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Abstract
Pronunciations from different speakers are often compared us-
ing phonetic transcriptions, even though transcribing speech is
time-consuming and error prone. To understand whether this
process can be omitted when the goal is to quantify pronunci-
ation differences, we investigate several acoustic-only methods
for representing and comparing pronunciations. Specifically,
we compute numerical feature representations based on Mel-
frequency cepstral coefficients and a pre-trained Transformer-
based neural network, and make word-level comparisons us-
ing Dynamic Time Warping. We use the speech of non-
native and native speakers of English as input to these mod-
els, and evaluate the algorithms by comparing their output to
human judgements of accent strength. Our results show that
the Transformer-based approach outperforms the already well-
performing transcription-based method, while being minimally
affected by individual speaker differences. These results suggest
that phonetically transcribing speech is not necessary to quan-
tify pronunciation differences when a pre-trained Transformer-
based neural model is available.

Keywords: acoustic distance, mel-frequency cepstral coeffi-
cients, neural networks, pronunciation variation, speech.

1. Introduction
Phonetic transcriptions are frequently used to investigate and
quantify pronunciation differences between speakers (Ner-
bonne and Heeringa 1997; Livescu and Glass 2000; Gooskens
and Heeringa 2004; Heeringa 2004; Wieling, Bloem, et al.
2014; Chen et al. 2016; Jeszenszky et al. 2017). However, tran-
scribing speech using a phonetic alphabet is time consuming,
labor intensive, and variation might be the result of transcriber
differences (Hakkani-Tür, Riccardi, and Gorin 2002; Bucholtz
2007; Novotney and Callison-Burch 2010). In addition, a set of
discrete symbols may not be sufficient to include all phonetic
details relevant for studying speech (Mermelstein 1976; Duck-
worth et al. 1990; Cucchiarini 1996). We therefore investigated
the effectiveness of acoustic-only methods (not requiring pho-
netic transcriptions) to quantify pronunciation differences.

In this paper, we introduce two distinct acoustic-only meth-
ods to quantify pronunciation differences between non-native
and native speakers of English.1 Specifically, we transform
unprocessed audio samples into numerical feature representa-
tions based on Mel-frequency cepstral coefficients (MFCCs)
(Bartelds, Richter, et al. 2020) for the first method, and create
self-supervised neural features from the pre-trained wav2vec

1This paper provides a short overview of two separate studies which
discuss the MFCC approach, and the wav2vec 2.0 approach, respec-
tively: Bartelds, Richter, et al. 2020 and Bartelds, Vries, et al. 2020.

2.0 model (Baevski et al. 2020) for the second method. Sub-
sequently, we use dynamic time warping (DTW) (Müller 2007)
to quantify the difference between the feature representations.
We compare the resulting acoustic-only differences to phonetic
transcription-based distances based on the same data, and hu-
man native-likeness judgments collected by Wieling, Bloem, et
al. (2014) to assess whether our acoustic-only methods are a
valid measurement technique. For reproducibility, our code is
publicly available.2

Our work is related to that of Huckvale (2004) and Mous-
troufas and Digalakis (2007), who also investigated pronun-
ciation differences without requiring phonetic transcriptions.
However, these studies only considered a limited set of speech
segments (i.e. vowels), or included speakers from a single lan-
guage background, respectively. Moreover, for our second
method, we take advantage of recent advances in neural (deep
learning) approaches (Baevski et al. 2020; Kahn et al. 2020),
which seem to improve over earlier neural techniques (e.g.,
Qian et al. 2017).

2. Materials
2.1. Datasets

We extracted audio samples from the Speech Accent Archive
(Weinberger 2015) and from another study on Dutch accented
English speech (Wieling, Blankevoort, et al. 2019). The Speech
Accent Archive covers a wide variety of language backgrounds,
where each speaker reads the same 69-word paragraph shown in
Example (1).

(1) Please call Stella. Ask her to bring these things with her
from the store: Six spoons of fresh snow peas, five thick
slabs of blue cheese, and maybe a snack for her brother
Bob. We also need a small plastic snake and a big toy
frog for the kids. She can scoop these things into three
red bags, and we will go meet her Wednesday at the train
station.

In line with Wieling, Bloem, et al. (2014), we selected 280
speech samples of non-native English speakers from 99 differ-
ent language backgrounds as our target speakers dataset, and
115 speech samples of U.S.-born L1 speakers as our reference
native speakers dataset. The target speakers dataset was se-
lected based on the perceptual evaluation data available (Wiel-
ing, Bloem, et al. 2014). We decided not to rely on a single
reference native speaker, as the native English raters also had
different regional backgrounds. For comparison, we also in-
clude the results of Wieling, Bloem, et al. (2014) regarding the

2MFCC-based model: https://github.com/Bartelds/
acoustic-distance-measure. Neural model: https://
github.com/Bartelds/neural-acoustic-distance
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transcription-based difference.
The second dataset contains speech samples from native

speakers of Dutch, and is therefore used to investigate whether
our methods can also differentiate between smaller accent dif-
ferences. These speakers were presented with the same para-
graph used for the Speech Accent Archive, but they only read
the first two sentences aloud. These recordings were collected
at a science event held at the Dutch music festival Lowlands
(Wieling, Blankevoort, et al. 2019). We included 62 speech
samples of sober participants that exclusively had Dutch as their
native language. For comparison, we phonetically transcribed
the pronunciations and calculated the transcription-based dif-
ferences (i.e. using the Levenshtein distance; Wieling, Bloem,
et al. 2014) on the basis of these transcriptions.

2.2. Perceptual data

We evaluate our methods by using human ratings of native-
likeness. We choose this evaluation procedure, because it is
frequently used in previous work to evaluate accentedness in
speech (Koster and Koet 1993; Munro 1995; Magen 1998;
Munro and Derwing 2001).

The native-likeness ratings for the Speech Accent Archive
speech samples were collected by Wieling, Bloem, et al. (2014).
An online questionnaire was created where 1143 native U.S.-
born speakers of English rated the accentedness of at most 50
speech samples on a 7-point Likert scale.

Native-likeness ratings for the speech recordings of the
Dutch speakers data were provided by a different group of na-
tive English speakers (Offrede et al. 2020). In total, 115 partic-
ipants rated the accent strength of target samples on a 5-point
Likert scale using an online questionnaire similar to that of
Wieling, Bloem, et al. (2014).

The native-likeness scores given to each target non-native
speaker from both datasets are averaged. In this way, we obtain
a single measure of similarity with native English speech for
each non-native speaker.

3. Methods
3.1. Mel-frequency cepstral coefficients

For each target and reference audio sample from both datasets,
we compute 39-dimensional MFCCs. These 39 dimensions in-
clude 12 cepstral coefficients and a single energy coefficient in
each frame together with their first and second order derivatives.
The coefficients are computed with a 25 ms sliding window and
a stride of 10 ms. Speaker-based cepstral mean and variance
normalization is used to reduce the influence of noise by ap-
plying a linear transformation to the coefficients of the MFCC
feature representations.

3.2. Wav2vec 2.0

The wav2vec 2.0 approach consists of a convolutional en-
coder, a Gumbel Softmax quantizer, and a 24 layer Transformer
model. This model is trained as a single end-to-end model such
that the encoder outputs are optimized for use in the Trans-
former. During pre-training on the large unlabeled Librispeech
dataset (Panayotov et al. 2015), the objective was a contrastive
task where the model had to predict spans of randomly masked
frames with the full audio fragment as context. Representations
can be extracted from the encoder (512 dimensions), the quan-
tizer (768 dimensions), or the 24 Transformer layers (1024 di-
mensions). Previous work has found that Transformer layers

can iteratively add information to the feature representations,
while information may be lost in the final layers of the model
(Tenney, Das, and Pavlick 2019). We therefore investigate the
relation between the different Transformer layers, and subse-
quently select the best performing layer for extracting feature
representations based on (a development set of) 25% of the
Speech Accent Archive dataset.

3.3. Transcription-based approach

The phonetic transcriptions for the Speech Accent Archive
dataset were obtained from Wieling, Bloem, et al. (2014). For
the Dutch speakers dataset, the audio samples were phoneti-
cally transcribed by a single transcriber using the International
Phonetic Alphabet. The phonetic transcription-based pronun-
ciation differences are calculated using the adjusted Leven-
shtein distance algorithm of Wieling, Margaretha, and J. Ner-
bonne (2012), which is currently the best performing phonetic
transcription-based method.

3.4. Quantifying pronunciation differences

We compute acoustic-only pronunciation differences by com-
paring the target non-native samples from both datasets to the
115 reference native samples. To include only comparable seg-
ments of speech, we automatically time-align the speech sam-
ples with a word-level orthographic transcription obtained from
the Penn Phonetics Lab Forced Aligner (Yuan and Liberman
2008). After the extraction of the acoustic features, we use the
time alignments to compare pronunciations of the same word
(by two speakers) using DTW. The word-based pronunciation
differences are then averaged to determine the pronunciation
difference between a target non-native speaker and a reference
native speaker. The difference between the pronunciation of a
non-native speaker and native English speech is computed by
averaging the pronunciation differences between the non-native
speaker and set of native speakers from the reference dataset.
The performance of our methods is evaluated by computing the
Pearson correlation between the produced acoustic distances
and the averaged human judgments of native-likeness for the
target non-native samples. The transcription-based pronuncia-
tion difference from native English is measured similarly to the
setup described for computing the acoustic-only pronunciation
differences (but instead of DTW, the adjusted Levenshtein dis-
tance algorithm is used).

4. Results
4.1. Investigating transformer layers

We compute the Pearson correlation between the acoustic dis-
tances on the basis of the individual Transformer layers and
the averaged human native-likeness ratings using the Speech
Accent Archive development dataset. We evaluate the perfor-
mance of the best performing Transformer layer on the full
dataset, but excluding the development set (i.e. the test set) to
prevent overfitting. These best performing layers are also used
to compute the final results on the Dutch speakers dataset.

In Figure 1, we observe relatively stable correlations be-
tween layers 9 and 18 (ranging between r = �0.85 and
r = �0.87), with the highest correlation for layer 10 (r =
�0.87, p < 0.001). Evaluation of layer 10 on the test set
(i.e. the full data, excluding the evaluation set) a shows a cor-
relation of r = �0.85 (p < 0.001), which is highly similar to
the correlations calculated on the development set.
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Figure 1: Pearson correlation coefficients between acoustic dis-
tances and human native-likeness judgments for different Trans-
former layers in the wav2vec 2.0 model. The vertical dotted
line marks the best performing layer chosen on the basis of the
25% development set of the Speech Accent Archive data.

4.2. Model performance

Table 1 shows the results of the different approaches. We ob-
serve that wav2vec 2.0 achieves the best performance for
the Speech Accent Archive dataset (r = �0.85, p < 0.001).
For comparison with the other approaches, this correlation was
computed on the basis of the complete dataset (i.e. including the
evaluation set), as the correlation on the test set was not different
from the results on the basis of the full dataset. The modified
z-statistic of Steiger (1980) indicates that this correlation is a
significant improvement over the results obtained using MFCCs
(z = 7.69, p < 0.001) and the adjusted Levenshtein distance
of Wieling, Bloem, et al. (2014) (z = 4.31, p < 0.001).

Results computed on the basis of the pronunciations of
the native Dutch speakers also show a strong performance of
wav2vec 2.0 (r = �0.70, p < 0.001). For this dataset,
we find a significant improvement over the use of MFCCs
(z = 3.78, p < 0.001), but there is no (significant) difference
compared to using the adjusted Levenshtein distance.

Table 1: Pearson correlation coefficients r between human
native-likeness ratings, and computed differences using
MFCCs, wav2vec 2.0, and the adjusted Levenshtein
distance, both for the Speech Accent Archive dataset (SAA)
and native Dutch speakers dataset (DSD). All correlations are
significant at the p < 0.001 level.

Model SAA DSD

MFCCs -0.71 -0.34
wav2vec 2.0 -0.85 -0.70

Adjusted LD -0.77 -0.70

5. Discussion and conclusion
We investigated and compared two acoustic-only methods to
compute pronunciation differences between non-native and na-
tive speakers of English. We evaluated the results by comparing

the acoustic differences to phonetic transcription-based pronun-
ciation differences and human judgments of native-likeness.

We found that a time-consuming and labor intensive pho-
netic transcriptions process can be omitted when a (language-
specific) wav2vec 2.0 model is available. Furthermore, we
demonstrated that Transformer-based neural speech represen-
tations provide a more reliable and accurate representation of
pronunciation variation compared to 39-dimensional MFCCs.

Even though wav2vec 2.0 performed strongly on the
Speech Accent Archive dataset, we found no significant im-
provement over a transcription-based difference method when
using the native Dutch speakers dataset. While the pronuncia-
tions from this dataset were relatively similar, the human per-
ceptual ratings were also provided using a less detailed (i.e. 5-
point) Likert scale than the one that was used for the Speech
Accent Archive accent ratings (i.e. 7-point Likert scale). This
may have had an effect on distinguishing these two pronuncia-
tion difference measures regarding human performance.

While the architecture of wav2vec 2.0 was designed for
improving performance in the domain of transforming speech
to text, we show that speech representations extracted from the
hidden Transformer layers can also be successfully applied for
investigating pronunciation variation. Despite our promising
results, wav2vec 2.0 models are currently only available
for English. To create such models for other languages, large
amounts of data and computing resources need to be available.
To compute acoustic-only pronunciation differences when these
are not available, the language-independent MFCC method can
be used as an alternative. Future work should explore whether
the existing wav2vec 2.0 models could be adapted to other
(low-resource) languages for modeling speaker variation.
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