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WARNING!

Do not believe anything I say!

I am a musician, not a philosopher!

Only a fool would trust a musician 

about philosophy!
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… on the other hand …

I was raised by a philosopher

I am married to a philosopher

I was kicked out of philosophy 

grad. school by a philosopher.
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… on the other hand …

When it comes to the mathematics 

of music I have some claim to 

knowledge …



THE ERAS

Metaphysical Pythagoreanism (~500 BCE–)

Enlightenment Pythagoreanism (~1700–)

 

Categorical Pythagoreanism (~1945–)

http://dmitri.tymoczko.com

human beings are directly sensitive to number

our relation to number is mediated by continuous spaces

the world is structured by simple ratios and shapes

the world is structured by differential equations

continuity is inessential

deeper and more abstract patterns of reasoning 

crossing conceptual boundaries



I am going to illustrate each era with 
reference to the consonance of the perfect 

fifth.
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FIRST ERA



PYTHAGORAS (PHILOLAUS?)

• Heard some blacksmiths pounding hammers?

• Conducted experiments with bronze disks?

• Reinvented the monochord?
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… discovered that consonance was 

connected to whole-number ratios …

“the first empirically secure mathematical description of 

a physical fact” (Wikipedia)



METAPHYSICAL PYTHAGOREANISM

• No theory of how whole numbers produce 
the sensation of consonance.

– A direct or unmediated sensitivity to numerical 
proportion

– Led to a metaphysical picture emphasizing 
numerical simplicity

• musica universalis

• circular planetary orbits

• the theory of forms?
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(VERY OBVIOUS) PROBLEMS

• A simple ratio is a linear relationship with small 
integer coefficients

 ix = jy    for small integers i, j
• Such relationships are just a small part of science 

and math.
• There are lots of relationships with

– noninteger coefficients (c = d)
– exponents (a = r2)

• To be sure, many musicians still seem to 
subscribe to metaphysical Pythagoreanism:
– many seem to think there is something special about 

small-number ratios like 7:4
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SECOND ERA



ENLIGHTENMENT PYTHAGOREANISM

• Our interaction with numbers is mediated by 
continuous spaces and differential equations.

• It is the equations that are mathematically 
simple rather than the numerical quantities in 
themselves.

• The biggie:

𝑑 = 𝑣𝑡 +
1

2
𝑎𝑡2
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ENLIGHTENMENT PYTHAGOREANISM

• Our interaction with numbers is mediated by 
continuous spaces and differential equations.

• It is the equations that are mathematically 
simple rather than the numerical quantities in 
themselves.

• Kepler’s “harmonic law.”

      𝑇 ∝ 𝑟3/2 
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same ratio as perfect fifth!



LAGRANGE/HAMILTON

• The state of the entire world (or any isolated 
subsystem of the world) can be represented 
as a point in a configuration space.

• That point moves smoothly along a trajectory 
determined by differential equations whose 
general form is fixed.

• Physical theory is fundamentally continuous
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SOME HISTORY

• Enlightenment Pythagoreanism:
– “The book of nature is written in 

the language of mathematics.”

– Galileo Galilei (1520–1591)

– Equations not numbers.

– Solution spaces not points.

• Less known:
– Galileo’s father Vincenzo was a 

famous composer/theorist.

– The idea of mathematizing nature 
descends through him from 
Pythagoras!
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INTERESTING QUESTION

• Why are physical equations simple?

• That is, why do they tend to involve small 
exponents?
– arise from our approximations

– stability theorems in dynamical systems

– we can’t quantize equations with more than two 
time derivatives

– …

• Unlike metaphyiscal Pythagoreanism, we 
have some answers.
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ENLIGHTENMENT PYTHAGOREANISM: 
TWO CASE STUDIES

1. Where does consonance come from?

2. How is musical knowledge geometrical?
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CASE STUDY 1

• Consonance is not produced by numbers 
themselves.

• Instead, it arises through a process of 
dissonance minimization that depends on the 
structure of a sound, which in turn depends 
on the physics of the instrument involved.

• It is a minimum in a continuous space.
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FOURIER/HELMHOLTZ/SETHARES

• A vibrating body produces partials 
according to its detailed physical 
construction.

• Consonance is produced when the 
partials of two sounds coincide (or are 
sufficiently distant so as not to interfere).

• Familiar instruments vibrate 
harmonically:
– f, 2f, 3f, 4f, …

• The consonance of whole-number 
frequency ratios is due to the spectrum 
of the sound.
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FOURIER/HELMHOLTZ/SETHARES

• Therefore, nonharmonic sounds 
would sound consonant at 
different, non-whole-number 
ratios.

– familiar scale, harmonic partials

– familiar scale, partials stretched by a 
factor of 2.1

– stretched scale, stretched partials

– stretched scale, familiar partials
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DISSONANCE CURVES (SETHARES)
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DISSONANCE CURVES (SETHARES)
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harmonic spectrum 8tet spectrum



SO …

• Pythagoras didn’t see the whole picture.

• Simple ratios are a byproduct:

– consonant ratios are determined by a sound’s 
spectrum (overtone structure)

– many Western instruments produce harmonic 
spectra, leading to simple-ratio consonance

– other instruments (bells, metallophones) produce 
nonharmonic spectra

– these instruments do not minimize dissonance at 
simple ratios.
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CASE STUDY 2

• Pitch is a continuous one-
dimensional space.

• An ensemble of instruments 
occupies a point in a higher-
dimensional configuration space.
– The product of many copies of pitch 

space.

• Symmetries allow us to fold up 
Euclidean space, creating a variety 
of quotient spaces with interesting 
geometrical features.
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SYMMETRY AND GEOMETRY

• The Octave symmetry turns lines into 
circles

• The Permutation symmetry adds 
mirrors 

• The Transposition symmetry subtracts a 
dimension

• The Inversion symmetry adds mirrors

• Loops in these quotient spaces 
(“orbifolds”) represent musical 
transformations connecting an object to 
itself
– “dual” to symmetries in a way to be 

described

http://dmitri.tymoczko.com



EXAMPLE: OCTAVE SHIFTS
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C5

C

C4

C6

C3 C4 C6C5



EXAMPLE: OCTAVE SHIFTS
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C5

C

C4

C6

C3 C4 C6C5

Line into circle!



EXAMPLE: PERMUTATION
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x

(a, b)
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y

x

(a, b)

y

x =
 –y
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x =
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 y



EXAMPLE: PERMUTATION
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x

(a, b)
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y
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x =
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Add mirror!



EXAMPLE: OCTAVE SHIFTS AND PERMUTATION
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EXAMPLE: OCTAVE SHIFTS AND PERMUTATION
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EXAMPLE: OCTAVE SHIFTS AND PERMUTATION
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Circle () and mirror ()!

a

a
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(a) (b)



MUSICAL KNOWLEDGE AS GEOMETRICAL KNOWLEDGE

• Musicians learn their way 
around complicated, 
continuous geometrical 
quotient spaces.

• Often they exploit short-
distance loops in these 
spaces.

• The structure of these 
spaces helps explain many 
features of Western 
music.
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MUSICAL KNOWLEDGE AS GEOMETRICAL KNOWLEDGE

• By exploring the structure 
of these spaces we can 
uncover the conditions of 
possibility of certain types 
of musical organization
– in particular: combining 

harmony and melody.

• Musical knowledge is 
knowledge of a 
continuous space of 
possibilities.
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CONFESSION

• For many years I believed continuity was 
absolutely essential to these models.

– I could be quite forceful in advocating for the 
importance of continuity in musical modeling.

• This was wrong.

– Continuity is completely irrelevant.

• There is a pretty big gap between “absolutely 
essential” and “completely irrelevant”!

http://dmitri.tymoczko.com
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THIRD ERA



CATEGORY THEORY

• Invented by Eilenberg 
and Mac Lane in 1945.

• Motivated by the 
desire to describe 
connections across 
mathematical areas
– e.g. between the 

continuous world of 
topology and the 
discrete world of 
number theory.
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Mac Lane      Eilenberg



CATEGORY THEORY

• Developed by Alexander 
Grothendieck

– used it to radically transform 
the foundations of algebraic 
geometry

• William Lawvere connected 
category theory to 
traditional themes of 
philosophy.
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LAWVERE

The technical advances forged by 
category theorists will be of value to 

dialectical philosophy, lending 
precise form with disputable 

mathematical models to ancient 
philosophical distinctions such as 

general vs. particular, objective vs. 
subjective, being vs. becoming, 
space vs. quantity, equality vs. 

difference, quantitative vs. 
qualitative etc. 
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LAWVERE (2)

Here by “rig” we mean a structure like a 
commutative ring except that it need not have 

negatives, and the name of Burnside was 
suggested by Dress to denote the process of 

abstraction […] which Cantor learned from 
Steiner: the isomorphism classes of objects from 

a given distributive category form a rig when 
multiplied and added using product and 

coproduct; the algebra of this Burnside rig partly 
reflects the properties of the category and also 
partly measures the spaces in it in a way which 

(as suggested by Mayberry) gives deeper 
significance to the statement attributed to 

Pythagoras: “Each thing is number.”
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CATEGORY THEORY: GREATEST HITS

• From 1940–1960 mathematicians noticed 
analogues to topological phenomena, arising 
in the discrete context of number theory.

• Q: what “space” is formed by the integers?
– what are its points?

• Grothendieck:
– the integers are a scheme

– their “points” are the prime numbers!

• This is a radical rethinking of the foundational 
concept of “space.”
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CATEGORY THEORY: GREATEST HITS

• Set theory and logic can be reformulated in 
the language of category theory.

• Many categories have their own intrinsic 
logic.

– the category of sets (Set) has a classical logic

– the category of topological spaces (Top) has an 
intuitionistic logic!

• Proof can be modeled as a kind of motion 
through a space.

• Logic is fundamentally topological!
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PERSONAL OPINION

• As far as I can tell, category theory seems 
relevant to a wide range of philosophical 
questions.

• Philosophers seem to lag behind in their 
knowledge of the subject.

– still often think in old-fashioned (set-theoretical) 
terms
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THE BIG PICTURE

• A lot of phenomena we know from topology 
(and more generally, the continuous world) 
have discrete analogues.

• Category theory allows us to extract the deep 
logic from its original, continuous context.

• Topology is more universal than you think.

• Somewhat surprisingly, this is relevant to 
music theory.
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WARM UP EXAMPLE

• Suppose we start with a Pythagorean space of 
acoustically pure octaves and fifths.
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WARM UP EXAMPLE

• This is an infinite 2D plane.
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WARM UP EXAMPLE

• “Pythagorean pitch space”
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WARM UP EXAMPLE

• It contains an infinite number of points in 
every octave.
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WARM UP EXAMPLE

• You cannot make a (linear) keyboard out of 
this space (with finite keys/octave)!
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WARM UP EXAMPLE

• We can make a keyboard capable of playing 
all* of these notes by forming a quotient 
space.
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* in a

given

octave

range



WARM UP EXAMPLE

• We declare that these two notes, which sound 
very similar, correspond to the same key.
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WARM UP EXAMPLE

• We interpret pairs of keys as picking out the 
shortest* horizontal path in the space.

http://dmitri.tymoczko.com

* defaulting

to rightward

motion in 

the case of 

ties



WARM UP EXAMPLE

• For the purposes of illustration we can also 
glue together octave-related pitches.
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* defaulting

to rightward

motion in 

the case of 

ties



WARM UP EXAMPLE

• Simplifies the geometry to one dimension.
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* defaulting

to rightward

motion in 

the case of 

ties



PYTHAGOREAN PITCH-CLASS SPACE

• What results is a quotient 
space
– structurally analogous to 

those of voice-leading 
geometry.

– but fundamentally 
discrete

• Loops in this space 
represent comma shifts 
rather than octave shifts.

• Pythagorean pitch-class 
space.
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PYTHAGOREAN PITCH-CLASS SPACE

• This is an example of a 
category-theoretical 
discovery:

– familiar topological 
concepts (quotient space) 
have discrete analogues

• Musicians inhabit this 
space!

– singers, string players
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PYTHAGOREAN PITCH-CLASS SPACE

• Category theory models a 
fundamental mechanism of 
concept formation:
– the construction of 12 finite 

pitch-categories (“pitch 
classes”) from the infinite 
2D space of Pythagorean 
pitches.

• Prerequisite to
– conventional notation
– the construction of 

conventional keyboard 
instruments
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GOAL

• We want to generalize this example.

• We want a universal theory of symmetry.

– applicable whenever any symmetry group acts on 
any set or space

– giving us access to familiar toplogical (or logical) 
concepts like quotient space, covering space, 
homotopy group, etc.

• This can be considered a topological model of 
concept formation.

– possibly relevant to understanding AI
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IN A PICTURE
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symmetry

group



OBSTACLE
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OBSTACLE
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PROBLEM
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Standard mathematical 

techniques do not allow us to 

interpret the meaning of paths in 

a generalized quotient space, at 

least not in a way that is useful 

for musicians or philosophers.



METAPHYSICS OF PERMUTATION

• Suppose I play the three notes C4, 
E4, G4 using sine waves at the same 
volume centered in the stereo field.

• Now I play those same notes again.

• Q: did I permute them?

• A: huh?
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THE PERMUTATION PRINCIPLE

• PP: for a permutation to be conceivable, 
we need multiple ways of identifying 
objects:

– content plus some additional attribute

– spatial position, instrumental timbre, 
loudness, temporal order, octave

• In other words, for a permutation to be 
conceivable we need both

– elements (“content,” notes)

– attributes (“data,” loudness, timbre, etc.)

http://dmitri.tymoczko.com



THE PERMUTATION PRINCIPLE

• Attributes generalize the notion of a 
coordinate system.
– or perhaps: substance/accident

• Permutations are only conceivable if we have 
a coordinatized space: a mapping between 
objects and coordinates.

• A very general, mathematical “principle of 
relativity.”

• As we will see, they link the subjective and 
the objective.
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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EXAMPLE: PERMUTATIONS
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TWO KINDS OF TRANSFORMATION

• Element permutations provide an objective, 
observer-independent set of transformations 
on a space (“Cartesian”).

• Attribute permutations can be associated 
with a subjective, observer-relative 
perspective on the space 
(“transformational”).

• The presence of both attributes and elements 
allows us to define a generalized theory of 
symmetry.

http://dmitri.tymoczko.com



EXAMPLE: MAPS
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EXAMPLE: MAPS
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EXAMPLE: MAPS
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EXAMPLE: MAPS
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EXAMPLE: MAPS
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original:

“I am in central

Massachusetts,

facing north.”

“rotate 

my viewpoint

clockwise 

60 degrees”

“move forward

50 miles”

Coordinates can represent subject-

centered perspectives on a space.

The left and right actions 

correspond to objective and 

subjective transformations of the 

space.

These are isomorphic.

rotate

the map

clockwise

slide the

map east

original



UNIVERSALITY

• This structure is universal
– can be defined whenever any symmetry group 

acts on any set or space (= groupoid).

• Any symmetry group gives rise to a quotient 
space.
– loops in the quotient space represent a subjective 

perspective

– apply symmetries in reverse-chronological order

• Provides a geometrical model of a certain kind 
of concept-formation (generalization into 
categories)

http://dmitri.tymoczko.com



LAWVERE

The technical advances forged by 

category theorists will be of value 

to dialectical philosophy, lending 

precise form with disputable 

mathematical models to ancient 

philosophical distinctions such as 

[…]objective vs. subjective.
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CONECTIONS TO PHILOSOPHY

• Elisabeth Camp (my spouse) is 
a prominent English-speaking 
philosopher working on maps 
and perspectives.

• Indexicality is a key 
component of Camp’s work.
– requires more than just a space
– a privileged location and 

direction (“you are here, 
looking there”)

– “spatial perspective” = 
observer-centered distances 
and directions.
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CONNECTIONS TO AI

• In music and philosophy, we deal with 
quotients of surveyable, low-dimensional 
spaces.

• It is possible that AI works because it is 
forming quotients in extremely high-
dimensional spaces far beyond the reach of 
human comprehension.
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METAPHORICAL PICTURE
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Poland Warsaw

Slovakia Bratislava

Hungary Budapest

Serbia Belgrade

Greece

10 objects, 100 arrows 5 objects, 50 arrows

Athens

Poland

(Warsaw)

Slovakia

(Bratislava)

Hungary

(Budapest)

Serbia

(Belgrade)

Greece

(Athens)

QUOTIENT



Thank you!
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Videos, software, and more
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