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Jason Eisner—Synopsis of Past Research

A central focus of my work has been dynamic programming for NLP.

I design algorithms for applying and learning statistical models that
exploit linguistic structure to improve performance on real data.

Parsing: I devised fundamental, widely-used dynamic programming algorithms for dependency gram-
mars, combinatory categorial grammars, and lexicalized CFGs and TAGs. They allow parsing to remain
asymptotically efficient when grammar nonterminals are enriched to record arbitrary sequences of gaps [3]
or lexical headwords [4,6,7,8,9]. Recently I showed that they can also be modified to obtain accurate,
linear-time partial parsers [10].

In statistical parsing, I was one of the first researchers to model lexical dependencies among headwords
[1,2], the first to model second-order effects among sister dependents [4,5], and the first to use a generative
lexicalized model [4,5], which I showed to beat non-generative options. That successful model had the top
accuracy at the time (equalling Collins 1996) and initiated a 5-year era dominated by generative, lexicalized
statistical parsing. The most accurate parser today (McDonald 2006) continues to use the algorithm of [4,9]
for English and other projective languages.

[1] A Probabilistic Parser and Its Application (1992), with Mark Jones
[2] A Probabilistic Parser Applied to Software Testing Documents (1992), with Mark Jones
[3] Efficient Normal-Form Parsing for Combinatory Categorial Grammar (1996)
[4] Three New Probabilistic Models for Dependency Parsing: An Exploration (1996)
[5] An Empirical Comparison of Probability Models for Dependency Grammar (1996)
[6] Bilexical Grammars and a Cubic-Time Probabilistic Parser (1997)
[7] Efficient Parsing for Bilexical Context-Free Grammars and Head Automaton Grammars (1999),
with Giorgio Satta
[8] A Faster Parsing Algorithm for Lexicalized Tree-Adjoining Grammars (2000), with Giorgio Satta
[9] Bilexical Grammars and Their Cubic-Time Parsing Algorithms (2000)
[10] Parsing with Soft and Hard Constraints on Dependency Length (2005), with Noah Smith

Grammar induction and learning: Statistical parsing raises the question of where to get the
statistical grammars. My students and I have developed several state-of-the-art approaches.

To help EM avoid poor local optima, my students and I have demonstrated the benefit of various annealing
techniques [17,23,24,25] that start with a simpler optimization problem and gradually morph it into the
desired one. In particular, initially biasing toward local syntactic structure [10] has obtained the best known
results in unsupervised dependency grammar induction across several languages [24]. We have also used
annealing techniques to refine grammar nonterminals [25] and to minimize task-specific error in parsing and
machine translation [23].

Our other major improvement over EM is contrastive estimation [18,19], which modifies EM’s problem-
atic objective function (likelihood) to use implicit negative evidence. The new objective makes it possible
to discover both part-of-speech tags and dependency relations where EM famously fails. It is also more
efficient to compute for general log-linear models.
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For finite-state grammars, I introduced the general EM algorithm for training parametrically weighted
regular expressions and finite-state machines [12,13], generalizing the forward-backward algorithm [14].

When context-free grammar rules can be directly observed (in annotated Treebank data), I have developed
a statistical smoothing method, transformational smoothing [11,15,16], that models how the probabilities
of deeply related rules tend to covary. It discovers this linguistic deep structure without supervision. It
also models cross-lexical variation and sharing, which can also be done by generalizing latent Dirichlet
allocation [22].

Recently I proposed strapping [20], a technique for unsupervised model selection across many runs of
bootstrapping. Strapping is remarkably accurate; it enables fully unsupervised WSD to beat lightly super-
vised WSD, by automatically selecting bootstrapping seeds far better than an informed human can (in fact,
typically it picks the best seed of 200). I am now working on further machine learning innovations to reduce
linguistic annotation cost, a major bottleneck in real-world applications.

[11] Smoothing a Probabilistic Lexicon Via Syntactic Transformations (2001)

[12] Expectation Semirings: Flexible EM for Finite-State Transducers (2001)

[13] Parameter Estimation for Probabilistic Finite-State Transducers (2002)

[14] An Interactive Spreadsheet for Teaching the Forward-Backward Algorithm (2002)

[15] Transformational Priors Over Grammars (2002)

[16] Discovering Syntactic Deep Structure via Bayesian Statistics (2002)

[17] Annealing Techniques for Unsupervised Statistical Language Learning (2004), with Noah Smith

[18] Contrastive Estimation: Training Log-Linear Models on Unlabeled Data (2005), with Noah Smith

[19] Guiding Unsupervised Grammar Induction Using Contrastive Estimation (2005), with Noah Smith

[20] Bootstrapping Without the Boot (2005), with Damianos Karakos

[21] Unsupervised Classification via Decision Trees: An Information-Theoretic Perspective (2005),
with Karakos et al.

[22] Finite-State Dirichlet Allocation: Learned Priors on Finite-State Models (2006), with Jia Cui

[23] Minimum-Risk Annealing for Training Log-Linear Models (2006), with David Smith

[24] Annealing Structural Bias in Multilingual Weighted Grammar Induction (2006), with Noah Smith

[25] Better Informed Training of Latent Syntactic Features (2006), with Markus Dreyer

Machine translation: Extending parsing techniques to MT, one would like to jointly model the
syntactic structure of an English sentence and its translation. I have designed flexible models [26,27,28]
that can handle imprecise (“free”) translations, which are often insufficiently parallel to be captured by
synchronous CFGs (e.g. ITGs).

A far less obvious MT-parsing connection emerges from the NP-hard problem of reordering the source-
language words in an optimal way before translation. I have developed powerful iterated local search
algorithms for such NP-hard permutation problems (as well as classical NP-hard problems like the TSP)
[29]. The algorithms borrow various parsing tricks in order to explore exponentially large local neighbor-
hoods in polytime.

Multilingual data is also used in some of my other recent work and that of my students [10,20,23,24,61,62,63].

[26] Learning Non-Isomorphic Tree Mappings for Machine Translation (2003)

[27] Natural Language Generation in the Context of Machine Translation (2004), with Haji¢ et al.

[28] Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Dependencies (2006),
with David Smith

[29] Local Search with Very Large-Scale Neighborhoods for Optimal Permutations in Machine Translation
(2006), with Roy Tromble
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The Dyna language (Www.dyna.org): My new programming language, Dyna [30,31],
makes it much faster and easier to build NLP systems and run full-scale experiments. It encapsulates and
generalizes many years of parser-building experience. In Dyna, one can express dynamic programs and
related computational schemes (e.g., [11,34]) as small sets of "Horn equations.” Their efficiency can be
further improved by program transformations that derive new algorithms from old ones [32,31]. Our
prototype Dyna compiler turns these short declarative specifications into efficient C++ classes, which in-
stantiate my generalized algorithms for update propagation and automatic differentiation [31,11]. To help
you understand and improve systems written in Dyna, we have also built a visual debugger, Dynasty, that
does dynamic hypergraph layout and lets you explore huge parse forests and proof forests [33].

We have used prototypes of these tools in at least 15 published papers and 2 undergraduate classes. We
are now designing many improvements to their expressiveness and efficiency (e.g., generalizations of many
lower-level implementation tricks; machine learning of effective prioritization and pruning functions).

[30] Dyna: A Declarative Language for Implementing Dynamic Programs (2004),
with Eric Goldlust and Noah Smith
[31] Compiling Comp Ling: Weighted Dynamic Programming and the Dyna Language (2005),
with Eric Goldlust and Noah Smith
[32] Program Transformations for Optimization of Parsing Algorithms and Other Weighted Logic Programs
(2006), with John Blatz
[33] Visual Navigation Through Large Directed Graphs and Hypergraphs (2006), with several undergraduates
[34] Dynamical-Systems Behavior in Recurrent and Non-Recurrent Connectionist Nets (1990)

Finite-state machines: I published the most general algorithms for both training [12,13] and
minimization [35] of weighted finite-state machines, as well as some interesting theoretical limitations on
minimization [35] and on treating multi-tape machines as infinite relational databases [37,38]. I have also
developed new finite-state approaches in several applied contexts, including machine translation (local
constraints) [29], information extraction (efficient global constraints) [39], user interfaces [37], cryptanalysis
[40], and computational phonology [42,47,48]. We are designing a flexible, trainable, efficient finite-state
toolkit to be built in Dyna [31,32,33].

[35] Simpler and More General Minimization for Weighted Finite-State Automata (2003)

[36] Radiology Report Entry with Automatic Phrase Completion Driven by Language Modeling (2004),
with John Eng

[37] A Note on Join and Auto-Intersection of n-ary Rational Relations (2004), with Kempé et al.

[38] A Class of Rational n-WFSM Auto-Intersections (2005), with Kempé et al.

[39] A Fast Finite-State Relaxation Method for Enforcing Global Constraints on Sequence Decoding (2006),
with Roy Tromble

[40] A Natural-Language Approach to Automated Cryptanalysis of Two-Time Pads (2006), with Mason et al.

Computational phonology and finite-state methods: 1 developed the leading formal-
ization [41,42,44] of allowable constraints and representations in Optimality Theory (the main approach to
phonology since the early 1990’s [45]). This formalization, Primitive OT, permits finite-state computation
[42] and has led to a new, confirmed cross-linguistic prediction [43]. I have also proposed a modification
to Optimality Theory that further improves its computational and linguistic properties [47]. I have pub-
lished key algorithms and complexity theorems on all three of the major computational problems raised by
Optimality Theory: generation [42,47,48], comprehension [47,48], and learning [46].
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(41]
[42]
[43]
[44]
[45]
[40]
[47]
(48]

What Constraints Should OT Allow? (1997)

Efficient Generation in Primitive Optimality Theory (1997)

FootForm Decomposed: Using primitive constraints in OT (1997)

Doing OT in a Straitjacket (1999)

Review of Optimality Theory by René Kager (2000)

Easy and Hard Constraint Ranking in Optimality Theory: Algorithms and Complexity (2000)
Directional Constraint Evaluation in Optimality Theory (2000)

Comprehension and Compilation in Optimality Theory (2002)

Miscellaneous research: 1 have done occasional work on linguistic semantics [50], information
extraction [39,51], text compression [56], collaborative filtering and online commerce [52,53,54,55], and
even practical voting systems [49].

[49]
(50]
[51]
(52]

(53]
[54]

[55]
[56]

Indirect STV Election: A Voting System for South Africa (1991)

‘All’-less in Wonderland? Revisiting any (1995)

Description of the University of Pennsylvania entry in the MUC-6 competition (1995)

System for Generation of Object Profiles for a System for Customized Electronic Identification of
Desirable Objects (1995), with Herz et al.

System for Generation of User Profiles for a System for Customized Electronic Identification of
Desirable Objects (1995), with Herz et al.

Pseudonymous Server for System for Customized Electronic Identification of Desirable Objects (1995),
with Herz et al.

System for the Automatic Determination of Customized Prices and Promotions (1996), with Herz et al.
A Lempel-Ziv Data Compression Technique Utilizing a Dictionary Pre-Filled with Frequent Letter
Combinations, Words and/or Phrases (1996), with Reynar et al.

Introductory papers: Ilike to explain things: why computational linguistics is neat [59] and why
it needs statistics [60], HMMs and forward-backward reestimation [14], the pros and cons of the Turing test
[57], and how to design cool combinatorial optimization algorithms [58].

[57]
(58]
[59]
(60]

Cognitive Science and the Search for Intelligence (1991)

State-of-the-Art Algorithms for Minimum Spanning Trees: A Tutorial (1997)

The Science of Language: Computational Linguistics (2000)

Introduction to the Special Section on Linguistically Apt Statistical Methods (2002)

Papers by students: My students have also teamed up to publish some papers without me.

[61]
(62]

[63]

Bilingual Parsing with Factored Estimation: Using English to Parse Korean (2004),
by David Smith and Noah Smith

Context-Based Morphological Disambiguation with Random Fields (2005),

by Noah Smith, David Smith, and Roy Tromble

Vine Parsing and Minimum Risk Reranking for Speed and Precision (2006),

by Markus Dreyer, David Smith, and Noah Smith
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