnlz.t;g: gg;gt:i:g
the simulations of the individual chromosomes had siy génés devored to,
codmg_ for the premises abour the three moves that preceded the first
move in the. game. When the environment was the eight representatives
the populations in different runs of the simulation developed different

pren_lises. Within each run, however, the populations were usually very

and the gains to be made from commitment and specializati rch

ns ¢ ) ron pecialization (March
1991). FI.E!H!JL!.IW might help in the long run, but in an evolutiona{xryr“:;;-
tem, the individuals also have to survive in the short run jf they are to

would be consulted in the first few moves, and this in ivi
up flexibility as more and more of the chr;mosmﬁe év;‘l;i:dn:)??i:cgg::‘lig
of what.had been_ fixed. This in turn meant that it would be difficule fora
Population to switch to 5 different premige. Thus, flexibility was given up
so that the advantages of commitment could be reaped. i
b. Tl-{ere is also a tradeoff between short- and long-term gains in the
way selection was done in the simulation experiments. In aﬁy gnren gen-

tapid r¢duc.tion in the genetic vhriabi]il;y of ghe;pqpulaf_tjon, and a conge-
quent slowing of the"evolutionary process later on. If the mdderéte!y
successful were ah_;o Biven a chance to have some offspring, this woild
help the long-term Praspects of the population at the cost of optimizing
in the short run, Thusl, there is an inherent tradeoff between exploitation
:;1;] Zfiplorauo.nt;ﬂt!lgt 1stL betweell: exploiting what already works best and
OFTE possibilities that might eventually ey Ive int hing
better (Holland 1975, 160), 7 Yo fnto something even
5. Evolutionary commitmients capn be irreversible, F i

rolutior © crsible. For example, in
most of tl'.xc pfopulat;ons facing the environment of the eight :eprél.)selita-
tives, the individuals evolved strategies that are very similar to TIT FOR
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raT. Because TIT FOR TAT had done best in the computer tournament
itself, I did not think that it would be possible to do much better with an
evolutionary process. But as noted earlier, in about a quarter of the sim-
alation runs with sexual reproduction, the poputation did lpde;d evolve
substantially better strategies—strategies that were quite different from
71t FOR TAT. These highly effective strategies defected on f.l}c very first
move, and often on the second move as well, in ozder to get information
to determine whether the other player was the type thaf could be ex-
ploited or not. The more common populations of strategies cooperated
from the beginning and employed reciprocity in a manner akin to TIT FOR
raT. Although these more commnton strategies might easily mutate to try a
defection at the stact of the game, such behavior would l.':e ,exm_amely
costly unless the individual already had effective ways of using the infor-
mation that resulted. Moreover, once the population had evolved to be
about as effective as TIT FOR TAT, such a mutation would have to be quite
effective in order to survive long enough to be perfected. ':['hus,. once the
population takes a specific route (in thi§ case, toward reciprocity) it tcl::m
easily become trapped in 2 local maxima. Indeed, only the fac't at
enough simulation runs were conducted led to the dlscove.ry that in tius
particular environment reciprocity was only a 19ca1 maxima, auc!g that
something better was in fact possible. In a field situation, 5|‘1ch a discov-
ery might not be possible because there might be essentially just one gene
pool.

Topics Amenable to Sirmuiation

"The methodology for the genetic simulation developgd in f:his paper can
be used to explore learning processes in game-theoretic setings. _H_ere_ isa
list of issues that can be studied with genetic simulations, inspired by
o evolutionary biology:
amioﬁisuttation. The sir{:mlatiog: approach developed here suggests that
there is an inherent tradeoff for a gene pool between explora.tio'n of possi-
bilities (best done with a high mutation rate) and exploitation cf. the
possibilities already contained in the current gene pool (best done witha
low mutation rate). This in turn suggests the advantage of having muta-
tion rates adapt to the rate of change in the environment®
2. Crossover. In sexual reproduction, crossover serves to give each off-
spring genetic material from both parents. Crossover rates that are toa
- low would frequently give whole chromosomes of genetic material fn_:-m
a single parent to an offspring. But crossover rates that are too high

% | pwe this suggestion to Michael D. Cohen.
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would frequently split up coadapted sets of alleles that arc on the same
chromosome. Perhaps the existence of a multiplicity of chromosomes
(rather than one long chromosome) is more than a mechanical conve-
nience, but is an adaptation to the need for low crossover rates without
the disadvantage of having each offspring being likely to get genetic ma-
terial from only one parent. : o

3. Inversion. Inversion changes the order of the genes in a chromo-
some. It can bring coadapted sets of alleles closer together on the chro-
mosome so that they will be split apart by crossover less often. How is
the ideal rate of inversion determined?

4, Coding principles. Biological chromosomes are known to contain
material that does not directly code for proteins, but performs other roles
such as marking the boundaries of genes, or perhaps serves no function at
all. Genetic material may also appear in highly redundant form in the
chromosome. Genetic simulation experiments might shed new light on
the theoretical implications of various coding schemes and their possible
role in error reduction and regulation. Or they might show how some
genetic material can exist as “free riders.”

5. Dominant and recessive genes. Mendel’s famous experiments dem-
onstrate that dominant and recessive alleles serve to overcome Darwin’s
concern that blending of parental characteristics would eliminate the
variability of a population. Genetic simulation can bé used to explore the
implications of these and other genetic mechanisms for the maintenance
of population variability in the face of selection pressure for local opti-
mality. In particular, it should be possible to explore just which types of
phenotypic features are bést coded in terms of dominant and recessive
genes, and which are best coded in other systems of genetic expression.

6. Gradual versus punctuated evolution, Genetic simulation experi-
ments might also shed light on the contemporary debate about whether
evolution proceeds in gradual steps or tends to move in fits and starts.
This type of work might require simulations of tens of thousands of gen-
erations, but runs of such length are feasible.

7. Population viscosity. Obstacles to random mating may exist due to
geographic or other forces tending to favor subdivisions of the popula-
tion. Somne computer moideling ha already been done for models of this
type (Boorman and Levitt 1980, 78-87; Tanese 1989), revealing clues
about the qualitative features of the spread of a social trait based upon
frequency-dependent selection. ' '

8. Speciation and ecological niches, When distinct ecological niches
exist, a single species tends to differentiate into two or more species to

take advantage of the different opportunities offered by the different
niches. In léarning terms, differentiation into two or more species means
that a new strategy is formed from ideas represented in only part of the
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total population. Genetic simulation can explore this process by helping
to specify the conditions under which the advantages of specialization
outweigh the disadvantages of narrower mating opportunities and re-
duced ecological flexibility. The fundamenta] point is that thinking about
genetics as a simulation problem gives 3 new Ppetspective on the funetion-
ing of learning processes,

The genetic simulations provided in thig essay are highly abstrace sys-
tems. The populations are very small, and the number of generations is
few. More significantly, the Eenetic process have only two operators, mu-
tation and crossover, Compared to biological Benetics, this is a highly
simplified system, Nevertheless, the genetic algorithm displayed a re-
markable ability to evolve sophisticated and effective strategies in a com-
Plex environment, .
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