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Abstract

We describe a novel training criterion for proba-
bilistic grammar induction models,contrastive es-
timation [Smith and Eisner, 2005], which can be
interpreted as exploitingimplicit negative evidence
and includes a wide class of likelihood-based ob-
jective functions. This criterion is a generaliza-
tion of the function maximized by the Expectation-
Maximization algorithm[Dempsteret al., 1977].
CE is a natural fit forlog-linear models, which can
include arbitrary features but for which EM is com-
putationally difficult. We show that, using the same
features, log-linear dependency grammar models
trained using CE can drastically outperform EM-
trained generative models on the task of match-
ing human linguistic annotations (the MATCHL IN-
GUIST task). The selection of an implicit negative
evidence class—a “neighborhood”—appropriate to
a given task has strong implications, but a good
neighborhood one can target the objective of gram-
mar induction to a specific application.

1 Introduction

Grammars are formal objects with many applications. They
become particularly interesting when they allow ambiguity
(cf. programming language grammars), introducing the no-
tion that one grammar may be preferable to another for a par-
ticular use. Given an induced grammar, a researcher could try
to apply it cleverly to her task and then measure its helpful-
ness on that task. This paper turns that scenario around.

Given a task, our question is how to induce a grammar—
from unannotated data—that is especially appropriate for the
task. Different grammars are likely to be better for differ-
ent tasks. In natural language engineering, for example, ap-
plications like automatic essay grading, punctuation correc-
tion, spelling correction, machine translation, and language
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modeling pose different challenges and are evaluated differ-
ently. We regard traditional natural language grammar induc-
tion evaluated against a treebank (also known as unsupervised
parsing) asjust another task; we call it MATCHL INGUIST.
A grammar induced for punctuation restoration or language
modeling for speech recognition might look strange to a lin-
guist, yet do better on those tasks. By the same token, tra-
ditional treebank-style linguistic annotations may not be the
best kind of syntax for language modeling.

But without fully-observed data, how might onetell a
learner to focus on one task or another? We propose that this
is conveyed in the choice of an objective function that guides
a statistical learner toward the right kinds of grammars for
the task at hand. We offer a flexible class of “contrastive” ob-
jective functions within which something appropriate may be
designed for existing and novel tasks.

In this paper, we evaluate our learned models on MATCH-
L INGUIST, which is a crucial task for natural language en-
gineering. Automatic natural language grammar induction
would bridge the gap between resource limitations (anno-
tated treebanks are expensive, domain-specific, and language-
specific) and the promise of exploiting syntactic structure in
many applications. We argue that MATCHL INGUIST, just like
other tasks, requires guidance.

For example, MATCHL INGUIST is decidedly different
from the task that is explicitly solved by the Expectation-
Maximization algorithm[Dempsteret al., 1977]: MAXI -
MIZEL IKELIHOOD. EM tries to fit the numerical parameters
of a (fixed) statistical model of hidden structure to the train-
ing data. To recover traditional or useful syntactic structure,
it is not enough to maximize training data likelihood[Car-
roll and Charniak, 1992,inter alia], and EM is notorious for
mediocre results. Our results suggest that part of the reason
EM performs badly is that it offers very little guidance to the
learner. The alternative we propose iscontrastive estimation.
It is within the same statistical modeling paradigm as EM, but
generalizes it by defining a notion of learner guidance.

Contrastive estimation makes use of a set of examples that
are similar in some way to an observed example (itsneigh-
borhood), but mostly perturbed or damaged in a particular
way. CE requires the learner to move probability mass to
a given example, taking only from the example’s neighbor-
hood. The neighborhood of a particular example is defined by
theneighborhood function; different neighborhood functions



are suitable for different tasks and the neighborhood should
be designed for the task.

We note that our approach to this problem is couched in
a parameter-centered approach to grammar induction. We
assume the grammar to be learned is structurally fixed and
allows all possible structures over the input sentences; our
task is to learn theweightsthat let the grammar disambiguate
among competing hypotheses. A different approach is to
focus on the hypotheses themselves and perform search in
that space and/or the space of grammars (see, e.g., Adriaans
[1992], Clark [2001], and van Zaanen[2002]). Those sys-
tems also use statistical techniques and offer guidance to the
learner, both in the form of search criteria and search meth-
ods (e.g., searching for substitutable subsequences). We will
not attempt to broadly formalize “guidance” here, noting only
that it is ubiquitous.

We begin by motivating contrastive estimation and describ-
ing it formally (§2). Central to CE is the choice of a con-
trastive neighborhood function. In§3, we describe some
neighborhoods expected to be useful for MATCHL INGUIST
and other tasks. We discuss the algorithms required for ap-
plication of CE with these neighborhoods in§4. §5 describes
how log-linear models are a natural fit for CE and demon-
strates how CE avoids the mathematical and computational
difficulties presented by unsupervised estimation of log-linear
models. We describe state-of-the-art results in dependency
grammar induction in§6, showing that a good neighborhood
choice can obviate the need for a clever initializer and can
drastically outperform EM on MATCHL INGUIST. We ad-
dress future directions (§7) and conclude (§8).

2 Implicit Negative Evidence
Natural language is a delicate thing. For any plausible sen-
tence, there are many slight perturbations of it that will make
it implausible. Consider, for example, the first sentence of
this section. Suppose we choose one of its six words at ran-
dom and remove it; odds are two to one that the resulting sen-
tence will be ungrammatical. Or, we could randomly choose
two adjacent words and transpose them; none of the results
are valid conversational English sentences.1 The learner we
describe here takes into account not only the observed posi-
tive example, but a also set of similar examples that are dep-
recated as perhaps negative (in that they could have been ob-
served but weren’t).

2.1 Learning setting
Let ~x = 〈x1, x2, ...〉, be our observed example sentences,
where eachxi ∈ X, and lety∗i ∈ Y be the unobserved cor-
rect parse forxi. We seek a model, parameterized by~θ, such
that the (unknown) correct analysisy∗i is the best analysis for
xi (under the model). Ify∗i were observed, a variety of op-
timization criteria would be available, including maximum
(joint or conditional) likelihood estimation, maximum classi-
fication accuracy[Juang and Katagiri, 1992], maximumex-
pectedclassification accuracy[Klein and Manning, 2002a;

1“Natural language is a thing delicate” might be valid in poetic
speech.

Altun et al., 2003], minimum exponential (boosting) loss
[Collins, 2000], and maximum margin[Crammer and Singer,
2001]. Yet y∗i is unknown, so none of these supervised meth-
ods apply. Typically one turns to the EM algorithm[Demp-
steret al., 1977], which locally maximizes∏

i

p
(
X = xi | ~θ

)
=

∏
i

∑
y

p
(
X = xi, Y = y | ~θ

)
(1)

whereX is a random variable over sentences andY is a ran-
dom variable over parse trees (notation is often abbreviated,
eliminating the random variables). EM has figured heavily in
probabilistic grammar induction[Pereira and Schabes, 1992;
Carroll and Charniak, 1992; Klein and Manning, 2002b;
2004]. An often-used alternative to EM is a class of so-
called Viterbi (or “winner-take-all”) approximations, which
iteratively find the most probable parsêy (according to the
current model) and then, on each iteration, solve a supervised
learning problem, training on̂y.

Despite its frequent use, EM is not hugely successful at
recovering the linguistic hidden structure . Merialdo[1994]
showed that EM was helpful to the performance of a tri-
gram HMM part-of-speech tagger only when extremely small
amounts of labeled data were available. The EM criterion
(Equation 1) simply doesn’t correspond to the real merit func-
tion. Further, even if the goalis to maximize likelihood
(e.g., in language modeling), the surface upon which EM per-
forms hillclimbing has many shallow local maxima[Char-
niak, 1993], making EM sensitive to initialization and there-
fore unreliable. This search problem is discussed in Smith
and Eisner[2004].

We suggest that part of the reason EM performs poorly is
that it does not sufficiently constrain the learner’s task. EM
tells the learner only to move probability mass toward the ob-
servedxi, paired with anyy; the source of this mass is not
specified. We will consider a class of alternatives that make
explicit the source of the probability mass to be pushed to-
ward eachxi.

2.2 A new approach: contrastive estimation
Our approach instead maximizes∏

i

p
(
X = xi | X ∈ N(xi), ~θ

)
(2)

whereN(xi) ⊆ X is the class of negative example sentences
plus the observed sentencexi itself. Note that thex′ ∈ N(xi)
are not treated as hard negative examples; we merely seek
to move probability mass from them to the observedx. The
probability massp(xi | ~θ) attached to a single example is
found by marginalizing over hidden variables (Equation 1).

The negative example setN depends onx and is written
N(x) to indicate that it is a function,N : X → 2X. In this
work, N(x) contains examples that are perturbations ofx,
and we call this set theneighborhoodof x. We then refer
to N as the neighborhood function and the optimization of
Equation 2 ascontrastive estimation(CE). The neighborhood
may be viewed as a class ofimplicit negative evidencethat
is fully determined by the example and may help to highlight
what about the example the model should try to predict.



CE seeks to move probability mass from the neighborhood
of an observed sentencex to x itself. The learner hypothe-
sizes that good models are those which discriminate an ob-
served sentence from its neighborhood. Put another way, the
learner assumes not only thatx is good, but thatx is locally
optimal in example space (X), and that alternative, similar
examples (from the neighborhood) are inferior. Rather than
explain all of the data, the model must only explain (using
hidden variables) why the observed sentence is better than its
neighbors. Of course, the validity of the neighborhood hy-
pothesis will depend on the form of the neighborhood func-
tion. Further, different neighborhoods may be appropriate for
different tasks.

Consider grammar induction as an example. We might
view the neighborhood ofx as a variety of alternative surface
representations using the same lexemes in slightly-altered
configurations, like the single-deletion or single-transposition
perturbations described earlier. While degraded, the inferred
meaning of any of these examples is typically close to the in-
tended meaning, yet the speakerchosex and not one of the
otherx′ ∈ N(x). Why? Deletions are likely to violate subcat-
egorization requirements, and transpositions are likely to vio-
late word order requirements—both of which have something
to do with syntax.x was the most grammatical option that
conveyed the speaker’s meaning, hence (we hope) roughly the
most grammatical option in the neighborhoodN(x), and the
syntactic model should make it so. EM, on the other hand, of-
fers no such guidance: EM notes only that the speaker chose
x from theentire setX, and therefore requires only that the
learner move mass tox, without specifying where it should
come from. Latent variables that distinguishx from the rest
of X may have more to do with what people talk about than
how they arrange words syntactically.

3 Neighborhoods Old and New
We next show how neighborhoods generalize EM and de-
scribe some novel neighborhood functions for natural lan-
guage data.

3.1 EM
It is not hard to see that EM (more precisely, the objective
in Equation 1) is equivalent to CE where the neighborhood
for every example is the entire setX, and the denominator
equals 1. The EM algorithm under-determines the learner’s
hypothesis, stating only that probability mass should be given
to x, but not stating at whose expense.

An alternative proposed by Riezleret al. [2000] and in-
spired by computational limitations is to restrict the neigh-
borhood to the training set. This gives the following objective
function:

∏
i

p
(
xi | ~θ

) /∑
j

p
(
xj | ~θ

) (3)

Viewed as a CE method, this approach (though effective when
there are few hypotheses) seems misguided; the objective
says to move mass to each example at the expense of all
other training examples. Smith and Eisner[2005] describe

how several other probabilistic learning criteria are examples
of CE; see also Table 1.

3.2 Neighborhoods of sequences
We next consider some neighborhood functions for sequences
(e.g., natural language sentences). WhenX = Σ+ for some
symbol alphabetΣ, certain kinds of neighborhoods have nat-
ural, compact representations. Given an input stringx = xm

1 ,
we write xj

i for the substringxixi+1...xj and xm
1 for the

whole string. Consider first the neighborhood consisting of
all sequences generated by deleting a single symbol from the
m-length sequencexm

1 :

DEL1WORD(xm
1 ) =

{
x`−1

1 xm
`+1 | 1 ≤ ` ≤ m

}
∪ {xm

1 }

This set consists ofm + 1 strings and can be compactly rep-
resented as a lattice (see Figure 1a). Another neighborhood
involves transposing any pair of adjacent words:

TRANS1(xm
1 )

=
{
x`−1

1 x`+1x`x
m
`+2 | 1 ≤ ` ≤ m− 1

}
∪ {xm

1 }

This set can also be compactly represented as a lattice (Fig-
ure 1b). We can combine DEL1WORD and TRANS1 by tak-
ing their union; this gives a larger neighborhood, DELOR-
TRANS1. In general, the lattices are obtained by composing
the observed sequence with a small finite-state transducer and
determinizing and minimizing the result; the relevant trans-
ducers are shown at the right of Figure 1.

Another neighborhood we might wish to consider is
LENGTH, which consists ofΣm for an m-length sentence
(Figure 1c). CE with the LENGTH neighborhood is very sim-
ilar to EM; it is equivalent to using EM to estimate the pa-
rameters of a model defined by

p′(xm
1 , y | ~θ) def= q(m) · p(xm

1 , y | m, ~θ)

whereq is any fixed (untrained) distribution over lengths.
Generally speaking, CE is equivalent to some kind of EM

whenx′ ∈ N(x) is an equivalence relation on examples, so
that the neighborhoods partition the space of examples. Then
q is a fixed distribution over neighborhoods.

The vocabularyΣ is never fully known for a natural lan-
guage; approximations include using only the observedΣ
from the training set or adding a specialOOV symbol. When
estimating finite-state models, CE with the LENGTH neigh-
borhood is possible using a dynamic program. When the
model involves deeper, non-finite-state structure (e.g., one
with context-free power), the LENGTH neighborhood may
become too expensive. This was not the case for models ex-
plored in this paper.

3.3 Task-based neighborhoods
When considering a specific application of grammar induc-
tion, specific features of a sentence may be particularly rel-
evant to the modeling task. Put another way, if we want
to perform a specific task, appropriate neighborhoods may
be apparent. Suppose we desire a probabilistic context-free
grammar that can discriminate correctly spelled or punctuated
sentences from incorrectly spelled or punctuated ones. With



natural language is a delicate thing

a. DEL1WORD:
natural language is a delicate thing

language is a delicate thing

is a
delicate

thing

?:ε

? ?

b. TRANS1:
natural language a delicate thingis

delicate
is

is

a
natural

a

is a delicate thing

language

language

delicate
thing

: xx2 1x2x1 :

:x x2 3 :x x3 2

:x xm m−1
xm−1

:xm

? ?

...

(Each bigramxi+1
i in the sentence has an

arc pair(xi : xi+1, xi+1 : xi).)

c. LENGTH:

? ? ? ? ? ?

?:?

Figure 1: A sentence and three lattices representing some of its neighborhoods. The transducer used to generate each neighbor-
hood lattice (via composition with the sentence followed by determinization and minimization) is shown to its right.

a large corpus of incorrectly punctuated sentences and their
corrections, one could do supervised training of a translation
model to distinguish the actual correction from other candi-
date corrections. However, sufficient training data would be
hard to come by, especially if the model included latent syn-
tactic variables.

Fortunately, manufacturing supervised data for this kind of
task is easy: take real text, and mangle it. This is a clas-
sic strategy for training accent and capitalization restoration
[Yarowsky, 1994]: just delete all accents from the good text.

In our case, we don’t know the mangling process. The
errors are not simply an omission of some part of the data;
they are whatever mistakes humans make. Without a corpus
of errors, this is difficult to model.

We suggest that it may be possible to get away with not
knowing which mistakes a human would make; instead we
try to distinguish each observed good sentence frommany
differently punctuated (presumably mispunctuated) versions.
This is not as inefficient as it might sound, because lattices
allow efficient training. (In CE terms, the set of all variants
of the sentence with errors introduced is the neighborhood.)

For spelling correction, this neighborhood might be

SPELL≤k(xm
1 ) =

{x̄m
1 : ∀i ∈ {1, 2, ...,m},Lev(xi, x̄i) ≤ k} (4)

whereLev(a, b) is the Levenshtein (edit) distance between
wordsa andb [Levenshtein, 1965]. This neighborhood, like
the others, can be represented as a lattice. This lattice will
have a “sausage” shape.

A neighborhood for punctuation correction might be

PUNC≤k(xm
1 ) =

{x̄m
1 : x andx̄ differ only in punctuation

andLev(x, x̄) ≤ k)} (5)

which includes alternatively-punctuated sentences that differ
in up tok edits from the observed sentence. In§5.4 we will
discuss how to use these contrastively trained models.

4 Algorithms
We have described several neighborhoods that can be rep-
resented as lattices. Our major algorithmic tool will be the
general technique known as lattice parsing. For any com-
mon grammar formalism that admits a polynomial-time dy-
namic programming algorithm forstring parsing, there ex-
ists a straightforward generalization to a polynomial-time dy-
namic programming algorithm forlattice parsing. The prob-
abilistic CKY algorithm for probabilistic CFGs[Baker, 1979;
Lari and Young, 1990] and the Viterbi algorithm for HMMs
[Baumet al., 1970] are examples.

Contrastive estimation can then be applied using any
such grammar formalism (finite-state, context-free, mildly
context-sensitive, etc.). The reader may find it easiest to think
about probabilistic context-free grammars and the CKY algo-
rithm. In our experiments, however, we used a dependency
parsing model (§6). We implemented our lattice parser using
Dyna[Eisneret al., 2004].

With probabilistic grammars, there are two versions of lat-
tice parsing. One version finds the highest-probability parse
of any string in the lattice (and the string it yields). The other
finds the total probability of all strings in the lattice, sum-
ming over all of their parses. We refer to these throughout
as BESTPARSE (sometimes called a “Viterbi” algorithm) and



SUMPARSES(sometimes called a generalized “inside” algo-
rithm). Unfortunately we know of no efficient algorithm for
finding the highest-weightstring in the lattice, summed over
all parses. We suspect that that problem is intractable, even
for finite-state grammars.

We can generalize probabilistic grammars further by
replacing probabilities (e.g., rewrite rule probabilities in
PCFGs) with arbitraryweights; the resulting grammars are
weightedgrammars (e.g., WCFGs). If we define the proba-
bility of a (sentence, tree) pair as its total weight (its score)
normalized by the sum of scores of all possible (sentence,
tree) pairs allowed by the grammar, we have alog-linearCFG
[Miyao and Tsujii, 2002]; log-linear models will be discussed
further in §5. Importantly, BESTPARSE and SUMPARSES
can be applied with weighted grammars with no modifica-
tion. Log-linear CFGs are more flexible, in a probabilistic
sense, than PCFGs (which are a subset of the former), be-
cause they can give arbitrary credit or penalties to any rewrite
rules, without stealing from others.

The crucial difference between PCFGs and log-linear
CFGs, from a computational point of view, is in the normaliz-
ing term required by the latter. A PCFG is defined as a gener-
ative process that assigns probabilities through the sequence
of steps taken. Log-linear CFGs must normalize by the sum
of scores of all allowed structures. The normalization term is
called thepartition function. For an arbitrary set of rewrite
rule weights, this sum may not be finite.2

5 Log-Linear Models
Log-linear models, we will show, are a natural match for con-
trastive estimation. Log-linear models assign probability to a
(sentence, parse tree) pair(x, y) according to

p
(
x, y | ~θ

)
def=

exp
[
~θ · ~f(x, y)

]
∑

(x′,y′)∈X×Y

exp
[
~θ · ~f(x′, y′)

] (6)

where~f : X×Y → Rn
≥0 is a nonnegative vector feature func-

tion and~θ ∈ Rn are the corresponding feature weights. We
will refer to the inner product of~θ and ~f(x, y) as thescore
w(x, y). Because the features can take any form and even
“overlap,” log-linear models can capture arbitrary dependen-
cies in the data and cleanly incorporate them into a model.

The relevant log-linear models here are log-linear CFGs.
We emphasize that the contrastive estimation methods we
describe are applicable to a wide class of sequence models,
including chain-structured random fields[Smith and Eisner,
2005].

5.1 Supervised estimation
For log-linear models, both conditional likelihood estimation
and joint likelihood estimation are available. CL is often
preferred[Klein and Manning, 2002a, but see also Johnson,
2001]. The computational difficulty with supervisedjoint

2For WCFGs in CNF withk nonterminal symbols, the problem is
equivalent to solving a system ofk multivariate quadratic equations.

maximum likelihood estimation for log-linear models is the
partition function (the denominator in Equation 6); as dis-
cussed earlier (§4), this sum may not be finite for all~θ. Al-
ternatives to exact computation of the partition function, like
random sampling[Abney, 1997, for example] will not help
to avoid this difficulty; in addition, convergence rates are in
general unknown and bounds difficult to prove. An advantage
of conditional likelihood estimation is that the full partition
function need not be computed; it is replaced by a sum over
y′ ∈ Y of scoresw(x, y′) for eachx. Conditional random
fields are log-linear models over sequences, estimated using
conditional likelihood; typically they correspond to log-linear
finite-state transducers[Lafferty et al., 2001].

Log-linear models can also be trained contrastively using
fully-annotated data; an example are the morphology models
of Smith and Smith[2004] (see Table 1).

5.2 Unsupervised estimation
CE, which deals in conditional probabilities, restricts the de-
nominators of the likelihood function, summing only over
x ∈ N(xi) and maximizing

LN

(
~θ
)

=
∑

i

log

∑
y∈Y

exp
[
~θ · ~f(xi, y)

]
∑

(x,y)∈N(xi)×Y

exp
[
~θ · ~f(x, y)

] (7)

The sums in the numerators, over{xi} × Y, are computed
using SUMPARSES; so are the denominators, sinceN(xi) is
represented as a lattice.

As discussed in§3.1, EM is a special case where the de-
nominator is the sum of scores of all derivations of the en-
tirety of Σ∗. This is the same partition function that joint like-
lihood training faces, and EM suffers from the same computa-
tional difficulty of a possibly divergent sum (§4). By making
the sum finite—i.e., by defining finite neighborhoods—this
problem disappears (a move analogous to the move from joint
to conditional likelihood in supervised estimation).

5.3 Numerical optimization
To maximize the neighborhood likelihood (Equation 7), we
apply a standard numerical optimization method (L-BFGS)
that iteratively climbs the function using knowledge of its
value and gradient[Liu and Nocedal, 1989]. The partial
derivative ofLN with respect to thejth feature weightθj is

∂LN

∂θj
=

∑
i

E~θ [fj | xi]−E~θ [fj | N(xi)] (8)

This looks similar to the gradient of log-linear likelihood
functions on complete data, though the expectation on the
left is in those cases replaced by an observed feature value
fj(xi, y

∗
i ). An alternative would be a doubly-looped algo-

rithm that looks similar to EM. The E step would compute
the two expectations in Equation 8 and the M step (the inner
loop) would adjust the parameters to make them match (per-
haps using an iterative algorithm). If the M step is not run
to convergence, we have something resembling a General-
ized EM algorithm, which avoids the double loop and may be



likelihood criterion objective sum inith
numerator

sum inith
denominator

supervised joint
∏

i p
(
xi, y

∗
i | ~θ

)
{(xi, y

∗
i )} X × Y

conditional
∏

i p
(
y∗i | xi, ~θ

)
{(xi, y

∗
i )} {xi} × Y

contrastive
∏

i p
(
y∗i | (X, Y ) ∈ N(xi, y

∗
i ), ~θ

)
{(xi, y

∗
i )} N(xi, y

∗
i )

contrastive (correction)
∏

i p
(
X = xi | X ∈ N(xi), ~θ

)
{xi} N(xi)

unsupervised marginal (a là EM)
∏

i

∑
y p

(
xi, y | ~θ

)
{xi} × Y X × Y

contrastive
∏

i

∑
y p

(
X = xi, y | X ∈ N(xi), ~θ

)
{xi} × Y N(xi) × Y

Table 1: Supervised and unsupervised estimation with log-linear models for classification. The supervised case marked “con-
trastive (correction)” is applicable to models for correcting possibly noisy inputxi, rather than classifyingxi.

faster; see, e.g., Riezler[1999]. The key difference between
our approach and EM/GEM, of course, is that the probabili-
ties in the objective function are conditioned on the neighbor-
hood.

The expectations in Equation 8 are computed as a by-
product of running SUMPARSES followed by an “outside”
or “backward” pass dynamic program similar to back-
propagation.

When there are no hidden variables,LN is globally con-
cave (examples include supervised joint and conditional like-
lihood estimation). In general, with hidden variables, the
functionLN is notglobally concave; our search will lead only
to a local optimum. Therefore, as with EM, the initial bias in
the initialization of~θ will affect the quality of the estimate
and the performance of the method. In future work, we might
wish to apply techniques for avoiding local optima, such as
deterministic annealing[Smith and Eisner, 2004].

5.4 Inference in task-based neighborhoods
The choice of neighborhood affects training only in the con-
struction of neighborhood lattices. The underlying proba-
bilistic model and the algorithm for training it are unaffected
by this choice. Theapplicationof these models to testing data
is somewhat different for task-based neighborhoods.

Consider again the syntax induction problem: given a sen-
tencex, we wish to recover the hidden syntactic structure.
To do this, having trained a probabilistic model with hidden
variables, we use BESTPARSE to infer (or decode) the most
likely structure:

ŷ = argmax
y

p
(
y | x, ~θ

)
(9)

The spelling correction and punctuation restoration cases
are slightly different. At test time, we observe a sentence
that may contain errors (misspelled words or missing punctu-
ation). Our goal is to select the sentence from its neighbor-
hood that is most likely, according to our model. Note that
the neighborhoods now are centered on the observed, possi-
bly incorrect sentences, rather than correct training examples.
They are still lattices, a fact we will exploit.

This approach is similar to certain noisy-channel spelling
correction approaches[Kernighanet al., 1990] in which, as
for us, only correctly-spelled text is observed. Like them,

we have no “channel” model of which errors are more or
less likely to occur (only a set of possible errors that im-
plies a set of candidate corrections), though the neighborhood
could perhaps be weighted to incorporate a channel model (so
that we consider not only the probability of each candidate
correction but also its similarity to the typed string).3 The
model we propose is a language model—one that incorpo-
rates induced grammatical information—that might then be
combined with an existing channel model. The other differ-
ence is that this approach would attempt to correct the entire
sequence at once, making globally optimal decisions, rather
than trying to correct each word individually.

A subtlety is that the quantity we wish to maximize is a
sum:

x̂ = argmax
x′∈N(x)

p
(
x′ | ~θ

)
= argmax

x′∈N(x)

∑
y∈Y

p
(
x′, y | ~θ

)
(10)

wherey ranges over possible parse trees. We noted in§4 that
this problem is likely to be intractable.

A reasonable approximation to this decoding is to simply
apply BESTPARSE, finding

(x̂, ŷ) = argmax
x′∈N(x),y

p
(
x′, y | ~θ

)
(11)

This gives the best parse tree over any sequence inN(x), with
the sequence, but not necessarily the bestsequence. This is a
familiar approximation in natural language engineering (e.g.,
machine translation often picks the most probable translation
andalignment, given a source sentence, rather than marginal-
izing over all alignments).

6 Unsupervised Dependency Parsing
In prior work, we compared various neighborhoods for in-
ducing a trigram part-of-speech tagger from unlabeled data
[Smith and Eisner, 2005], given a (possibly incomplete) tag-
ging dictionary. The best performing neighborhoods in those
experiments were LENGTH, DELORTRANS1, and TRANS1.
We found that DELORTRANS1 and TRANS1 were more

3The notion of training with weighted or probabilistic neighbor-
hoods is an interesting one that we leave to future work.



robust than LENGTH when the tagging dictionary was de-
graded, and also more able to recover with the help of ad-
ditional (spelling) features.

Here we explore a variety of contrastive neighborhoods
on the MATCHL INGUIST task. Our starting point is essen-
tially identical to the dependency model used by Klein and
Manning [2004].4 This model assigns probability to a sen-
tencexm

1 and an unlabeled dependency tree as follows. The
tree is defined by a pair of functionsχleft andχright (both
{1, 2, ...,m} → 2{1,2,...,m}) which map each word to its de-
pendents on the left and right, respectively. (The graph is
constrained to be a projective tree, so that each word except
the root has a single parent, and there are no cycles or cross-
ing dependencies.) The probability of generating the subtree
rooted at positioni, given its head word, is:

P (i) =
∏

d∈{left,right}

 ∏
j∈χd(i)

pstop(¬stop | xi, d, f(xj))

· pkid(xj | xi, d) · P (j)

)
· pstop(stop | xi, d, [χd(i) = ∅]) (12)

where thef(xj) is true iff xj is the closest child (on either
side) to its parentxi. The probability of the entire tree is
given by:

p(xm
1 , χleft , χright) = proot(xr) · P (r) (13)

wherer is the index of the root node.
In this model,proot, pstop, andpkid are families of con-

ditional probability distributions. A log-linear model that
uses the same features replaces these by exponentials of
feature weight functions (exp θroot(...), exp θstop(...), and
exp θkid(...), respectively), and includes a normalization fac-
tor (partition function) to make everything sum to one. As
discussed in§5.2, the partition function may not converge, but
we never need to compute it, because we only consider condi-
tional probabilities. Note also that this is simply a log-linear
(dependency) CFG—we have not incorporated any overlap-
ping features.

We compared contrastive estimation with three different
neighborhoods (LENGTH, TRANS1, and DELORTRANS1)
to EM with the generative model. We varied the regular-
ization in both cases; for the log-linear models, we used a
single Gaussian prior with mean 0 and different variances
(σ2 ∈ {0.1, 1, 10,∞}). Note that a lower variance imposes
stronger smoothing[Chen and Rosenfeld, 2000]; variance of
∞ implies no smoothing at all. The generative model was
smoothed using add-λ smoothing (λ ∈ {0, 0.1, 1, 10}).5 Be-
cause all trials involved optimization of a non-concave objec-
tive function, we also tested two initializers. The first is very
similar to the one proposed by Klein and Manning[2004].
For the generative model, this involves beginning with ex-
pected counts that bias against long-distance dependencies

4Their best model was a combined constituent-context and de-
pendency model; we explored only the dependency model.

5We note that prior work on unsupervised learning has not fully
explored the effects of smoothing on learning and performance.

(but give some probability to any dependency), and normal-
izing to obtain initial probabilities. For the log-linear models,
we simply set the corresponding weights to be the logs of
those probabilities. The other initializer is a simple uniform
model; for the generative model, each distribution is set to be
uniform, and for the log-linear model, all weights start at 0.
Note that our grammars are defined so thatany dependency
tree over any training example is possible.

The dataset is WSJ-10: sentences of ten words or fewer
from the Penn Treebank, stripped of punctuation. Like Klein
and Manning[2004], we parse sequences of part-of-speech
tags. The complete model (over a vocabulary of 37 tags)
has 3,071 parameters. Our experiments are ten-fold cross-
validated, with eight folds for training and one for test.

Because the Penn Treebank does not include dependency
annotations, accuracy was measured against the output of a
supervised, rule-based system for adding heads to treebank
trees[Hwa and Lopez, 2004]. (The choice of head rules ac-
counts for the difference in performance we report for Klein
and Manning’s system and their results.) All trials were
trained until the objective criterion converged to a relative tol-
erance of10−5. The average number of iterations of training
required to converge to this tolerance is shown for each trial;
note that in the non-EM trials, each iteration will require at
least two passes of the dynamic program on the data (once
for the numerator, once on the neighborhood lattice for the
denominator)—potentially more during the line search.

Discussion Directed dependency attachment accuracy is re-
ported in Table 2. The first thing to notice is that the LENGTH
neighborhood—the closest we can reasonably get to EM on
a log-linear variant of the original generative model, owing
to the partition function difficulty (§4)—is consistently better
than EM on the generative model. This should not be sur-
prising. Log-linear models are (informally speaking) more
probabilistically expressive than generative models, because
the weights are unconstrained. (Recall that generative mod-
els are a subset of log-linear models, with nonnegativity and
sum-to-one constraints on the exponentials of the weights~θ.)
This added expressivity allows the model to put a “bonus”
(rather than a cost) on favorable configurations. For example,
in the unsmoothed LENGTH trial, the attachment of a $ tag as
the left child of aCD (cardinal number) had a learned weight
of 3.75 and the attachment of aMD (modal) as the left child
of a VB (base form verb) had a weight of 2.98. In a generative
model, weights will never be greater than 0, because they are
interpreted as log-probabilities.

The main result is that the best-performing parameter esti-
mates were trainedcontrastivelyusing the TRANS1 and DEL-
ORTRANS1 neighborhoods. Furthermore, they came from
combining contrastive estimation with a uniform initializer.
(Even the LENGTH neighborhood initializeduniformly per-
forms nearly as well as the cleverly initialized EM-trained
generative model.) That is a welcome change, as clever ini-
tializers are hard to design. There is a actually some reason
to suppose that uniform initializers may provide a generically
helpful implicit bias: Wanget al. [2002] have suggested that
high-entropy models are to be favored in learning with latent



Klein & Manning’s initializer Uniform initializer
training test training test
accuracy accuracy accuracy accuracy

(%) (%) iterations (%) (%) iterations
untrained λ = 10 21.7±0.19 21.8±0.82 (this approximates random;
(generative, sum-to-one) 1 23.5±0.92 23.5±1.32 smoothing has no effect on a

0.1 23.3±0.79 23.4±1.18 uniform model)
no smoothing 23.3±0.46 23.5±1.06 22.3±0.13 22.3±0.72

EM λ = 10 30.5±5.75 30.8±5.57 33.1±5.0 19.5±0.35 19.5±0.78 40.0±7.5

(generative, sum-to-one) 1 34.5±7.09 34.8±6.43 55.8±12.3 21.2±0.29 21.1±1.26 54.4±1.8

0.1 34.5±7.13 34.7±6.51 58.7±8.4 22.1±3.01 22.2±3.38 63.8±18.7

no smoothing∗ 35.2 ±6.59 35.2 ±5.99 64.1±11.1 23.6±3.77 23.6±4.31 63.3±9.2

LENGTH σ2 = 0.1 42.7±7.58 42.9±7.57 150.5±32.0 32.5±3.54 32.4±3.81 101.1±17.0

(log-linear) 1 42.6±5.87 42.9±5.76 260.5±121.1 33.5±3.61 33.6±3.75 177.0±34.4

10 42.2±5.76 42.4±5.73 259.2±168.8 33.6±3.80 33.7±3.88 211.9±49.4

no smoothing 42.1±5.58 42.3±5.52 195.2±56.4 33.8±3.59 33.7±5.86 173.1±77.7

TRANS1 σ2 = 0.1 32.7±6.52 32.4±6.03 54.9±14.4 41.4±4.59 41.5±5.12 33.8±6.7

(log-linear) 1 31.7±9.41 31.5±9.34 113.7±28.3 48.4±0.71 48.5±1.15 82.5±12.6

10 37.4±6.49 37.4±6.06 215.5±95.0 48.8±0.90 49.0±1.53 173.4±71.0

no smoothing 37.4±6.29 37.4±5.96 271.3±66.8 48.7±0.92 48.8±1.40 286.6±84.6

DELORTRANS1 σ2 = 0.1 32.1±4.86 32.0±4.61 56.2±11.8 41.1±4.16 41.1±4.77 38.6±5.8

(log-linear) 1 47.3±5.96 47.1±5.88 132.2±29.9 46.5±4.06 46.7±4.67 87.0±12.1

10 37.0±4.35 37.1±3.75 206.8±59.5 46.3±5.07 46.6±5.63 201.7±45.9

no smoothing 36.3±4.42 36.4±3.99 287.9±82.5 46.0±5.24 46.2±5.67 212.8±119.4

(initializer has no effect)
supervised, JL λ = 10 75.3±0.31 75.0±1.26

(generative, sum-to-one) 1 75.9±0.33 75.5±1.06

0.1 76.0±0.31 75.5±1.15

no smoothing∗ 76.1±0.34 75.3±1.12

supervised, CL† σ2 = 0.1 78.3±0.22 77.8±0.98 37.1±1.9

(log-linear) 1 79.5±0.25 78.5±0.72 99.6±5.7

10 79.9±0.24 78.6±0.77 350.5±54.4

Table 2: MATCHL INGUIST results (directed attachment accuracy). The baseline (a reimplementation of Klein and Manning
[2004]) is boxed. Trials that on average exceeded baseline performance are shown in bold face. Means across folds are shown,
with standard deviation in small type.∗Note that unsmoothed generative models can set some probabilities to zero which can
result in no valid parses on some test examples; this counted toward errors.†Unsmoothed supervised CL training leads to
weights that tend toward±∞; such trials are omitted.

variables; the uniform model is of coursethe maximum en-
tropy model. As for explicit task biases, it is better to incor-
porate these into the objective function than through clever
initializers, which are hard to design and may interact unpre-
dictably with a choice of numerical optimization method (af-
ter all, the initializer has influence only because the optimizer
fails to escape local maxima).

Compared to Klein and Manning’s clever initializer, the
uniform initializer turned out empirically to port better to con-
trastive conditions, and tended to be more robust across cross-
validation folds (see variances in small type in Table 2).

An important fact illustrated by our results is that smooth-
ing can have a tremendous effect on the performance of a
model. One well-performing model (DELORTRANS1 neigh-
borhood, smoothed atσ2 = 1, with Klein and Manning’s
initializer) is quite poor if the smoothing parameter is varied
by an order of magnitude.

7 Future Work
The experiment described is circumstantial evidence—not a
rigorous demonstration—of our claim that a contrastive ob-
jective is better correlated with performance on MATCHL IN-
GUIST than EM’s marginal likelihood criterion. Because both
kinds of problems involve non-convex optimization, there is
always a chance of good or bad luck with respect to local
maxima. In future work, we hope to explore this question
more rigorously, for a variety of problems, by comparing
many solutions found by optimizing different criteria from
a variety of starting points. A careful study of the non-
convexity of these objective functions is also warranted.

In this work, we have not explored new features for gram-
mar induction; however, by introducing a computationally
tractable unsupervised estimation method for log-linear mod-
els, we have opened the door for such exploration. In particu-
lar, for natural language grammar induction to become widely
useful, it will need to pay attention to words (rather than



parts-of-speech) and—for many languages—morphology. A
morphology-based neighborhood might guide the learner to
tree structures that enforce long-distance inflectional agree-
ment. Other interesting models we hope to explore involve
neighborhoods that treat function and content words differ-
ently. Novel uses of cross-lingual information are one excit-
ing area where log-linear models are expected to be helpful
[Kuhn, 2004; Smith and Smith, 2004], availing the learner
of new information without requiring expensive synchronous
grammar formalisms[Wu, 1997].

One may wonder about the relevance of word order-based
neighborhoods (TRANS1, for instance) to languages that do
not have strict word order. This is an open and important
question, and we note that good probabilistic modeling of
syntax for such languages may require a re-thinking of the
models themselves[Hoffman, 1995] as well as good neigh-
borhoods for learning (again, morphology may be helpful).

The neighborhoods we discussed are constructed by finite-
state operations for tasks like MATCHL INGUIST, spelling
correction, and punctuation restoration; we plan to explore
neighborhoods for the latter two tasks. Another type of neigh-
borhood can be defined for a specificsystem: define the
neighborhood using mistakes made by the system and re-
train it (or train a new component) to contrast the correct
output with the system’s own errors. Examples of this have
been applied in acoustic modeling for speech recognition,
where the neighborhood is a lattice containing acoustically-
confusable words[Valtchevet al., 1997]; the hidden variables
are the alignments between speech segments and phones. An-
other example from speech recognition involves training a
language model on lattices provided by an acoustic model
[Vergyri, 2000; Roarket al., 2004]; here the neighborhood
is defined by the acoustic model’s hypotheses and may be
weighted. Neighborhood functions might also be iteratively
modified to improve a system in a manner similar to boot-
strapping[Yarowsky, 1995] and transformation-based learn-
ing [Brill, 1995].

Finally, we intend to address the “minimally” supervised
paradigm in which a small amount of labeled data is available
(see, e.g., Yarowsky[1995]). We envision amixedobjective
function, with one term for fitting the labeled data and another
for the unlabeled data—the latter could be a CE term.

8 Conclusion
We have described contrastive estimation, a novel generaliza-
tion of parameter estimation methods that use unlabeled data.
Contrastive estimation requires the choice of a neighborhood,
which can be interpreted as a mapping from observations to
classes of implicit negative evidence. CE moves probabil-
ity mass from an example’s deprecated neighborhood to the
example itself. Many earlier approaches, including the EM
algorithm, can be viewed as special cases of CE.

CE has several key advantages. First, it is particularly apt
for log-linear models, which allow the incorporation of ar-
bitrary features and dependencies into a probability model.
Unsupervised estimation for log-linear models has, until now,
been largely ignored due to the computational difficulties of
the partition function. CE avoids those difficulties. Further,

for models of sequence structure (such as WCFGs), marginal-
ization over some kinds of neighborhoods (those expressible
as lattices) is efficient using dynamic programming.

We introduced task-based neighborhoods. When estimat-
ing a model (with or without supervision), it is important to
keep in mind its end use. This idea has been important in ma-
chine learning, inspiring conditional and discriminative ap-
proaches to parameter estimation. We have shown one way
to apply the idea in unsupervised learning: choose a neigh-
borhood that explicitly represents potential mistakes of the
model, then train the model to avoid those mistakes.

We presented experimental results that show substantial
improvement on the task of inducing dependency grammars
to match human annotations. Our estimation methods per-
formed far better than the EM algorithm (using the same fea-
tures) and did not require clever initialization.

Finally, we have espoused a new view of grammar induc-
tion: hidden variables that are intended to model language
in service of some end should be estimated with that end in
mind. It may turn out that unsupervised learning is prefer-
able to supervised learning, since the latent structure that
is learned need not match anyone’s intuition. Rather, the
learned structure is learned preciselybecauseit is helpful in
service of that task.
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