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Abstract modeling pose different challenges and are evaluated differ-
ently. We regard traditional natural language grammar induc-

We describe a novel training criterion for proba- tion evaluated against a treebank (also known as unsupervised
bilistic grammar induction modelgontrastive es- parsing) agust another taskwe call it MATCHLINGUIST.
timation [Smith and Eisner, 20Q5which can be A grammar induced for punctuation restoration or language
interpreted as exploitingmplicit negative evidence modeling for speech recognition might look strange to a lin-
and includes a wide class of likelihood-based ob-  guist, yet do better on those tasks. By the same token, tra-
jective functions. This criterion is a generaliza- ditional treebank-style linguistic annotations may not be the
tion of the function maximized by the Expectation- best kind of syntax for language modeling.
Maximization algorithm[Dempsteret al, 1977. But without fully-observed data, how might ortell a
CE is a natural fit fotog-linear models, which can learner to focus on one task or another? We propose that this
include arbitrary features but for which EM is com- is conveyed in the choice of an objective function that guides

putationally difficult. We show that, using the same a statistical learner toward the right kinds of grammars for
features, log-linear dependency grammar models  the task at hand. We offer a flexible class of “contrastive” ob-

trained using CE can drastically outperform EM- jective functions within which something appropriate may be
trained generative models on the task of match- designed for existing and novel tasks.

ing human linguistic annotations (theAVICHLIN- In this paper, we evaluate our learned models oxr tvH-
GUIST task). The selection of an implicit negative LiNGUIST, which is a crucial task for natural language en-

evidence class—a "neighborhood”—appropriate 1o gineering. Automatic natural language grammar induction
a given task has strong implications, but a good  \yoyid bridge the gap between resource limitations (anno-
neighborhood one can target the objective of gram- (416 treebanks are expensive, domain-specific, and language-
mar induction to a specific application. specific) and the promise of exploiting syntactic structure in
many applications. We argue thatdVicHL INGUIST, just like
. other tasks, requires guidance.
1 Introduction For example, MTCHLINGUIST is decidedly different

Grammars are formal objects with many applications. Theyfo™ the task that is explicitly solved by the Expectation-
become particularly interesting when they allow ambiguityM"JIXImlzatlon aIgonthm[lDemps.teret al, 1977]' Maxi-

(cf. programming language grammars), introducing the noMIZELIKELIHOOD. EM tries to f|t'the nhumerical parameters

tion that one grammar may be preferable to another for a pag’  (fixed) statistical model of hidden structure to the train-
ticular use. Given an induced grammar, a researcher could tr; 9 data. To recover tragmgnal or yseful syntactic structure,
to apply it cleverly to her task and then measure its helpfult iS N0t enough to maximize training data likelihopdar-

ness on that task. This paper turns that scenario around. "ol and Charniak, 1992nter alial, and EM is notorious for
mediocre results. Our results suggest that part of the reason

Given a task, our question is how to induce a grammar— M perf badly is that it off litt] id o th
from unannotated data—that is especially appropriate for th performs badly 1S thal It offers very littie guidance 1o the
task. Different grammars are likely to be better for differ- 'caMer- The alternative we proposeatrastive estimatian
ent tasks. In natural language engineering, for example, agt'S Within the same statistical modeling paradigm as EM, but
eneralizes it by defining a notion of learner guidance.

lications like automatic essay grading, punctuation correc? : S
D Y 9 g b Contrastive estimation makes use of a set of examples that

tion, spelling correction, machine translation, and language L oot .
are similar in some way to an observed examplen(@igh-

*This work was supported by a Fannie and John Hertz Foundaborhood’ but mostly perturbed or damaged in a particular

tion Fellowship to the first author and NSF ITR grant 1S-0313193Way. CE requires the learner to move probability mass to
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dorsed by the sponsors. The authors also thank colleagues at CL$®@0d. The neighborhood of a particular example is defined by
and two anonymous reviewers for comments on this work. theneighborhood functigrdifferent neighborhood functions



are suitable for different tasks and the neighborhood shouldltun et al, 2003, minimum exponential (boosting) loss

be designed for the task. [Collins, 2009, and maximum margifCrammer and Singer,
We note that our approach to this problem is couched ir2001. Yety; is unknown, so none of these supervised meth-

a parameter-centered approach to grammar induction. Weds apply. Typically one turns to the EM algoritHBemp-

assume the grammar to be learned is structurally fixed ansteret al,, 1977, which locally maximizes

allows all possible structures over the input sentences; our 5 5

task is to learn theveightsthat let the grammar disambiguate | [ » (X = | 9) =I>_» (X =z,Y =y| 9) (1)

among competing hypotheses. A different approach is to iy

focus on the hypotheses themselves and perform search MereX is a random variable over sentences &ni a ran-

that space and/or the space of grammars (see, e.g., Adriaa&g; : L :
m variable over parse trees (notation is often abbreviated,
[1993, Clark[2001], and van Zaanef2003). Those sys- eliminating the random variables). EM has figured heavily in

f:g‘rﬁgsgoliﬁﬁnsiﬂte'sﬂ,ﬁ tgfggéﬂzﬁscﬁ?gﬂgﬁaer: dgggjz?rZﬁeng%tt probabilistic grammar inductiofPereira and Schabes, 1992;
’ arroll and Charniak, 1992; Klein and Manning, 2002b;

ods (e.g., searching for substitutable subsequences). We w
not attempt to broadly formalize “guidance” here, noting only

o L ca
that it is ubiquitous.

We begin by motivating contrastive estimation and describ
ing it formally (§2). Central to CE is the choice of a con-
trastive neighborhood function. 183, we describe some
neighborhoods expected to be useful foxMHLINGUIST
and other tasks. We discuss the algorithms required for a

04. An often-used alternative to EM is a class of so-
lled Viterbi (or “winner-take-all”) approximations, which
iteratively find the most probable parge(according to the
‘current model) and then, on each iteration, solve a supervised
learning problem, training of).
Despite its frequent use, EM is not hugely successful at
Fgecovering the linguistic hidden structure . Meriald®94
g . ; ) : showed that EM was helpful to the performance of a tri-
Eg(\ﬁ'gn I(')f CE W'ﬂétn‘ese nelght;orhlo?;j?wgg dezcgbes gram HMM part-of-speech tagger only when extremely small
gr;mea(l.:rEmo eds atlge a n?hura t! (I)r d an t;:rr;_on- mounts of labeled data were available. The EM criterion
3?#?“63. ow LE avoids the mathematical anc compua_lon? quation 1) simply doesn’t correspond to the real merit func-
ifficulties presented by unsupervised estimation of log-linea ion. Further, even if the goak to maximize likelihood

models. We describe state-of-the-art results in dependenqy, ; in |anguage modeling). the surface upon which EM per-
grammar induction ir36, showing that a good neighborhood (ﬁor?ns hiIIcIigmbi?]g has ma%/ shallow IocaFl) maxinﬁé:har—p

choice can obviate the need for a clever initializer and can,.., 1993, making EM sensitive to initialization and there-
drastically outperform EM on MTCHLINGUIST. We ad- ¢y’ nreliable. This search problem is discussed in Smith

dress future directiong7) and concludesg). and Eisnef2004
L . . We suggest that part of the reason EM performs poorly is
2 Implicit Negative Evidence that it does not sufficiently constrain the learner’s task. EM

Natural language is a delicate thing. For any plausible sent€!lS the learner only to move probability mass toward the ob-
ervedz;, paired with anyy; the source of this mass is not

tence, there are many slight perturbations of it that will make>€VEC : . .
it implausible. Consider, for example, the first sentence ofpecified. We will consider a class of alternatives that make

this section. Suppose we choose one of its six words at rarf2XPlicit the source of the probability mass to be pushed to-
dom and remove it; odds are two to one that the resulting serfvard eachr;.
tence vylll be ungrammatical. Or, we could randomly choos 2 Anew approach: contrastive estimation
two adjacent words and transpose them; none of the results ) o
are valid conversational English sententeBhe learner we  OUr approach instead maximizes
describe here takes into account not only the observed posi- )
tive example, but a also set of similar examples that are dep- Hp (X =2 | X € N(z), 9) @)
recated as perhaps negative (in that they could have been ob- g
served but weren't). whereN(z;) C X is the class of negative example sentences

. . plus the observed sentencgitself. Note that the:’ € N(z;)
2.1 Learning setting are not treated as hard negative examples; we merely seek
Let # = (x1,z9,...), be our observed example sentences!0 move probability mass from them to the observedrhe

—

where each:; € X, and lety’ € Y be the unobserved cor- probability mass(z; | 6) attached to a single example is
rect parse fomi_ We seek a mode|, parameterizedé’)}guch found by marginalizing over hidden variables (E_quati.on 1)
that the (unknown) correct analysjs is the best analysis for  The negative example s&f depends on: and is written
2; (under the model). If;* were observed, a variety of op- N(z) to indicate that it is a functiorlN : X — 2*. In this
timization criteria would be available, including maximum Work, N(z) contains examples that are perturbationscof
(joint or conditional) likelihood estimation, maximum classi- and we call this set thaeeighborhoodof . We then refer
fication accuracs[\]uang and Katagiri, 1992maximumex- to N as the nelghborhood _funcylon and the o_ptlmlzatlon of
pectedclassification accuracfKlein and Manning, 2002a; Equation 2 asontrastive estimatio(CE). The neighborhood
may be viewed as a class mfiplicit negative evidencthat
Natural language is a thing delicate” might be valid in poetic is fully determined by the example and may help to highlight
speech. what about the example the model should try to predict.



CE seeks to move probability mass from the neighborhoodhow several other probabilistic learning criteria are examples
of an observed sentenaeto z itself. The learner hypothe- of CE; see also Table 1.
sizes that good models are those which discriminate an ob- ]
served sentence from its neighborhood. Put another way, the#2 Neighborhoods of sequences
learner assumes not only thais good, but that: is locally  We next consider some neighborhood functions for sequences
optimal in example spaceX], and that alternative, similar (e.g., natural language sentences). Wies ¥t for some
examples (from the neighborhood) are inferior. Rather thagymbol alphabek, certain kinds of neighborhoods have nat-
explain all of the data, the model must only explain (usingural, compact representations. Given an input strirg 27*,
hidden variables) why the observed sentence is better than i{ge \yrite o) for the substringz;z;,,...z; and 2" for the
neighbors. Of course, the validity of the neighborhood hy-ynole string. Consider first the neighborhood consisting of

pothesis will depend on the form of the neighborhood func-y sequences generated by deleting a single symbol from the
tion. Further, different neighborhoods may be appropriate fOFn-Iength sequencey:

different tasks.
Consider grammar induction as an example. We mightDEL1WORD(z}") = {xf‘lxﬁrl [1<0<m}u{al"}

view the neighborhood of as a variety of alternative surface _ . )

representations using the same lexemes in slightly-altere-ﬁhIS set consists af: + 1 strings and can be compactly rep-

configurations, like the single-deletion or single-transpositiorfésented as a lattice (see Figure 1a). Another neighborhood

perturbations described earlier. While degraded, the inferrefivolves transposing any pair of adjacent words:

meaning of any of these examples is typically close to the in- TRANSL(z")

tended meaning, yet the speakbiosexz and not one of the 6_11

otherz’ € N(x). Why? Deletions are likely to violate subcat- = {a7 ez, |1 <0<m -1} U{a}

egorization requirements, and transpositions are likely to vio

late word order requirements—both of which have something, . 1b). We can combine 1WORD and TRANSL by tak-
to do with syntax.x W,as the most grammatical option that ing their union; this gives a larger neighborhoodeLIR-
conveyed the speaker's meaning, hence (we hope) roughly thig, 1 1, general, the lattices are obtained by composing

most grammatical option in the neighborhds¢z), and the : L
syntactic model should make it so. EM, on the other hand, ofghe observed sequence with a small finite-state transducer and

. ) determinizing and minimizing the result; the relevant trans-
fers no such guidance: EM notes only that the speaker chosdauCers are shown at the right of Figure 1
x from theentire setX, and therefore requires only that the Another neighborhood we might wiéh to consider is
learner move mass te, without specifying where it should LENGTH, which consists o™ for an m-length sentence
come from. Latent variables that distinguiglirom the rest !

. (Figure 1c). CE with the ENGTH neighborhood is very sim-
of X may have more to do with yvhat people talk about thanilar to EM; it is equivalent to using EM to estimate the pa-
how they arrange words syntactically.

rameters of a model defined by

This set can also be compactly represented as a lattice (Fig-

—

3 Neighborhoods Old and New Py 0) % g(m) - p™,y | m,d)
We next show how neighborhoods generalize EM and deg o0 is any fixed (untrained) distribution over lengths.
scribe some novel neighborhood functions for natural lan- Generally speaking, CE is equivalent to some kind of EM
guage data. whenz’ € N(z) is an equivalence relation on examples, so
31 EM that the neighborhoods partition the space of examples. Then
'_ . .. qis afixed distribution over neighborhoods.
Itiis not hard to see that EM (more precisely, the objective’ The yocabulary is never fully known for a natural lan-
in Equation 1) is equivalent to CE where the nelghborhoocbuage; approximations include using only the obser¥ed
for every example is the entire s& and the denominator from the training set or adding a speciabv symbol. When
equals 1. The EM algorithm under-determines the learner'gstimating finite-state models, CE with the&lGTH neigh-
hypothesis, stating only that probability mass should be giveygrhood is possible using a dynamic program. When the
to z, but not stating at whose expense. , model involves deeper, non-finite-state structure (e.g., one
An alternative proposed by Riezlet al. [200d and in-  jth context-free power), the NGTH neighborhood may

spired by computational limitations is to restrict the neigh-pecome too expensive. This was not the case for models ex-
borhood to the training set. This gives the following objective yiored in this paper.

function:
3.3 Task-based neighborhoods
II|» (Tz | g’) Sp (TJ | 5) 3)  When considering a specific application of grammar induc-
; ; tion, specific features of a sentence may be particularly rel-
evant to the modeling task. Put another way, if we want
Viewed as a CE method, this approach (though effective wheto perform a specific task, appropriate neighborhoods may
there are few hypotheses) seems misguided; the objectivee apparent. Suppose we desire a probabilistic context-free
says to move mass to each example at the expense of gtammar that can discriminate correctly spelled or punctuated
other training examples. Smith and Eisi2003 describe  sentences from incorrectly spelled or punctuated ones. With
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Figure 1: A sentence and three lattices representing some of its neighborhoods. The transducer used to generate each neighbor
hood lattice (via composition with the sentence followed by determinization and minimization) is shown to its right.

a large corpus of incorrectly punctuated sentences and their {z7{" :  andz differ only in punctuation

corrections, one could do supervised training of a translation andLev(z,z) < k)} (5)

model to distinguish the actual correction from other candi-

date corrections. However, sufficient training data would bewhich includes alternatively-punctuated sentences that differ

hard to come by, especially if the model included latent synin up to & edits from the observed sentence.§ih4 we will

tactic variables. discuss how to use these contrastively trained models.
Fortunately, manufacturing supervised data for this kind of

task is easy: take real text, and mangle it. This is a clasq  Algorithms

sic strategy for training accent and capitalization restoration _ i

[Yarowsky, 1993 just delete all accents from the good text. We have described several neighborhoods that can be rep-
In our case, we don't know the mangling process. The'esented as lattices. Our major algorithmic tool will be the

errors are not simply an omission of some part of the datageneral technique known as lattice parsing. For any com-

they are whatever mistakes humans make. Without a corpd80n grammar formalism that admits a polynomial-time dy-

of errors, this is difficult to model. namic programming algorithm faostring parsing, there ex-
We suggest that it may be possible to get away with notSts a straightforward generalization to a polynomial-time dy-

knowing which mistakes a human would make; instead weamic programming algorithm fdattice parsing. The prob-

try to distinguish each observed good sentence froamy abilistic CKY algorithm for probabilistic CFGlBaker, 1979;

differently punctuated (presumably mispunctuated) versiong-ari and Young, 199Dand the Viterbi algorithm for HMMs

This is not as inefficient as it might sound, because latticesBaumet al, 1970 are examples. _ _

allow efficient training. (In CE terms, the set of all variants Contrastive estimation can then be applied using any

of the sentence with errors introduced is the neighborhood.)Such grammar formalism (finite-state, context-free, mildly

For spelling correction, this neighborhood might be context-sensitive, etc.). The reader may find it easiest to think
m about probabilistic context-free grammars and the CKY algo-
SPELL<k(27") = rithm. In our experiments, however, we used a dependency

{7 : Vi e {1,2,....,m},Lev(z;,7;) <k} (4) parsing model§6). We implemented our lattice parser using
Dyna[Eisneret al., 2004.

With probabilistic grammars, there are two versions of lat-
Hce parsing. One version finds the highest-probability parse
of any string in the lattice (and the string it yields). The other
finds the total probability of all strings in the lattice, sum-
ming over all of their parses. We refer to these throughout
PUNC<(2T") = as BEsTPARSE (sometimes called a “Viterbi” algorithm) and

whereLev(a,b) is the Levenshtein (edit) distance between
wordsa andb [Levenshtein, 1965 This neighborhood, like
the others, can be represented as a lattice. This lattice wi
have a “sausage” shape.

A neighborhood for punctuation correction might be



SUMPARSES (sometimes called a generalized “inside” algo- maximum likelihood estimation for log-linear models is the
rithm). Unfortunately we know of no efficient algorithm for partition function (the denominator in Equation 6); as dis-
finding the highest-weighdtring in the Iatticg, S_ummed over cussed ear”er‘g‘g)’ this sum may not be finite for aﬁ Al-
all parses. We suspect that that problem is intractable, evegrnatives to exact computation of the partition function, like
for finite-state grammars. random samplingAbney, 1997, for examplewill not help

We can generalize probabilistic grammars further byto avoid this difficulty; in addition, convergence rates are in
replacing probabilities (e.g., rewrite rule probabilities in general unknown and bounds difficult to prove. An advantage
PCFGs) with arbitraryweights the resulting grammars are of conditional likelihood estimation is that the full partition
weightedgrammars (e.g., WCFGs). If we define the proba-function need not be computed; it is replaced by a sum over
bility of a (sentence, tree) pair as its total weight (its score),’ < Y of scoresw(z,%’) for eachz. Conditional random
normalized by the sum of scores of all possible (sentenceields are log-linear models over sequences, estimated using
tree) pairs allowed by the grammar, we haveglinearCFG  conditional likelihood:; typically they correspond to log-linear
[Miyao and Tsuijii, 2002, log-linear models will be discussed  finite-state transducefkafferty et al, 2001.
further in §5. Importantly, BESTPARSE and SIMPARSES Log-linear models can also be trained contrastively using
can be applied with weighted grammars with no modifica-fully-annotated data; an example are the morphology models
tion. Log-linear CFGs are more flexible, in a probabilistic of Smith and Smitf2004 (see Table 1).
sense, than PCFGs (which are a subset of the former), be-
cause they can give arbitrary credit or penalties to any rewrit®.2 Unsupervised estimation

rules, without stealing from others. ~ CE, which deals in conditional probabilities, restricts the de-
The crucial difference between PCFGs and log-lineamominators of the likelihood function, summing only over
CFGs, from a computational point of view, is in the normaliz- ;. ¢ N(z;) and maximizing

ing term required by the latter. A PCFG is defined as a gener-

ative process that assigns probabilities through the sequence ZeXp [9". f(xi, y)}

of steps taken. Log-linear CFGs must normalize by the sum S vy

of scores of all allowed structures. The normalization termis L (9) = log —— (1)
called thepartition function For an arbitrary set of rewrite i Z exp [9 - fla, y)}

rule weights, this sum may not be finte. (z,y)EN(z:)x Y

) The sums in the numerators, over;} x Y, are computed
5 Log-Linear Models using SIMPARSES so are the denominators, sind&z;) is

Log-linear models, we will show, are a natural match for con-epresented as a lattice. _
trastive estimation. Log-linear models assign probability to a As discussed i§3.1, EM is a special case where the de-

(sentence, parse tree) péit, y) according to nominator is the sum of scores of all derivations of the en-
tirety of X*. This is the same partition function that joint like-
. exp [9_'- fla, y)} lihood training faces, and EM suffers from the same computa-
z g) def 6 tional difficulty of a possibly divergent sun§4). By making
p(z.y10) — (6) culty of divergent surt |
Z exp {9 . f(x/,y/)} the sum finite—i.e., by defining finite neighborhoods—this

problem disappears (a move analogous to the move from joint

(z/,y")EX XY L - . ) . .
to conditional likelihood in supervised estimation).

wheref : X x RZ  is a nonnegative vector feature func- . .
/ IR g 5.3 Numerical optimization

thn andg € R _are the Correspgndmgqfeature weights. WeTo maximize the neighborhood likelihood (Equation 7), we
will refer to the inner product of and f(z,y) as thescore 4541y 4 standard numerical optimization method (L-BFGS)
w(z,y). Because the features can take any form and evefat jteratively climbs the function using knowledge of its
“overlap,” log-linear models can capture arbitrary dependenygi,e and gradientLiu and Nocedal, 1989 The partial

cies in the data and _cleanly incorporate them intp amodel. yarivative ofL with respect to thgth feature weigh; is
The relevant log-linear models here are log-linear CFGs.

We emphasize that the contrastive estimation methods we 0Ly o , ,
describe are applicable to a wide class of sequence models, 00, o ZE5 i ] = B [f | N(za)] )
including chain-structured random fielt8mith and Eisner, !

2004. This looks similar to the gradient of log-linear likelihood
_ o functions on complete data, though the expectation on the
5.1 Supervised estimation left is in those cases replaced by an observed feature value

For log-linear models, both conditional likelihood estimation / (i, 7). An alternative would be a doubly-looped algo-
and joint likelihood estimation are available. CL is often ithm that looks similar to EM. The E step would compute
preferred[Klein and Manning, 2002a, but see also Johnsonthe two expectations in Equation 8 and the M step (the inner

2001]. The computational difficulty with supervisgdint  100p) would adjust the parameters to make them match (per-
haps using an iterative algorithm). If the M step is not run

2For WCFGs in CNF withk nonterminal symbols, the problemis to convergence, we have something resembling a General-
equivalent to solving a system bfmultivariate quadratic equations. ized EM algorithm, which avoids the double loop and may be



likelihood criterion objective sum indth sum indth

numerator denominator
supervised | joint Lo (x| 6 {(zi,y0)} X xY
conditional Lp Ey;‘ | zi, é% {(@i,y7)} {z:} x Y
contrastive ILp (v | (X,Y) €N@i,yi),0)  {(@iu)} N (s, 7)
contrastive (correction) [, p (X =i | X € N(z), 5) {x:} N(ws)
unsupervised marginal & [& EM) IL>,r (a:i, Y | 5) {z:} xY X'xY
contrastive IL>,» (X =xzy| X € N(a:i)ﬁ) {z:} x Y N(z;) x Y

Table 1: Supervised and unsupervised estimation with log-linear models for classification. The supervised case marked “con-
trastive (correction)” is applicable to models for correcting possibly noisy imgutther than classifying;.

faster; see, e.g., RiezIg1999. The key difference between we have no “channel” model of which errors are more or

our approach and EM/GEM, of course, is that the probabili{ess likely to occur (only a set of possible errors that im-

ties in the objective function are conditioned on the neighborplies a set of candidate corrections), though the neighborhood

hood. could perhaps be weighted to incorporate a channel model (so
The expectations in Equation 8 are computed as a bythat we consider not only the probability of each candidate

product of running BMPARSES followed by an “outside”  correction but also its similarity to the typed string)The

or “backward” pass dynamic program similar to back- model we propose is a language model—one that incorpo-

propagation. rates induced grammatical information—that might then be
When there are no hidden variablés, is globally con- combined with an existing channel model. The other differ-

cave (examples include supervised joint and conditional likeence is that this approach would attempt to correct the entire

lihood estimation). In general, with hidden variables, thesequence at once, making globally optimal decisions, rather

functionL is notglobally concave; our search will lead only than trying to correct each word individually.

to a local optimum. Therefore, as with EM, the initial bias in A subtlety is that the quantity we wish to maximize is a

the initialization ofd will affect the guality of the estimate Sum:

and the performance of the method. In future work, we might @ -

wish to apply techniques for avoiding local optima, such as % = argmaxp (36 | 9) = argmaXZp (33 Y 9) (10)

deterministic annealingSmith and Eisner, 2094 '€N(=) 7 EN@) yey

5.4 Inference in task-based neighborhoods wherey ranges over possible parse trees. We noted ithat

The choice of neighborhood affects training only in the con—this problem is likely to be in_tractablg. L .
A reasonable approximation to this decoding is to simply

struction of neighborhood lattices. The underlying proba- et

bilistic model and the algorithm for training it are unaffected 2PPly BESTPARSE, finding

by this choice. Thapplicationof these models to testing data 5
(:c’, Y | 9)

is somewhat different for task-based neighborhoods. (Z,9) = argmax p (11)

Consider again the syntax induction problem: given a sen- > EN(@)y

tencexr, we wish to recover the hidden syntactic structure.pig gives the best parse tree over any sequerdéin, with

To do this, having trained a probabilistic model with hidden e sequence, but not necessarily the beguenceThis is a
variables, we use BSTPARSE to infer (or decode) the most  famjliar approximation in natural language engineering (e.g.,
likely structure: machine translation often picks the most probable translation
andalignment, given a source sentence, rather than marginal-

O (y | x,&) ) izing over all alignments).

The spelling correction and punctuation restoration case . .
are slightly different. At test time, we observe a sentence% Unsupervised Dependency Parsing
that may contain errors (misspelled words or missing punctur, prior work, we compared various neighborhoods for in-
ation). Ou_r goal is to select the_ sentence from its nelghborducing a trigram part-of-speech tagger from unlabeled data
hood that is most likely, according to our model. Note that[_Smith and Eisner, 20Q5given a (possibly incomplete) tag-

the neighborhoods now are centered on the observed, pOSging dictionary. The best performing neighborhoods in those
bly incorrect sentences, rather than correct training example periments were ENGTH, DELORTRANSL, and TRANSL.

They are still lattices, a fact we will exploit. _ We found that BELORTRANSL and TRANSL were more
This approach is similar to certain noisy-channel spellin
correction approachd&ernighanet al, 1994 in which, as 3The notion of training with weighted or probabilistic neighbor-

for us, only correctly-spelled text is observed. Like them,hoods is an interesting one that we leave to future work.



robust than ENGTH when the tagging dictionary was de- (but give some probability to any dependency), and normal-
graded, and also more able to recover with the help of adizing to obtain initial probabilities. For the log-linear models,
ditional (spelling) features. we simply set the corresponding weights to be the logs of
Here we explore a variety of contrastive neighborhoodghose probabilities. The other initializer is a simple uniform
on the MATCHLINGUIST task. Our starting point is essen- model; for the generative model, each distribution is set to be
tially identical to the dependency model used by Klein anduniform, and for the log-linear model, all weights start at 0.
Manning[2004.* This model assigns probability to a sen- Note that our grammars are defined so tay dependency
tencex?* and an unlabeled dependency tree as follows. Théree over any training example is possible.
tree is defined by a pair of functiong.s and x..ign: (both The dataset is WSJ-10: sentences of ten words or fewer
{1,2,...,m} — 2{1.2~m}y which map each word to its de- from the Penn Treebank, stripped of punctuation. Like Klein
pendents on the left and right, respectively. (The graph isind Manning[2004, we parse sequences of part-of-speech
constrained to be a projective tree, so that each word excefrgs. The complete model (over a vocabulary of 37 tags)
the root has a single parent, and there are no cycles or crossas 3,071 parameters. Our experiments are ten-fold cross-
ing dependencies.) The probability of generating the subtreealidated, with eight folds for training and one for test.
rooted at positior, given its head word, is: Because the Penn Treebank does not include dependency
annotations, accuracy was measured against the output of a
. supervised, rule-based system for adding heads to treebank
P@) = I1 I1 petop(=stop | @i,d, f(x)) trees[Hwa and Lopez, 2034 (The choice of head rules ac-
d€{left,right} \j€xa (i) counts for the difference in performance we report for Klein
and Manning’s system and their results.) All trials were
- pria(xj | @4, d) - P(j)> trained until the objective criterion converged to a relative tol-
erance ofl0~°. The average number of iterations of training
- Pstop (stop | x4, d, [xa(i) = 0]) (12) required to converge to this tolerance is shown for each trial;
note that in the non-EM trials, each iteration will require at
least two passes of the dynamic program on the data (once
for the numerator, once on the neighborhood lattice for the
denominator)—potentially more during the line search.

where thef(x;) is true iff z; is the closest child (on either
side) to its parent;;. The probability of the entire tree is
given by:

p(‘rTl”a Xlefts Xright) = Proot (xr) . P(T) (13)

wherer is the index of the root node. N Discussion Directed dependency attachment accuracy is re-
_In this model, proot, Pstop, @Ndpiiq are families of con-  ported in Table 2. The first thing to notice is that theNG TH

ditional probability distributions. A log-linear model th_at neighborhood—the closest we can reasonably get to EM on
uses the same features replaces these by exponentials fog-linear variant of the original generative model, owing
feature weight functionsegp 6root(--.), exp bsop(---), @and  to the partition function difficulty §4)—is consistently better
exp byia(.-..), respectively), and includes a normalization fac-than EM on the generative model. This should not be sur-
tor (partition function) to make everything sum to one. Asprising. Log-linear models are (informally speaking) more
discussed i§5.2, the partition function may not converge, but probabilistically expressive than generative models, because
we never need to compute it, because we only consider condihe weights are unconstrained. (Recall that generative mod-
tional probabilities. Note also that this is simply a log-linear e|s are a subset of log-linear models, with nonnegativity and
(dependency) CFG—we have not incorporated any overlaps,m_to-one constraints on the exponentials of the weights

ping features. This added expressivity allows the model to put a “bonus”
t(rather than a cost) on favorable configurations. For example,
EM with th ) del. Wi iad th | in the unsmoothed ENGTH trial, the attachment of a $ tag as
to EM with the generative model. We varied the regular-, o |of child of acp (cardinal number) had a learned weight
ization In bOth cases, fo_r the log-linear m<_)dels, we Used ?f 3.75 and the attachment ofve (modal) as the left child
single Gaussian prior ‘l’\l‘"th rr;]ean (I) and different variancegyt g (hase form verb) had a weight of 2.98. In a generative
(0 € {0.1,1,10,00}). Note that a lower variance imposes y, el weights will never be greater than 0, because they are
stronger smoothlntph_en and Rosenfeld, ZODQ/anance of interpreted as log-probabilities.
oo implies no smoothing at all. The generative model was The main result is that the best-performing parameter esti-

. . ¢ 5 Ra.
smoothed using adal smothmg Q‘ € {0,0.1,1,10})=> Be . mates were trainecbntrastivelyusing the RANS1 and CEL-
cause all trials involved optimization of a non-concave objec-

tive function, we also tested two initializers. The first is very ORTRANSL neighborhoods. Furthermore, they came from

similar to the one proposed by Klein and Mannii2po4 combining contrastive estimation with a uniform initializer.
For the enerativepm(?del thisyinvolves beginnin WitH ex-(EVen the LENGTH neighborhood initializediniformly per-
9 ' 9 9 forms nearly as well as the cleverly initialized EM-trained

pected counts that bias against long-distance dependenusgneraﬁve model.) That is a welcome change, as clever ini-
“Their best model was a combined constituent-context and detializers are hard to design. There is a actually some reason

pendency model; we explored only the dependency model. to suppose .th.at gnlform initializers may provide a generically
5\We note that prior work on unsupervised learning has not fullyhelpful implicit bias: Wanget al. [2009 have suggested that

explored the effects of smoothing on learning and performance. high-entropy models are to be favored in learning with latent

neighborhoods (ENGTH, TRANS1, and DELORTRANSL)



Klein & Manning’s initializer Uniform initializer

training test training test
accuracy accuracy accuracy accuracy
(%) (%) iterations (%) (%) iterations
untrained A=10| 21.7+019 21.8+0s2 (this approximates random;
(generative, sum-to-one) 1 23.5+092 23.5+13 smoothing has no effect on a
0.1 | 23.3:ore 23.4+118 uniform model)
no smoothing| 23.3+0.4s6 23.5+1.06 2231013 22.3x072

EM A=10 30.5+45.75 30.8+5.57 33.1+ts0 19.54035 19.5+t078  40.0+7s5
(generative, sum-to-one) 1 34.5+7.09 34.8t643  55.8+123 | 21.21020 21.1+126 54.441s

0.1 34.5+7.13 34.7+651 58.7+s84 22.1+301 22.2+338 63.8+187

no smoothing | | 35.2|+e50 |35.2|4599  64.1+111 | 23.6+377 23.6+x431  63.3+r02

LENGTH 0?2=0.1 4271758 42.91757  150.5+320 | 32.51354 32.4+381 101.l1sa70
(log-linear) 1| 42.6+s5s87 42.9+576  260.5+1211 | 33.54361 33.64375 177.0%344
10 | 42.24576 42 41573 259.2+1688 | 33.64380 33.7+388 211.9+404

no smoothing| 42.1isss 4234552 195.2:564 | 33.81359 33.74586 173.1e777

TRANSL 02=01] 32.71652 3241603  54.91144 | 4141459 4151512 33.8167
(log-linear) 1| 31.7+e4 31.5+034 113.7+283 | 48.4+071 48.5+115  82.5+126
10 37.4+6.49 37.4+606 215.5+050 | 48.8+090 49.0+153 173.4+710

no smoothing| 37.4+620  37.41596 271.3te6s | 48.71092 48.8+140 286.61846

DELORTRANSL 0?2=0.1] 32.1:4ss 32.0t461  56.2+118 | 41.1+416 41.1+a77  38.6iss
(log-linear) 1| 47.3159 4714588 132.2:209 | 46.51408 46.7+467  87.0x121
10 37.0+435 3714375 206.8t505 | 46.31507 46.6+563 201.74459
no smoothing| 36.3+4.42 36.41399 287.9:825 | 46.0£524 46.21567 212.8:1104

(initializer has no effect)
supervised, JL A=10 75.3+031 75.0+1.26
(generative, sum-to-one) 1 75.9+033 75.5+1.06
0.1 76.0+0.31 75.5+1.15
no smoothing 76.1+034 75.3+112
supervised, CL c2=01 78.3+0.22 77.8+0.98 37.1+19
(log-linear) 1| 79.5+025 78.5+t072  99.6457
10 79.9+0.24 78.6+077 350.5t544

Table 2: MaTCHLINGUIST results (directed attachment accuracy). The baseline (a reimplementation of Klein and Manning
[2004) is boxed. Trials that on average exceeded baseline performance are shown in bold face. Means across folds are shown,
with standard deviation in small typéNote that unsmoothed generative models can set some probabilities to zero which can
result in no valid parses on some test examples; this counted toward ertinsmoothed supervised CL training leads to
weights that tend towaret co; such trials are omitted.

variables; the uniform model is of courtiee maximum en- 7 Future Work
tropy model. As for explicit task biases, it is better to incor-
porate these into the objective function than through cleve
initializers, which are hard to design and may interact unpre
dictably with a choice of numerical optimization method (af-

The experiment described is circumstantial evidence—not a
Figorous demonstration—of our claim that a contrastive ob-
jective is better correlated with performance omMHLIN-
GUISTthan EM’s marginal likelihood criterion. Because both
kinds of problems involve non-convex optimization, there is
always a chance of good or bad luck with respect to local

Compared to Klein and Manning’s clever initializer, the Maxima. In future work, we hope to explore this question
uniform initializer turned out empirically to port better to con- MOre rigorously, for a variety of problems, by comparing
trastive conditions, and tended to be more robust across crosdi2ny solutions found by optimizing different criteria from

validation folds (see variances in small type in Table 2). @ variety of starting points. A careful study of the non-
convexity of these objective functions is also warranted.

An important fact illustrated by our results is that smooth- In this work, we have not explored new features for gram-
ing can have a tremendous effect on the performance of mar induction; however, by introducing a computationally
model. One well-performing model @ ORTRANSL neigh-  tractable unsupervised estimation method for log-linear mod-
borhood, smoothed at> = 1, with Klein and Manning’s els, we have opened the door for such exploration. In particu-
initializer) is quite poor if the smoothing parameter is variedlar, for natural language grammar induction to become widely
by an order of magnitude. useful, it will need to pay attention to words (rather than

fails to escape local maxima).



parts-of-speech) and—for many languages—maorphology. Aor models of sequence structure (such as WCFGs), marginal-
morphology-based neighborhood might guide the learner tization over some kinds of neighborhoods (those expressible
tree structures that enforce long-distance inflectional agreeas lattices) is efficient using dynamic programming.
ment. Other interesting models we hope to explore involve We introduced task-based neighborhoods. When estimat-
neighborhoods that treat function and content words differing a model (with or without supervision), it is important to
ently. Novel uses of cross-lingual information are one excit-keep in mind its end use. This idea has been important in ma-
ing area where log-linear models are expected to be helpfudhine learning, inspiring conditional and discriminative ap-
[Kuhn, 2004; Smith and Smith, 20D4availing the learner proaches to parameter estimation. We have shown one way
of new information without requiring expensive synchronousto apply the idea in unsupervised learning: choose a neigh-
grammar formalismfwu, 199%. borhood that explicitly represents potential mistakes of the
One may wonder about the relevance of word order-basethodel, then train the model to avoid those mistakes.
neighborhoods (RaNs1, for instance) to languages that do  We presented experimental results that show substantial
not have strict word order. This is an open and importanimprovement on the task of inducing dependency grammars
guestion, and we note that good probabilistic modeling ofto match human annotations. Our estimation methods per-
syntax for such languages may require a re-thinking of thdormed far better than the EM algorithm (using the same fea-
models themselveldHoffman, 1995 as well as good neigh- tures) and did not require clever initialization.
borhoods for learning (again, morphology may be helpful).  Finally, we have espoused a new view of grammar induc-
The neighborhoods we discussed are constructed by finitdion: hidden variables that are intended to model language
state operations for tasks like AMCHLINGUIST, spelling  in service of some end should be estimated with that end in
correction, and punctuation restoration; we plan to explorenind. It may turn out that unsupervised learning is prefer-
neighborhoods for the latter two tasks. Another type of neighable to supervised learning, since the latent structure that
borhood can be defined for a speciigstem define the is learned need not match anyone’s intuition. Rather, the
neighborhood using mistakes made by the system and réearned structure is learned precisbcauset is helpful in
train it (or train a new component) to contrast the correctservice of that task.
output with the system’s own errors. Examples of this have
been applied in acoustic modeling for speech recognitionReferences
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