
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 13, Number 5, 2006
© Mary Ann Liebert, Inc.
Pp. 1077–1100

Grammatical Representations of
Macromolecular Structure

DAVID CHIANG,1 ARAVIND K. JOSHI,2 and DAVID B. SEARLS3

ABSTRACT

Since the first application of context-free grammars to RNA secondary structures in 1988,
many researchers have used both ad hoc and formal methods from computational linguistics
to model RNA and protein structure. We show how nearly all of these methods are based on
the same core principles and can be converted into equivalent approaches in the framework
of tree-adjoining grammars and related formalisms. We also propose some new approaches
that extend these core principles in novel ways.

Key words: computational linguistics, formal grammars, tree-adjoining grammars.

1. INTRODUCTION

Computational linguistic methods, broadly construed, have been applied to molecular biology in
two general ways, which we classify as textual and structural (Searls, 1999). Textual approaches bear

mainly on the actual string content of biological sequences, whereas structural approaches deal mainly
with the interactions between sequence elements in folded structures.

Examples of the textual approach include the use of regular expressions to specify recurring motifs,
or of grammars that capture gene structures as assemblages of codons, signal sequences, and other lex-
ical elements. The latter application demonstrates how linguistic methods (whether based on grammars
or their cognate automata) allow such primary sequence elements to be collected in rule-based fashion
into flexible hierarchical descriptions that both enforce global constraints such as reading frame and pro-
vide a useful compositional framework for heuristic and statistical discrimination of, for instance, coding
versus non-coding segments (Dong and Searls, 1994). Though textual methods may assign hierarchical
structures to sequences as a convenient and meaningful abstraction, these structures are not meant to
correspond in any way with physical, three-dimensional structure. Textual approaches are most closely
aligned with conventional sequence analysis, and in fact many tasks such as pairwise alignment can be
recast in automata-theoretic terms (Searls, 1999). Among the most popular textual tools have been hid-
den Markov models (HMMs), whose use was pioneered in speech processing applications, but which have
been applied with great success in such biological arenas as classification and recognition of protein motifs
(Durbin et al., 1999) and in gene-finding algorithms that entail both complex domain models and advanced
statistical methods (Burge and Karlin, 1997; Reese et al., 2000).

1Information Sciences Institute, University of Southern California, Marina del Rey, California.
2Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania.
3Bioinformatics Division, Genetics Research, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania.

1077

1078 CHIANG ET AL.

The structural approach deals more with interactions such as base-pairing in RNA secondary structure
and side-chain interactions in native proteins, particularly hydrogen bonding in α-helices and β-sheets.
These relationships between string positions potentially separated by long distances are loosely analogous
to syntactic dependencies: for example, just as in RNA two base-paired nucleotides must be complementary,
so in English, a verb and its dependent subject must agree. The emphasis is thus on the inherent ability
of grammars or other tools adequately to model the variety of patterns of interaction observed in nature.
Linguists typically seek formalisms that are just sufficiently elaborate and powerful to encompass the range
of phenomena under study, but not more so (Berwick, 1984); representational parsimony helps to ensure that
the related algorithmic and mathematical challenges are most tractable, but more importantly, that clarifying
generalizations are most likely to emerge from the models. One hopes that the basic formal model will
capture and dictate as much of the domain as possible, neither overgenerating nor undergenerating the
phenomena of interest, before having to resort to overlying ad hoc restrictions or extensions. Ultimately,
such insights may also support a convergence of structural models and textual tools, as in the extension of
HMMs to more powerful stochastic context-free grammars (SCFGs) to recognize RNA secondary structure
motifs (Sakakibara et al., 1994).

A number of recent attempts have been made to model macromolecular structures in this manner
that have been founded more or less upon the foundations of formal language theory and computational
linguistics. In this paper, these systematic approaches will be reviewed, consolidated with mainstream
computational linguistic formalisms, and in several cases significantly extended. After some theoretical
background, we review several methods for modeling RNA pseudoknots (Uemura et al., 1999; Rivas and
Eddy, 2000; Cai et al., 2003; Brown and Wilson, 1996), unifying all but one in the framework of linear
context-free rewriting systems (Vijay-Shanker et al., 1987; Weir, 1988), and add a proposal for modeling
other limited kinds of RNA tertiary interactions. We then turn to protein structure, reviewing a method for
modeling protein β-sheets (Abe and Mamitsuka, 1997) and propose a quite different method that promises
to be considerably more efficient. Finally, we discuss a method for modeling α-helix bundles (Waldispühl
and Steyaert, 2005) and propose some approaches of our own.

2. PRELIMINARIES

We begin by elaborating somewhat on linguistic notions of structure, strong generative capacity, and
locality as they relate to macromolecules. The reader is referred to the extensive linguistics literature for
a more detailed development.

2.1. Structure

Formal language theory views languages as sets of finite strings over finite alphabets, and it is natural
to represent biological sequences as strings over a set � of monomers (nucleotides or amino acids), that
is, as members of

�∗ = {a1 · a2 · a3 · · · an | ai ∈ �}
where the concatenation operator · (usually omitted) can be said to model the covalent bonds of the
polymer.

It might have been thought that linguistics, with its linear string orientation, had little to offer to structural
biology, which represents macromolecules in terms of their three-dimensional coordinates, focusing on their
actual spatial arrangement or even space-filling properties. Yet, not only does linguistics concern itself with
structure in various senses, but structural biology also employs formalisms at higher levels of abstraction,
such as the classification of secondary and supersecondary structural motifs, the use of lattice models
of folding, and the like. In particular, reduced representations such as polymer graphs or contact maps,
reminiscent of linguistic dependency structures, may be viewed as an abstracted representation of structure.
For these purposes, we thus conceive of a macromolecular structural description as a pair consisting of a
finite string and a set of pairs of positions in that string.

〈p, s〉 where p ∈ �∗, s ⊆ {〈i, j〉 | 1 ≤ i, j ≤ |p|, i �= j} (1)

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1079

FIG. 1. Example RNA secondary structure.

FIG. 2. Example protein secondary structures: (a) α-helix. (b) β-sheet.

In the case of nucleic acids, the pair may be seen to comprise a primary (p) and a secondary (s) structure;
the latter term is used somewhat differently in proteins, but in either case the pair can also be viewed
as the polymer (p) and its structure (s). In linguistic terms, p is a strictly lexical description, whereas
s may reflect (though perhaps not fully describe) syntactic relationships manifesting as dependencies. In
chemical terms, p models only the covalent bonds of the linear polymer backbone, while s models the
non-covalent “cross-linking” interactions contributing to structure,1 which may include base-pairing, other
forms of hydrogen bonding, hydrophobic or charge interactions, shape complementarity, and so forth—or
simply self-contact, for that matter, though the linguistic notion implies mutual influence of some sort.

As suggested previously, textual approaches generally deal with p exclusively, while structural ap-
proaches in the abstract need only consider s. In either case, we seek grammars (or other formal systems
and procedures) that can be shown to generate a corpus of instances observed in nature, and to do so
in such a way as to offer useful generalizations, explanations, classifications, and frameworks supporting
further analysis.

It is easy to see ways to extend (1) to encompass typing of dependencies or additional annotation such
as directionality, cheirality, and the like, as has been done in quasi-linguistic systems along the lines of
TOPS diagrams of abstract protein structures (Westhead et al., 1999). This is very much in the linguistic
tradition, where dependencies may be richly typed and annotated.

However, our formulation is simpler than linguistic dependency structure in some important ways.
Syntactic dependencies are usually asymmetric (directed), involving a head and a dependent; our molecular
dependencies are symmetric (undirected). Syntactic dependency graphs are often tree-structured, though
not always (Mel’čuk, 1988); our molecular dependencies need not be.

1A possible exception would be disulfide bonds between cysteine residues of certain proteins, which are covalent,
though distinct from the peptide bonds of the polymer backbone by virtue of being post-translational and labile
depending on redox conditions.

1080 CHIANG ET AL.

2.2. Strong generative capacity

Linguists consider a sentence structure to be a syntactic organization (whether of constituency, depen-
dency, or both) underlying a lexical string. Such structure can be generated by grammars, which not
only specify sets of strings but produce derivation trees reflecting the order and pattern of application of
rewrite rules. The weak generative capacity (WGC) of a grammar is the set of strings it generates—the
p components in (1). In natural language, one hopes for a formalism to generate precisely the sentences
in the language that are acceptable to a native speaker of that language, though no such test is readily
available for sequence languages other than sampling and it would be difficult to judge whether they are
undergenerated or overgenerated (another reason to focus on s rather than p).

A more meaningful concept in either case is the strong generative capacity (SGC) of a grammar or
grammar formalism, which describes the actual structures that can be generated, for instance, different
groupings of words into phrase structures. This is a better measure because more than one structure
is possible for a given string, and even if a string is accepted by a grammar, it may be the case that
the grammar assigns it an inappropriate structure. Indeed, there are cases where more than one possible
structure is meaningful for a given sequence, as seen, for instance, with alternative secondary structure in
nucleic acids, and we want our grammars to capture such phenomena.

Though the term “strong generative capacity” is sometimes applied narrowly to phrase structures, it
applies more generally to structures of any kind; for our purposes, we are concerned with the structures
defined in (1). In this paper, then, we use the term “strong generative capacity” to refer more precisely to
the set of structures of the form (1) that can be generated by a grammar (in the manner defined below).
This notion has been previously introduced as derivational generative capacity (Becker et al., 1991).

2.3. Locality

Beginning with the first demonstration that generative grammars could model nucleic acid stem-and-
loop secondary structure (Searls, 1988), a particularly attractive feature of this approach has been the
observation that the derivation trees actually resemble the usual graphical depiction of those structures. For
example, a parse of a tRNA sequence derived from a simple context-free grammar (CFG) can overlay the
actual cloverleaf structure as illustrated in textbooks. It should be borne in mind that such drawings are
themselves two-dimensional projections and simplifications of the literal structures, but the fact remains
that the formalism is bringing elements into apposition in derivational structures that are also in contact in
the corresponding literal structures.

This property is related to the establishment of dependencies by grammars. Consider the following
context-free grammar (CFG) for RNA sequences:

(2)

This grammar generates stem structures with the rule for X, and unpaired bases with the rule for Y,
interspersing them arbitrarily via Z. A number of variations on this secondary structure CFG have been
introduced, with or without unpaired bases allowed, which are weakly and in many cases strongly equivalent
to this one (Searls, 1999); another related approach, which however is algebraic rather than grammar-based,
deals with properties of strings of properly-nested parentheses called Motzkin words, and has been applied
to the combinatorics of RNA secondary structure (Nebel, 2002; Viennot and de Chaumont, 1983). As
noted, a derivation of a string w, represented as a tree (Fig. 3), has the same shape as a secondary structure
of w (Fig. 1); this is because the grammar is written so that only complementary bases appear in the
same rule for X, and CFG derivation trees have the convenient property that symbols from the same rule
appear next to each other in the tree. Thus, formal locality (within rules) corresponds to spatial locality
(in derivation trees, thence in secondary structure).

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1081

FIG. 3. Example CFG derivation of RNA secondary structure, with superimposed primary structure. Nonterminal
symbols other than X are suppressed for clarity.

We have also explicitly marked the base-pairing dependency within the grammar, as a dotted line. This
notation serves two purposes. First, even if we do not represent CFG derivations as trees, we can still use
them to describe secondary structures. For example, we can represent CFG derivations as rewritings of
sentential forms, preserving the explicitly marked base pairings:

(3)

The base pairings get “stretched” in the sentential forms, and capture the secondary structure even though
the sentential forms are not graphically folded up like real molecules. Thus, the fact that CFG derivation
trees place items from the same local domain next to each other is a convenient property but not an
essential one.

This distinction becomes more important as we move to higher formalisms. For example, it will be
seen that in a type of grammar called tree-adjoining grammar (to be defined below), parts of rules can be
stretched arbitrarily far apart during the derivation process.2 But even if formal locality cannot correspond to
spatial locality in our drawings of derivations, they can still correspond to spatial locality in real molecules.
In other words, derivations can still describe molecules even if their drawings don’t look very much like
them, in effect sidestepping the shortcomings of the two-dimensional projection represented by both the
drawings and the derivation trees.

2However, Rogers (2003) explores the use of three-dimensional trees to represent derivations of tree-adjoining
grammars, and higher-dimensional trees for still more complex formalisms. In a tree-adjoining grammar defined on
three-dimensional trees, there is no stretching.

1082 CHIANG ET AL.

FIG. 4. Example RNA tertiary structures: (a) Kissing hairpins. (b) Pseudoknot.

The second purpose of explicitly marking self-contacts in the grammar is that it provides more flexibility.
In our original treatment (Searls, 1992) and that of Uemura et al. (1999), any pair of monomers generated by
the same rule were modeled as being in contact. But if self-contacts are explicitly marked in the grammar,
then the grammar writer is free to decide whether pairs of monomers in a rule should be modeled as
being in contact. This leaves us with the following locality constraint: two nonadjacent monomers may be
modeled as being in contact only if their corresponding symbols were generated in the same derivation step.
All uses of formal grammars to model biological molecules of which we are aware (and of which many
are elaborated below) are based on this principle, though with variations and sometimes only implicitly. In
addition to the examples mentioned above, Rivas and Eddy (2000) use diagrams reminiscent of Joshi’s links
(Joshi, 1985). The model of Abe and Mamitsuka (1997) does not allow for self-contacts to be specified
on elementary structures, with the perhaps undesirable result that a single derivation can correspond to
multiple structures. Chen and Dill (1998) do not use a grammar at all, but their model can be recast as a
CFG (Chiang and Joshi, 2002; cf. Mauri et al., 1999); they specify self-contacts in a manner also similar
to Joshi’s links.

Does CFG have enough SGC for modeling biological molecules? The SGC of CFG is commonly
characterized by saying that CFG cannot generate crossing dependencies, which is not strictly true, since
even a single production can have crossing dependencies:

(4)

Nevertheless, there are patterns of crossing self-contacts occurring in nature that are provably not gener-
able by CFG (including Chen and Dill’s model). For example, helices involve unbounded series of short
crossing self-contacts. RNA tertiary structures involve long-distance crossing self-contacts, for example,
kissing hairpins and pseudoknots (Fig. 4). Finally, protein β-sheets and α-helix bundles involve patterns of
crossing self-contacts that are well beyond the power of CFG. In what follows we will examine in some
detail formalisms that are beyond context-free, and which address specific non-context-free phenomena
in biology.

3. RNA TERTIARY STRUCTURE

Pseudoknots (Fig. 4b) are the archetypal feature of so-called non-orthodox nucleic acid secondary struc-
ture (that is, structure with crossing dependencies), and have been taken as a challenge by both algorithm
developers and those seeking formal representations of many sorts. We now explore several of these
formalisms, taking the opportunity to describe them in some mathematical detail.

3.1. Tree-adjoining grammars

For pseudoknots, Uemura et al. (1999) propose moving beyond CFGs to tree-adjoining grammars or
TAGs (Joshi et al., 1975).3 Figure 6 shows an example TAG, which is a simplified version of Uemura

3We deal here with TAGs as they relate to biological sequences; for a more general overview of TAG with applications
to natural language, see the computational linguistics literature (Joshi and Schabes, 1997; Joshi, 2004).

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1083

FIG. 5. Example multicomponent TAG elementary tree sets.

et al.’s grammar. Just as a CFG has a set of productions, a TAG has a set of elementary trees, here
{α, β1, β2}. The tree α is known as an initial tree, and the trees β1 and β2 are known as auxiliary trees,
being distinguished by a special frontier node called the foot node, marked with a ∗. The root node and
foot node must have the same label. The path from the root node to the foot node of an auxiliary tree is
called its spine.

Just as the basic operation of CFG is symbol rewriting, the basic operation of TAG is node rewriting, or
adjunction. Any node η that is not marked NA (for no adjunction) and is not a foot node can be rewritten
by adjunction. In this operation η is removed, splitting the tree into an upper half and a lower half, and
an auxiliary tree β takes its place, its root attaching to the upper half where η used to be, and its foot
attaching to the lower half. Figure 7 illustrates a derivation starting with α, adjoining in β1, adjoining in
β1 again, and then adjoining β2.

Note that the links generated by this derivation cross, and a link may cross a potentially unbounded
number of other links. Intuitively, the added power of TAG comes from the fact that CFG is limited
to specifying interactions between sister nodes, whereas TAG can specify interactions between nodes on
different levels, indeed, on levels that are arbitrarily far apart (because of adjunction).

We will make use below of an extension of TAG called set-local multicomponent TAG (Weir, 1988).
Multicomponent TAGs are TAGs whose elementary structures are sets of elementary trees. The basic oper-
ation is the simultaneous adjunction of all the trees in a set. In set-local multicomponent TAG, all the trees
must compose into the same elementary tree set. For example, Fig. 5 shows some multicomponent TAG
elementary tree sets. In a set-local multicomponent TAG, β2 would be able to adjoin into β1, by adjoining
the first component into the first component and the second component into the second component. But
β3 would not be able to adjoin into the result, because the X and Z nodes come from different elementary
tree sets.

3.2. Linear TAG

Uemura’s grammar belongs to a subclass of TAG which they call simple linear TAG, in which every
auxiliary tree has at most one node at which adjunction is allowed, and this node lies on its spine. This
subclass is parseable in O(n4) time. They also define a larger subclass, called extended simple linear
TAG, in which a second adjunction is allowed off the spine. This allows them to write a more versatile
grammar which we do not reproduce here. This subclass of TAG is parseable in O(n5) time and has been
conjectured (Kato et al., 2004), we believe correctly, to be equivalent to the TAG restriction of Satta and
Schuler (1998).

One of the more complicated RNA structures known to occur in nature is the hepatitis delta virus
ribozyme (Hilbers et al., 1998), an abstract representation of which is shown in Fig. 8a. This structure can

FIG. 6. TAG fragment for pseudoknots, adapted from the grammar of Uemura et al. (1999). Here and elsewhere,
ā stands for the complementary base of a.

1084 CHIANG ET AL.

FIG. 7. Example derivation of grammar of Fig. 6.

be generated by the simple linear TAG of Fig. 8c with the derivation of Fig. 8b, and therefore it can be
generated by the following two approaches as well.

3.3. Crossed-interaction grammars

Rivas and Eddy (2000) define a formalism called crossed-interaction grammar (CIG) to describe RNA
pseudoknots. This formalism appears to be equivalent to linear context-free rewriting systems or LCFRS
(Vijay-Shanker et al., 1987; Weir, 1988), a class of grammars that has been independently rediscovered
quite a number of times (Rambow and Satta, 1999); the set-local multicomponent TAGs defined above are
another equivalent example.

A CIG has two modules, a set of context-free productions and a set of rearrangement rules. The
productions work as in CFG, except that there is a hole string ∧ and a set of special nonterminals. As far
as the productions are concerned, these are all ordinary terminal symbols.

The rearrangement rules apply after the productions. Unlike the context-free productions, these are
general rewrite rules, the only restriction being that no special nonterminal may appear on the right-hand
side. Furthermore, a grammar may have an infinite number of such rules.

However, their rearrangement rules follow certain implicit conventions, which greatly reduce the power
of the system. We make the following six observations:

1. The infinite set of rearrangement rules is defined by a finite set of rule schemata, with variables that
range freely over terminal strings.

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1085

FIG. 8. Pseudoknot in hepatitis delta virus ribozyme. (a) Abstract representation of structure. (b) Derivation by
simple linear TAG. (c) Elementary trees used in derivation.

The schemata, rather than their instantiations, should be thought of as the rules. Below we will use
“rearrangement rule” and “rearrangement rule schema” interchangeably.

2. No two rearrangement rules have the same left-hand side.
3. Every variable on the left-hand side is delimited by a special nonterminal or the hole string.

Therefore, no two left-hand sides can be instantiated to the same string.

4. Every variable on the right-hand side appears on the left-hand side.

Therefore, every instantiation of a left-hand side uniquely determines an instantiation of the right-hand
side.

5. Parentheses are special special nonterminals: every left-hand side is surrounded by parentheses, and
parentheses appear nowhere else.

Thus, the rearrangement phase is deterministic, because only an innermost parenthesized string can be
rewritten. Therefore, we can view the special nonterminals as infix string operators, and the rearrangement

1086 CHIANG ET AL.

rules as their definitions. This second phase, then, is nothing more than the evaluation of the output of the
first phase. Furthermore,

6. Every variable on the left-hand side appears exactly once on the right-hand side.

Thus, the rearrangement rules, as their name suggests, do not copy or delete their arguments, but only
perform rearrangements of a finite number of chunks of the string.

In light of these observations, we now give a more precise definition of CIG.

Definition 1. Given two finite alphabets � and F , define F(�) to be the smallest set which satisfies:

• � ⊆ F(�).
• If w1, . . . , wn ∈ F(�), n ≥ 0 and f ∈ F , then f (w1, . . . , wn) ∈ F(�).

For example, if � = {A,B} and F = {f, g}, then f (A, g(B, f)) ∈ F(�).

Definition 2. A crossed-interaction grammar is a tuple 〈V, F, P, S,X, T ,R〉, where:

• V is a finite set of nonterminal symbols;
• F is a finite set of function symbols, which correspond to the special nonterminals except that we use

a simpler prefix notation;
• P is a finite set of productions, each of the form A → w, where A ∈ V and w ∈ F(V);
• S ∈ V is the start symbol;
• T is a finite set of terminal symbols and X is a finite set of variables,
• R is a finite set of rearrangement rules, each of the form

f (〈x11, . . . , x1m1〉, . . . , 〈xn1, . . . , xnmn〉) = 〈y1, . . . , ym〉,

where
• f ∈ F , xij ∈ X, and yi ∈ (X ∪ T)∗, and
• every variable that appears in the rule appears exactly once on the left-hand side and exactly once

on the right-hand side.
Thus the rearrangement rules define functions on tuples of strings 〈w1, . . . , wn〉, which correspond to
gapped strings w1 ∧ · · · ∧ wn.

The derivation process is straightforward: the productions operate as in a CFG, beginning with S and
rewriting until a string without nonterminals (i.e., a member of F(∅)) is produced. Then the resulting
expression is evaluated according to the rearrangement rules.

As an example, consider the following grammar:

S → m(T)

T → ×(T ,∧(a(), b())) | ∧(e(), e())
m(〈x1, x2〉) = 〈x1x2〉

×(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1, x2y2〉
∧(〈x〉, 〈y〉) = 〈x, y〉

a() = 〈a〉
b() = 〈b〉
e() = 〈ε〉

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1087

This grammar generates the language anbn in such a way that the ith a and ith b are generated in the same
derivation step:

S ⇒ m(T)

⇒ m(×(T ,∧(a(), b())))
⇒ m(×(×(T ,∧(a(), b())),∧(a(), b())))
⇒ m(×(×(∧(e(), e()),∧(a(), b())),∧(a(), b())))
= m(×(×(∧(〈ε〉, 〈ε〉),∧(〈a〉, 〈b〉)),∧(〈a〉, 〈b〉)))
= m(×(×(〈ε, ε〉, 〈a, b〉), 〈a, b〉))
= m(×(〈a, b〉, 〈a, b〉))
= m(〈aa, bb〉)
= 〈aabb〉

An LCFRS has the same form as above except that all productions have the form A → f (A1, . . . , An).
It is not hard to show that the two definitions are equivalent.

Following Rambow and Satta (1999), define the rank of a function to be its number of arguments, and
its fan-out to be the size of the tuples it operates on. We then say that a CIG has rank r if none of its
rearrangement rules define a function of rank greater than r , and fan-out f if none of its rearrangement
rules define a function with fan-out greater than f . Rivas and Eddy limit both the rank and fan-out of CIG
to two. They use the following rearrangement rules:

×(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1, x2y2〉
×L(〈x1, x2〉, 〈y1, y2〉) = 〈y1x1y2, x2〉
×R(〈x1, x2〉, 〈y1, y2〉) = 〈x1, y1x2y2〉
⊃ (〈x1, x2〉, 〈y1, y2〉) = 〈x1y1, y2x2〉

It can be shown that a CIG/LCFRS with rank r and fan-out f can be parsed in O(n(r+1)f) time. Thus,
this grammar can be parsed in O(n6) time, like TAG. However, the class of grammars that satisfies this
restriction is more powerful than TAG, because the operations ×, ×L, ×R are not permitted in general
by TAG.

For example, the operators ×L and ×R allow structures like the one shown in Fig. 9, which cannot be
generated by TAG (Akutsu, 2000). However, such structures are not known to occur in nature. Another
example comes from Weir (1988), who already identified the rank two, fan-out two class of languages and
gave the language anbnambmcndncmdm as an example of a language in this class but beyond TAG. Below
is a CIG with rank two and fan-out two that generates this language:

W → m(×(WH ,WH))

WH → ⊃ (∧(a(), d()),⊃ (WH ,∧(b(), c())))
| ∧(e(), e())

c() = 〈c〉
d() = 〈d〉

with m, ∧ defined as above.

1088 CHIANG ET AL.

3.4. Parallel communicating grammar systems

Cai et al. (2003) use parallel communicating grammar systems, or PCGSs (Păun and Sântean, 1990), for
modeling pseudoknots. Like set-local multicomponent grammars, these work by parallel rewriting. How-
ever, a PCGS is not a grammar of multicomponent productions, but rather consists of k + 1 component
grammars 〈G0,G1, . . . ,Gk〉. G0 is called the master. Each grammar has, in addition to the normal non-
terminal symbols, a set of query symbols {Q0, . . . ,Qk}. A derivation begins with the k + 1 start symbols
〈S0, . . . , Sk〉 (as opposed to a multicomponent grammar, which would start with a single start symbol),
and each grammar runs independently, except for the following:

• A query symbol Qi can be rewritten with the current sentential form of Gi , and Gi is restarted at the
next step.

• If a nonterminal symbol does not have any matching productions, it cannot be rewritten.
• A query symbol cannot be rewritten with a string containing another query symbol or a nonterminal

symbol that cannot be rewritten.
• A nonterminal symbol cannot be rewritten if a rewritable query symbol is present.

Cai et al. use a restricted form of PCGS in which the auxiliary components are regular grammars (that is,
CFGs whose right-hand sides have a single nonterminal, which are at the rightmost position). The master
component looks like the following (simplified from the published version, which is itself simplified):

S → PQ1PPXP

X → aXu | cXg | gXc | uXa

X → PQ2P

P → aP | cP | gP | uP | ε
Hi → ε

And G1, G2, and G3 are as follows (the vertical displacement of the columns is for clarity only):

S1 → Q2

T → T1 S2 → T

T1 → Q3 T → Q3

A → aQ3 A → Q3u S3 → A

C → cQ3 C → Q3g S3 → C

G → gQ3 G → Q3c S3 → G

U → uQ3 U → Q3a S3 → U

H → H1 H → H2 S3 → H

(The rules involving Hi are not in the original paper, but must be inserted in order for the derivation to
proceed as shown in the paper. The distinction between H1 and H2 is needed to prevent G1 from querying
G2 at the wrong time.)
G1 and G2 run in parallel to generate the two halves of a hairpin. Because of the linearity constraint,

the sentential forms of these grammars always have exactly one nonterminal symbol, which was generated
at the previous step. Therefore the operation of G1 and G2 resembles that of a set-local multicomponent
grammar.

Furthermore, G0, the pair 〈G1,G2〉, and G3 have time-independent derivations: G1 halts when it gen-
erates the symbol H1, and only then can it be successfully queried by G0. Similarly for G2; and G3 only

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1089

FIG. 9. “Multipseudoknot” generable by the grammar of Rivas and Eddy.

has derivations of length one. Therefore we can time-shift the component derivations without harm. This
means that we can “inline” all the queries in a multicomponent grammar:4

S → PQ1PPXP

〈Q1,X〉 → 〈Q1, aXu〉 | 〈Q1, cXg〉 | 〈Q1, gXc〉 | 〈Q1, uXa〉
〈Q1,X〉 → 〈Q1,PQ2P〉

〈Q1,Q2〉 → 〈S1,S2〉
〈S1,S2〉 → 〈Q2,T〉 → 〈T2,S2〉 → 〈T1,T〉 → 〈Q3,Q3〉
〈Q3,Q3〉 → 〈S3,S3〉
〈S3,S3〉 → 〈A,A〉 → 〈aQ3,Q3u〉
〈S3,S3〉 → 〈C,C〉 → 〈cQ3,Q3g〉
〈S3,S3〉 → 〈G,G〉 → 〈gQ3,Q3c〉
〈S3,S3〉 → 〈U,U〉 → 〈uQ3,Q3a〉
〈S3,S3〉 → 〈H,H〉 → 〈H1,H2〉 → 〈ε, ε〉

And this grammar is not very different from Uemura’s linear TAG. Since this grammar has rank two
and fan-out two, it can be parsed in O(n6) time, like Cai et al.’s. Further transformation could make the
grammar linear, making it parseable in O(n4) time like the simpler of Uemura’s two grammars.

3.5. Regular-form TAG

We turn to another restriction on TAG, called regular-form TAG (Rogers, 1994), which generates the
same languages as CFG and has the same parsing complexity as CFG of O(n3). But it has greater
derivational generative capacity than CFG (Chiang, 2002), which we use here for modeling limited RNA
tertiary interactions.

In his original definition, the details of which we omit here, Rogers defines a restriction on TAG
adjunction, called regular adjunction, that can generate only regular path sets. He then identifies the
subclass of regular-form TAGs, which have the property that every derived tree that can be derived using
unrestricted adjunction could also have been derived using only regular adjunction. But since Rogers’

4In the production 〈Q2,T〉 → 〈T2,S2〉 we have made use of another trick, relying on the knowledge that the result
of the query consists of a single nonterminal symbol.

1090 CHIANG ET AL.

FIG. 10. Examples of adjunction in regular-form TAG. (a) Off-spine adjunction, allowed. (b) Acyclic spine ad-
junction, allowed. (c) Cyclic spine adjunction, not allowed. (d) Root adjunction, not allowed. (e) Foot adjunction,
allowed.

recognition algorithm only performs regular adjunction, it cannot in general produce all possible derivations
of a sentence and therefore cannot be used as a parser.

A more technical issue is that regular adjunction can occur at either the root or foot, which creates
derivational ambiguity. Rogers’ algorithm, however, cannot distinguish between the two. If we want the
parser to compute derivations, one or the other should be disallowed. Following Schuler et al. (2000), we
prohibit adjunction at the root. This leads us to the following definition, which narrows Rogers’ definition
to eliminate both of the above problems:

Definition 3. We say that a TAG is in regular form, or an RF-TAG, if there exists some partial ordering
� over nonterminal symbols such that if β is an auxiliary tree whose root and foot nodes are labeled X,
and η is a node labeled Y on β’s spine where adjunction is allowed, then X � Y , and X = Y only if η is
a foot node.

Thus, adjunction at nodes not lying along the spine and adjunction at the foot node are allowed freely;
adjunction at nodes lying along the spine is allowed to a bounded depth, but adjunction at the root is not
allowed at all (Fig. 10).

Grammars of this type could be used for structures in which all but a bounded number of self-contacts are
nested. For example, an RF-TAG can generate pseudoknots if there was a known upper bound on the number
of self-contacts in one of the hairpins. A more appropriate application would be a cloverleaf structure (as
in Fig. 1) in which two of the hairpins “kiss” (Fig. 4a), forming a small number of self-contacts crossing
over an unbounded number of nested self-contacts. Such kissing hairpins within cloverleaf structures are
known to occur in transfer RNAs. If the number of such self-contacts is indeed bounded, we can write an
RF-TAG similar to the one above to generate them (Fig. 11).

3.6. Intersections of CFLs

Another strategy for obtaining more SGC out of a grammar formalism is to combine multiple grammars
into a single system which accepts the intersection of the languages accepted by the component grammars,
and which assigns to each string the unification (in some sense) of the structural descriptions assigned
by the component grammars. This technique has not received much attention in computational linguistics,

FIG. 11. RF-TAG for cloverleaf with kissing hairpins. The initial tree α generates the loops (here fixed to two
monomers each), and β generates the stem regions.

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1091

probably because linguistic structures tend to be hierarchical, and it is not very clear how to unify multiple
hierarchical structures into a single one. With molecular structures, on the other hand, it is straightforward
to unify two linkings of a string, simply by merging them.

Context-free languages are not closed under intersection (Hopcroft and Ullman, 1979). This suggests
the possibility of using two or more CFGs to recognize a language beyond the power of CFG, without
going beyond its parsing complexity of O(n3). Brown and Wilson (1996) propose just this approach
for RNA pseudoknots. They observe that {amg∗umc∗} and {a∗gnu∗cn} are context-free languages, but
their intersection is the non-context-free language {amgnumcn}. This language is reminiscent of a set of
pseudoknots: the m a’s and u’s form one hairpin, and the n g’s and c’s are the other. Therefore this would
seem to be an efficient way of modeling pseudoknots.

However, in order for the pseudoknot to be well-formed, the two hairpins must interlock without col-
liding. That is, the base pairings must cross, but no two pairings should involve the same base. But the
only reason the above example achieves this is because one hairpin has only a’s and u’s and the other has
only c’s and g’s—that is, each symbol indicates overtly which hairpin it belongs to. For real molecules,
both component grammars would have to generate at least all possible hairpins. In that case, there would
be no way of preventing the component grammars from missing each other or colliding.

The root of the problem is that intersection only operates on strings, not structural descriptions. It allows
parallel structural descriptions to be derived independently, then filters them on the basis of their string
yields. The above example attempts to harness this filtering to generate only well-formed pseudoknots, but
in order to do so it assumes that there is more information in the string languages than there really is.

Brown and Wilson recognize that there is a difficulty, but they locate the difficulty in the calculation of
probabilities using the model, rather than the model itself. Their solution is to employ a special parsing
strategy that uses the results of parsing with the first grammar to constrain the parse with the second to
ensure that the hairpins interlock without colliding; then the string is reparsed with the first, then again
with the second. But since these parsing constraints are defined in terms of these particular grammars, it
is not clear how their technique would be generalized to other pairs of grammars. Moreover, their method
is by design only an approximation of the desired result.

We conclude that the single-grammar approaches are preferable to the intersected-CFL approach, despite
having a higher asymptotic time complexity. See Section 4.2 below, however, for an example use of
intersection within a single grammar.

4. PROTEIN SECONDARY STRUCTURE

Protein structure is in many ways more challenging to linguistic description than that of nucleic acids.
We examine here two approaches to the specification of β-sheets: one using yet another equivalent of
set-local multicomponent TAG; the other, a novel use of intersection in a range concatenation grammar
(Groenink, 1997; Boullier, 2000). We then examine a pair of approaches for modeling interactions between
α-helices: one using multi-tape context-free grammars (Lefebvre, 1996; Waldispühl and Steyaert, 2005),
and one using ordinary context-free grammars (Chiang et al., 2006).

4.1. Ranked node-rewriting grammars for β-sheets

Abe and Mamitsuka (1997) use a formalism called ranked node-rewriting grammar (RNRG) to generate
β-sheets. RNRG is essentially TAG with multiple foot nodes on elementary trees. When a node η is
rewritten with a tree β, the children of η are identified with the foot nodes of β, matched up according to
linear precedence. RNRG(k) is the class of RNRGs which contain no elementary trees with more than k
foot nodes. For an example of an RNRG(2), see Fig. 12.

Since rewriting with an elementary tree with one foot node corresponds to adjunction (and rewriting
with an elementary tree with zero foot nodes corresponds to another standard operation, substitution, we
do not make use of here), RNRG(1) is just a cosmetic variant of TAG (see Fig. 14).

A derived auxiliary tree with k foot nodes can be viewed as a tuple of k + 1 strings, so that RNRG(k)
can be thought of as an LCFRS with fan-out k + 1. The rank of the LCFRS would be the maximum
number of adjunction sites on any elementary tree. In order to simplify computation of inside and outside

1092 CHIANG ET AL.

FIG. 12. RNRG for β-sheet of five strands.

X

Y Y

X

a1 X

Y

a2 Y a3

Y

a4 Y a5

⇒

X

a1 X

a1 X

Y

a2 Y

a2 Y a3

a3

Y

a4 Y

a4 Y a5

a5

⇒

FIG. 13. Rewriting of α from Fig. 12 using two applications of β, with new material at each step shaded.

FIG. 14. RNRG(1) elementary tree and equivalent TAG elementary tree.

probabilities, Abe and Mamitsuka define linear RNRG(k), in which each auxiliary tree has at most one
node at which rewriting (adjunction) is possible. Linear RNRG(k), because it is equivalent to LCFRS with
rank one and fan-out k+ 1, has parsing complexity O(n2(k+1)).5 They fix k = 1, giving O(n4). The other
details need not concern us here.

Figure 12 shows a grammar for generating a β-sheet of five alternating strands; Fig. 13 shows an
example derivation and Fig. 16 shows an example β-sheet. In Abe and Mamitsuka’s analysis, the links
are not explicitly drawn; the result is that each derivation corresponds to multiple β-sheet structures, each
with a different spatial ordering of the strands. Thus, the derivations of the grammar of Fig. 14a would
not be able to distinguish the β-sheets of Fig. 15.

Set-local multicomponent TAG offers a similar solution; Fig. 17 shows a grammar to generate the five-
strand sheet of Fig. 2b. We can add links to the elementary trees (of either an RNRG or a multicomponent
TAG) to distinguish permuted β-sheets (Fig. 16).

The difficulty is that parsing of these grammars is exponential in the number of strands per sheet.
Moreover, every grammar imposes some upper bound, so that there is no single grammar that can generate
all β-sheets. For this reason, approaches of this type appear to be prohibitively expensive.

5We conjecture that general RNRG(k) is not that much more difficult to parse, with a complexity of O(n2(k+1)+2),
but we do not present an argument here.

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1093

FIG. 15. Permuted β-sheets.

FIG. 16. Set-local multicomponent TAG for protein β-sheet of Fig. 2b.

FIG. 17. Elementary trees for generating the permuted β-sheets of Fig. 15.

FIG. 18. Illustration of “spurious” structural ambiguity in a multicomponent TAG.

A second problem is that this analysis is susceptible to a kind of “spurious” structural ambiguity (Searls,
1999) in which a single structure can be derived in multiple ways (Fig. 18). In order to generate the
β-sheet (a), we need trees like (b) and (c). But either of these trees can be used by itself to generate the
β-sheet (d). The grammar must make room for the maximum number of strands, but when it does not use
all of it, ambiguity can arise. It should be possible to carefully write the grammar to avoid much of this
ambiguity, but we have not been able to eliminate all of it even for the single-component TAG case.

1094 CHIANG ET AL.

4.2. Range-concatenation grammars for β-sheets

Range concatenation grammars, or RCGs (Boullier, 2000), and the simple literal movement grammars
(Groenink, 1997) on which they are based, are a class of grammars even larger than the LCFRSs. The class
of languages they describe has a number of convenient properties: it is exactly the languages recognizable
in deterministic polynomial time (Bertsch and Nederhof, 2001), and it is closed under intersection. The
latter property makes RCGs potentially useful for modeling protein β-sheets in a way that does not suffer
from the difficulties we pointed out with Brown and Wilson’s intersection approach (Chiang, 2004).

We present here a brief definition of a variant of RCG as a kind of deductive system. RCG clauses have
the form

ψ :− φ1, . . . , φn.

(meaning “ψ is provable if φ1, . . . , φn all are”). If n = 0, we simply write

ψ.

(which is trivially provable). The ψ and the φi in turn have the form

A(α1, . . . , αm)

where A is a predicate (nonterminal) symbol and the αj are strings of terminal symbols and variables
(which range over strings of terminal symbols). Every αj in ψ must be a substring of an αj ′ in one of
the φi . This condition ensures that in the derivation of a string w, all variables are instantiated only to
substrings of w. (The standard definition of RCG does not have this requirement, because its variables
range not over strings but pairs of string positions of w. The definition here is closer to that of simple
literal movement grammars [Groenink, 1997].) The language defined by an RCG is the set of all strings
w such that S(w) is provable, where S is a distinguished start predicate.

Moreover, since in an RCG there are no restrictions on what literals may be conjoined in the right-hand
side of a production, RCG is closed under intersection: if Start1 and Start2 are the start predicates of two
RCGs G1 and G2 (with disjoint nonterminal alphabets), create a new start predicate Start and add the
production

Start(X) :− Start1(X),Start2(X)

which recognizes the intersection of the languages generated by G1 and G2. Thus RCG internalizes the
intersection operation, which allows more control than Brown and Wilson’s scheme. The caveats from
our critique of that scheme still apply, however. For example, Boullier (1999) gives an RCG which he
claims models German scrambling, a construction in which all the nouns of a sentence can appear in any
order. His grammar checks for a verb for every noun and vice versa, using intersection to enforce all these
constraints simultaneously. But like Brown and Wilson’s system, it relies on some assumptions about the
generated string to ensure that the constraints are properly coordinated.

Nevertheless, RCG’s closure under intersection might be a useful property for modeling complex folds
like protein β-sheets. We start with some building blocks:

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1095

FIG. 19. β-Barrel.

The predicates Anti and Par generate pairs of adjacent antiparallel and parallel strands, respectively, and
the predicate Adj generates two adjacent strands in either configuration. Irregularities as in Fig. 18a are
also possible, but not shown here.

We can then use the intersection ability of RCG to combine these pairs of strands into a sheet. Thus
the following grammar generates β-sheets where the strands are arranged according to their order in the
sequence:

Beta(AB) :− B(A,B)

B(ABY,B ′) :− B(A,B),Adj(B, B ′)

B(BY,B ′) :− Adj(B, B ′)

The first argument to B is a β-sheet minus the last strand, and the second argument is the last strand. The
second production forms a larger β-sheet out of a smaller one by appending a new last strand and joining
it to the previous last strand using Adj. This production has O(n5) possible instantiations (because it takes
six indices to specify the variables on the left-hand side, but the arguments of B are always adjacent,
eliminating one index), and therefore the parsing complexity of this grammar is also O(n5). Crucially, this
complexity bound is not dependent on the number of strands, because each series of contacts is generated
in sister subderivations, unlike the multicomponent TAG analysis.

But even sister subderivations can control each other via their root nonterminal (predicate) symbols, as
illustrated in the following example. A β-sheet can be rolled into a cylinder to form a β-barrel (Fig. 19).
We can generate these as well, but we must keep track of the direction of each strand, as in the grammar
of Fig. 20, so as not to generate any Möbius strips. Here B has three arguments: the first strand, the middle
part, and the last strand; there is an additional predicate symbol B′ which is the same as B, except that B′
is for sheets with antiparallel first and last strands, whereas B is restricted here to sheets with parallel first

FIG. 20. RCG for β-barrels.

1096 CHIANG ET AL.

and last strands. The first production joins the first and last strands to form a barrel; it uses the information
in the B versus B′ distinction to join the strands so that no Möbius strips will be generated.

The strands of β-sheets do not always appear in linear order; they can be permuted as in Fig. 15. We
can model such permutations by increasing the degree of synchronous parallelism (that is, the number
of arguments to B), and therefore increasing parsing complexity. By contrast, since multicomponent TAG
already uses synchronous parallelism to generate all the strands together, it allows permutations of strands
at no extra cost.

Suppose we envision a sheet being built up one strand at a time, each successive strand being added to
either side of the sheet:

Beta(ABCD) :− B(A,B,C,D)

B(ABC,D, Y, B ′) :− B(A,B,C,D),Adj(B, B ′)

B(A,B,CDY,B ′) :− B(A,B,C,D),Adj(D,B ′)

B(ε, B, Y, B ′) :− Adj(B, B ′)

Figure 15a shows an example sheet that can be generated by this grammar but not the previous ones. In this
grammar, the second and fourth arguments to B are the leftmost and rightmost strands (not respectively) in
the folded structure. The second production adds a new strand on one side, and the third production adds
a new strand on the other. Both productions have O(n7) possible instantiations if we take into account that
the four arguments to B will always be adjacent.

Suppose we always build up a sheet out of two smaller sheets:

Beta(ABCDE) :− B(A,B,C,D,E)

B(ABC,D,EYA′, B ′, C′D′E′) :− B(A,B,C,D,E),B(A′, B ′, C′,D′, E′),Adj(B,D′)

B(A,B,CDEYA′, B ′, C′,D′, E′) :− B(A,B,C,D,E),B(A′, B ′, C′,D′, E′),Adj(D,D′)

B(ε, B,C,D, ε) :− Adj(B,D)

Figure 15b shows an example sheet that can be generated by this grammar but not the previous ones. In this
grammar, the second and fourth arguments are again the leftmost and rightmost strands (not respectively)
in the folded structure. The second and third productions join two β-sheets together in two different
ways; there are conceivably four ways to join them together, but using only these two avoids “spurious”
structural ambiguity. Both productions have O(n12) possible instantiations if we take into account that the
five arguments to B will always be adjacent.

Figure 15c shows the only permutation of four strands that the above grammar cannot generate. This
may not be problematic, since, at least for sheets formed out of two hairpin motifs, we are not aware of
instances of this permutation occurring in nature (Branden and Tooze, 1999).

It should be emphasized, however, that any energies or conformation counts added to these grammars
will not be able to make the self-contacts between two strands dependent on self-contacts with other
strands. Akutsu (2000) and Lyngsø and Pedersen (2000) have shown that certain formulations of the
problem of predicting RNA secondary structures with generalized pseudoknots are NP-hard. Both of these
proofs assume some kind of dependence between nonadjacent strands. Akutsu assumes that no residue
can participate in two contacts (one on either side), which is true of RNA secondary structures but not of
protein structures. Lyngsø and Pedersen assume that the energy of a base pairing (i, j) can be affected by
another base pairing (j − 1, i′) even if i and i′ are in different strands (or by (j ′, i + 1) even if j and j ′
are in different strands); it remains to be seen whether such dependencies might be needed, for example,
in calculating conformation counts for β-sheets.

4.3. α-helix bundles

Besides β-sheets, the other major class of protein secondary structure is the α-helix. As shown in Fig. 2a,
the key intramolecular interactions in α-helices are local and cyclical, forming short crossing dependencies.

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1097

FIG. 21. Simplified version of Waldispühl and Steyaert’s grammar.

α-helices do not form long-distance dependencies, such as those between the strands of a β-sheet, as an
aspect of their definition as a secondary structure. Outward-facing side-chains of α-helices certainly form
interactions with other residues in a typical protein, but these are usually of a more irregular and singular
nature and thus not well suited to generic description.

Major exceptions involve cases where α-helices contact each other in rough alignment and thus are able
to interact along their lengths in some regular fashion. Examples include certain signalling proteins that
occur in four-helix bundles, higher-order structures called coiled coils that are seen in structural proteins,
and membrane proteins for which successive α-helices cross and recross the membrane. Often such helix
bundles comprise successive α-helices in antiparallel relationship.

Waldispühl and Steyaert (2005) propose the use of m-tape context-free grammars (Lefebvre, 1996) for
modeling pairings between α-helices. We can describe m-tape context-free grammars as RCGs in which
every clause is of the form

A(α1, . . . , αm) :− B1(x11, . . . , x1m), . . . Bn(xn1, . . . , xnm)

where the αi are such that removing the terminal symbols from αi yields x1i · · · xni . (Links can be specified
between terminal symbols of a clause, but we omit a description here of how to restrict the links in order
to reproduce the definition of m-tape CFGs.) The start predicate is an m-place predicate that defines a
relation on m-tuples of strings. With respect to each of the m arguments, the grammar behaves like an
ordinary CFG because of the above restriction.

In Waldispühl and Steyaert’s system, m = 2, and the two strings are constrained to be equal. We can
formalize this constraint within an RCG by adding a new start predicate Start′ defined by

Start′(X) :− Start(X,X)

This gives the grammar two copies of the string to work with, so that self-contacts can be modeled as
contacts from one copy to the other. See Fig. 21 for a highly simplified version of Waldispühl and Steyaert’s
grammar, and Fig. 22 for an example structure.

This superposition of the two sides of the grammar is reminiscent of intersection; indeed, Lefebvre notes
the connection between his method and Brown and Wilson’s intersected-CFL model of RNA pseudoknots.

FIG. 22. Example structure generated by the grammar of Fig. 21. (Above) Two copies viewed separately. (Below)
Two copies merged.

1098 CHIANG ET AL.

And as in Brown and Wilson’s system, there is not, as far as we can tell, a mechanism for ensuring that
the two sides of the grammar agree on the extent of each helix.

Elsewhere (Chiang et al., 2006), we present a less ambitious model of helix bundles, one which uses
a context-free grammar based on the model of Chen and Dill (1995, 1998) (see also Mauri et al., 1999)
intersected with a finite-state model of α-helices based on the Zimm-Bragg model (Zimm and Bragg, 1959)
to model two-helix bundles. Formally, it does not go beyond the power of context-free grammars and is
therefore less general than Waldispühl and Steyaert’s approach. However, it attempts to model the full
energy landscape of the chain and not just the minimum- or near-minimum energy structures. Moreover,
this model could perhaps be extended along the lines of Abe and Mamitsuka’s approach to β-sheets or our
RCG-based account (Section 4.2) to yield a much more general model of helix bundles. This is a subject
for future investigation.

5. CONCLUSION

Formal grammars provide an abstract view of RNA/protein structure, one that should enable both high-
level descriptions and efficient searching through large spaces of structures; the key element of this view is
that self-contacts in a chain are localized to elementary structures that combine with each other by grammar
operations that are independent of the global context. All the approaches we have surveyed here share this
principle in common with Searls’ original work, and we have shown how all but two are equivalent or
very similar to TAG or multicomponent TAG. The two exceptions, Brown and Wilson’s intersected-CFL
method and Waldispühl and Steyaert’s two-tape CFG method, can be captured in the more general RCG
formalism.

We point out two possible new directions. First, it is important to distinguish between the WGC and
SGC of a grammar formalism. It would be desirable to increase the SGC of a formalism with respect to
structures without increasing its WGC or its processing complexity. Our RF-TAG analysis of limited RNA
tertiary structure is an example of such an approach. Second, intersection has not found many applications
in computational linguistics, whose mainly hierarchical structures cannot be superimposed easily. But
they may prove to be useful for modeling biological structures such as β-sheets—provided they are used
properly, in a system like RCG.

ACKNOWLEDGMENTS

We would like to thank Adam Lucas, Julia Hockenmaier, Liang Huang, and the anonymous reviewer
for their helpful comments. This work was partially supported by NSF-ITR grant EIA02-05456.

REFERENCES

Abe, N., and Mamitsuka, H. 1997. Predicting protein secondary structures based on stochastic tree grammars. Machine
Learn. 29, 275–301.

Akutsu, T. 2000. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete
Appl. Math. 104, 45–62.

Becker, T., Joshi, A., and Rambow, O. 1991. Long distance scrambling and tree adjoining grammar. Proc. 5th Conf.
Eur. Chapter Assoc. Comput. Linguistics (EACL), 21–26.

Bertsch, E., and Nederhof, M.-J. 2001. On the complexity of some extensions of RCG parsing. Proc. 7th Int. Workshop
Parsing Technol. (IWPT), 66–77.

Berwick, R.C. 1984. Strong generative capacity, weak generative capacity, and modern linguistic theories. Comput.
Linguistics 10, 189–202.

Boullier, P. 1999. Chinese numbers, MIX, scrambling, and range concatenation grammars. Proc. 9th Conf. Eur. Chapter
Assoc. Comput. Linguistics (EACL), 53–60.

Boullier, P. 2000. Range concatenation grammars. Proc. 6th Int. Workshop Parsing Technol. (IWPT), 53–64.
Branden, C.-I., and Tooze, J. 1999. Introduction to Protein Structure, 2nd ed., Garland, New York.

GRAMMATICAL REPRESENTATIONS OF MACROMOLECULAR STRUCTURE 1099

Brown, M., and Wilson, C. 1996. RNA pseudoknot modeling using intersections of stochastic context free grammars
with applications to database search. Proc. Pac. Symp. Biocomput., 109–125.

Burge, C., and Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268,
78–94.

Cai, L., Malmberg, R.L., and Wu, Y. 2003. Stochastic modeling of RNA pseudoknotted structures: A grammatical
approach. Bioinformatics 19, i66–i73.

Chen, S.-J., and Dill, K.A. 1995. Statistical thermodynamics of double-stranded polymer molecules. J. Chem. Phys.
103, 5802–5813.

Chen, S.-J., and Dill, K.A. 1998. Theory for the conformational changes of double-stranded chain molecules. J. Chem.
Phys. 109, 4602–4616.

Chiang, D. 2002. Putting some weakly context-free formalisms in order. Proc. 6th Int. Workshop TAG Rel. Formalisms
(TAG+), 11–18.

Chiang, D. 2004. Uses and abuses of intersected languages. Proc. 7th Int. Workshop TAG Rel. Formalisms (TAG+),
9–15.

Chiang, D., and Joshi, A.K. 2002. Formal grammars for estimating partition functions of double-stranded chain
molecules. Proc. 2nd Int. Conf. Human Lang. Technol. Res. (HLT), 63–67.

Chiang, D., Joshi, A.K., and Dill, K.A. 2006. A grammatical theory for the conformational changes of simple helix
bundles. J. Comput. Biol. 13, 21–42.

Dong, S., and Searls, D.B. 1994. Gene structure prediction by linguistic methods. Genomics 23, 540–551.
Durbin, R., Eddy, S.R., Krogh, A., et al. 1999. Biological Sequence Analysis: Probabilistic Models of Proteins and

Nucleic Acids, Cambridge University Press, Cambridge, UK.
Groenink, A.V. 1997. Surface without Structure: Word Order and Tractability Issues in Natural Language Analysis.

PhD thesis, University of Utrecht.
Hilbers, C.W., Michiels, P.J.A., and Heus, H.A. 1998. New developments in structure determination of pseudoknots.

Biopolymers 48, 137–153.
Hopcroft, J.E., and Ullman, J.D. 1979. Introduction to Automata Theory, Languages, and Computation, Addison-

Wesley, Reading, MA.
Joshi, A.K. 1985. Tree adjoining grammars: How much context-sensitivity is necessary for assigning structural descrip-

tions? in Dowty, D., Karttunen, L., and Zwicky, A., eds., Natural Language Parsing, 206–250, Cambridge University
Press, Cambridge, UK.

Joshi, A.K. 2004. Starting with complex primitives pays off: Complicate locally, simplify globally. Cogn. Sci. 28,
637–668.

Joshi, A.K., Levy, L., and Takahashi, M. 1975. Tree adjunct grammars. J. Comput. Syst. Sci. 10, 136–163.
Joshi, A.K., and Schabes, Y., 1997. Tree-adjoining grammars, in Rosenberg, G., and Salomaa, A., eds., Handbook of

Formal Languages and Automata, Volume 3, 69–124, Springer-Verlag, Heidelberg.
Kato, Y., Seki, H., and Kasami, T. 2004. Subclasses of tree adjoining grammar for RNA secondary structure. Proc.

7th Int. Workshop TAG Rel. Formalisms (TAG+), 48–55.
Lefebvre, F. 1996. A grammar-based unification of several alignment and folding algorithms. Proc. Int. Conf. Intellig.

Syst. Mol. Biol., 143–154.
Lyngsø, R.B., and Pedersen, C.N.S. 2000. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7,

409–427.
Mauri, G., Piccolboni, A., and Pavesi, G. 1999. Approximation algorithms for protein folding prediction (short). Proc.

10th Ann. Symp. Discrete Algorithms, 945–946.
Mel’čuk, I.A. 1988. Dependency Syntax: Theory and Practice, SUNY Press, Albany, NY.
Nebel, M.E. 2002. Combinatorial properties of RNA secondary structures. J. Comput. Biol. 9, 541–573.
Păun, G., and Sântean, L. 1990. Further remarks on parallel communicating grammar systems. Int. J. Comput. Math.

34, 187–203.
Rambow, O., and Satta, G. 1999. Independent parallelism in finite copying parallel rewriting systems. Theor. Comput.

Sci. 223, 87–120.
Reese, M.G., Kulp, D., Tammana, H., et al. 2000. Genie—gene finding in Drosophila melanogaster. Genome Res.

10, 529–538.
Rivas, E., and Eddy, S.R. 2000. The language of RNA: A formal grammar that includes pseudoknots. Bioinformatics

16, 334–340.
Rogers, J. 1994. Capturing CFLs with tree adjoining grammars. Proc. 32nd Annu. Mtg. ACL, 155–162.
Rogers, J. 2003. Syntactic structures as multi-dimensional trees. Res. Language Comput. 1, 265–305.
Sakakibara, Y., Brown, M., Hughey, R., et al. 1994. Stochastic context-free grammars for tRNA modeling. Nucleic

Acids Res. 22, 5112–5120.
Satta, G., and Schuler, W. 1998. Restrictions on tree adjoining languages. Proc. COLING-ACL, 1176–1182.

1100 CHIANG ET AL.

Schuler, W., Chiang, D., and Dras, M. 2000. Multi-component TAG and notions of formal power. Proc. 38th Annu.
Mtg. ACL, 448–455.

Searls, D.B. 1988. Representing genetic information with formal grammars. Proc. 7th Natl. Conf. Artif. Intellig. (AAAI),
386–391.

Searls, D.B. 1992. The linguistics of DNA. Am. Sci. 80, 579–591.
Searls, D.B. 1999. Formal language theory and biological macromolecules, in Farach-Colton, M., Roberts, F.S., Vin-

gron, M., et al., eds., Mathematical Support for Molecular Biology, 117–140, American Mathematical Society,
Providence, RI.

Uemura, Y., Hasegawa, A., Kobayashi, S., et al. 1999. Tree adjoining grammars for RNA structure prediction. Theor.
Comput. Sci. 210, 277–303.

Viennot, G., and de Chaumont, M.V. 1983. Enumeration of RNA secondary structures by complexity, in Capasso, V.,
Grosso, E., and Paveri-Fontana, S.L., eds., Mathematics in Biology and Medicine, Number 57 in Lecture Notes in
Bbiomathematics, 360–365. Conference proceedings: Berlin, New York: Springer-Verlag.

Vijay-Shanker, K., Weir, D., and Joshi, A. 1987. Characterizing structural descriptions produced by various grammatical
formalisms. Proc. 25th Annu. Mtg. ACL, 104–111.

Waldispühl, J., and Steyaert, J.-M. 2005. Modeling and predicting all-α transmembrane proteins including helix-helix
pairing. Theor. Comput. Sci. 335, 67–92.

Weir, D.J. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms, PhD thesis, University of Pennsylva-
nia, Philadelphia.

Westhead, D.R., Slidel, T.W., Flores, T.P., et al. 1999. Protein structural topology: Automated analysis and diagrammatic
representation. Protein Sci. 8, 897–904.

Zimm, B.H., and Bragg, J.K. 1959. Theory of the phase transition between helix and random coil in polypeptide
chains. J. Chem. Phys. 31, 526–535.

Address correspondence to:
David Chiang

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292

E-mail: chiang@isi.edu

