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Abstract In §2 we review deterministic annealing (DA)
d”;md show how it generalizes the EM algorithf3

Exploiting unannotated natural language data is har h how DA b df i timati
largely because unsupervised parameter estimation ?% ows how can be used for parameter esimation

hard. We describe deterministic annealing (Rose et aI.,Or models of language structure that use dynamic

: . .__programming to compute posteriors over hidden
1990) as an appealing alternative to the Expectauonp .
Maximization algorithm (Dempster et al., 1977). Seek-StrUCture’ such as hidden Markov models (HMMs)

ing to avoid search error, DA begins by globally maxi- and stochastic context-free grammars (S.CFGS)'. .
mizing an easy concave function and maintains a Ioca§4 we apply DA to _the problem of learning a tri-

maximum as it gradually morphs the function into the 9ram POS tagger without Ia.beled data. We then de-
desired non-concave likelihood function. Applying DA _scrlbe how one of the_ TeFG‘.'VEd strengths of DA—
to parsing and tagging models is shown to be straight—ItS robustness to the_ |n|t|'aI|2|_ng ”T‘Ode' parameter.s'—
forward; significant improvements over EM are s,hownc.an be a shortcoming in Sltuatlor.]s where the ini-
on a part-of-speech tagging task. We describe a vari'Elal parameters carry a helpful bias. We present

ant, skewed DA, which can incorporate a good initializer® SOI,UUO” to this probler.n'ln. the form of a new
algorithm, skeweddeterministic annealing (SDA,;

when it is available, and show significant improvements 5. Finall v SDA t nd

over EM on a grammar induction task. § ). Finally we apply 0. a _g_ramma_r induc-
tion model and demonstrate significantly improved

performance over EM§6). §7 highlights future di-

1 Introduction _ :
_ o _ rections for this work.
Unlabeled data remains a tantalizing potential re-

source for NLP researchers. Some tasks can thrive  Deterministic annealing

on a nearly pure diet of unlabeled data (Yarowsky,

i . ) . uppose our data consist of a pairs of random vari-
1995; Collins and Singer, 1999; Cucerzan andiblesX andY, where the value o is observed

Yarowsky, 2003). But for other tasks, such as ma-

chine translation (Brown et al., 1990), the Chiefsc(ejr};elrft:rllcéggr:.n E':norliser)](zrgglgj(errggrg t?ngi-
merit of unlabeled data is simply that nothing else 9 9

is available; unsupervised parameter estimation jguences. We usi and{ to deno_te the sets of
notorious for achieving mediocre results poss[ble values ok andY_, respectlvel_y: _We seek
The standard starting point is the E>'< ectation-to build a model that assigns probabilities to each
T,Y) € AX4g. Lelx = {x1,x2, ..., Ty D€ A COrPUS
g p P %Y. Let# b

R/I9a7x7|r)n|zEt|<;)ri1te(rIZIt\i/IJelalga%r_|Lr;rtr; ;Drirggeslt,gr Z:aﬂ'é_of unlabeled examples. Assume the class of models
ters fr;)m an initial uB(/ess JuntiI it conver espto a lo- s fixed (for example, we might consider only first-
9 9 order HMMs with s states, corresponding notion-

cal maximum. -Unfortunately, likelihood functions ally to POS tags). Then the task is to find good pa-
in practice are riddled with suboptimal local max- - N .
rameterg) € R for the model. The criterion most

ima (e.g., Charniak, 1993, ch. 7). Moreover, maLx_commonly used in building such models from un-

imizing likelihood is not equivalent to maximizing . . L2 )
task-defined accuracy (e.g., Merialdo, 1994). labeled data isnaximum likelihoodML); we seek
the parameterg*:

Here we focus on the search error problem. As
sume that one has a model for which improving . n .
likelihood really will improve accuracy (e.g., atpre-  argmax Pr(# | ) = argmax [ [ > Pr(x;, v | 6) (1)
dicting hidden part-of-speech (POS) tags or parse ¢ 0 i=1yey
trees). Hence, we seek methods that tend to locate _ _
mountaintops rather than hilltops of the likelihood €tropy hilltop. - They argue that to account for partially-
function. Alternatively, we might want methods that ot.)served.(unlabeled) data, one shou!d choose the dlstrlbgtlon
: : . . - with the highest Shannon entropy, subject to certain data-driven
find hilltops with other desirable propertiés. constraints. They show that this desirable distribution is one of

the local maxima of likelihood. Whether high-entropy local
wang et al. (2003) suggest that one should seek a highmaxima really predict test data better is an empirical question.
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Fig. 1: The EM algorithm. end while
b — 0

Each parametet; corresponds to the conditional
probability of a singlanodel evente.g., a state tran- Fig. 2: The DA algorithm: a generalization of EM.
sition in an HMM or a rewrite in a PCFG. Many
NLP models make it easy to maximize the likeli- Wheng = 1, DAs inner loop will behave exactly
hood ofsupervisedraining data: simply count the like EM, computingp at the E step by the same for-
model events in the observéd;, y;) pairs, and set mula that EM uses. Whefi ~ 0, p will be close
the conditional probabilitie8; to be proportional to  to a uniform distribution over the hidden varialjie
the counts. In our unsupervised setting, fheare  since each numeratdtr(Z,% | 6)° ~ 1. At such
unknown, but solving (1) is almost as easy provideds3-values, DA effectivelyignoresthe current param-
that we can obtain thposterior distributionof Y etersf when choosing the posterigrand the new
given eachy; (that is,Pr(y | x;) for eachy € Y  parameters. Finally, 88 — +oo, p tends to place
and eache;). The only difference is that we must nearly all of the probability mass on the single most
now count the model events fractionally, using thelikely 7. This winner-take-all situation is equivalent
expectediumber of occurrences of eath;, y) pair.  to the “Viterbi” variant of the EM algorithm.

This intuition leads to the EM algorithm in Fig. 1. .

It is guaranteed thatr (7 | §(i+1)) > Pr(Z | 5@)). 2.2 Gradated difficulty _

For language-structure models like HMMs and!n both the EM and DA algorithms, the E step se-
SCFGs, efficient dynamic programming algorithmslects a posteriop over the higden variabl®& and
(forward-backward, inside-outside) are available tothe M step selects parametéts Neal and Hinton
compute the distributiop at the E step of Fig. 1 (1998) show how the EM algorithm can be viewed
and use it at the M step. These algorithms run inas optimizing a single objective function over béth
polynomial time and space by structure-sharing theéindp. DA can also be seen this way; DA's objective
possibley (tag sequences or parse trees) for eacfunction at a giverg is
x;, of which there may be exponentially many in 5;(9"7157 5) — lH(ﬁ) +E, g, [log Pr(z,Y | 6)] @)
the length ofr;. Even so, the majority of time spent The EM versign simply set§ = 1. A complete
by EM for such models is on the E steps. In this P2y arivation | td'ff'p)lit but i _t .I h f .
per, we can fairly compare the runtime of EM and e”V_a.'c.m IS Not diltcult but 1S oo fengthy 1o give
other training procedures by counting the number 0Eere, it is a straightforward extension of that given

) - Neal and Hinton for EM.
E steps they take on a given training set and model™” ) .
P y g g It is clear that the value of allows us to manip-

2.1 Generalizing EM ulate the relative importance of the two terms when

Figure 2 shows thdeterministic annealingDA) al- ~ Maximizing. When§ is close to 0, only the
gorithm derived from the framework of Rose et al. l&'m matters. Thel term is the Shannon entropy
(1990). It is quite similar to EM. However, DA of the posterior distributiop, which is known to be
adds an outer loop that iteratively increases a valu§Oncave ip. Maximizing itis simple: setalk to be

3, and computation of the posterior in the E step isequiprobable (the uniform distribution). Therefore
modified to involve this3. a sufficiently smallg drives up the importance of

H relative to the other term, and the entire problem
“Other expositions of DA abound; we have couched ours inbecomes concave with a single global maximum to
data-modeling language. Readers interested in the Lagrangiafyhich we expect to converge.

based derivations and analogies to statistical physics (including . -
phase transitions and the role®#&s the inverse of temperature In gradually mcreasmg? from near 0 to_l’_we,
in free-energy minimization) are referred to Rose (1998) for aStart out by solving an easy concave maximization

thorough discussion. problem and use the result to initialize the next max-




imization problem, which is slightly more difficult is nearly uniform. On the M step, this results in
(i.e., less concave). This continues, with the solu<lusters that are almost exactly identical; there is
tion to each problem in the series being used to ini-oneeffective clusterAs j3 is increased, it becomes
tialize the subsequent problem. Whémeaches 1, increasingly attractive for the cluster centroids to
DA behaves just like EM. Since the objective func- move apart, or “split” into two groups (two effective
tion is continuous in3 where3 > 0, we can vi- clusters), and eventually they do so. Continuing to
sualize DA as gradually morphing the easy concavéncreaseg yields a hierarchical clustering through
objective function into the one we really care aboutrepeated splits. Pereira et al. describe the tradeoff
(likelihood); we hope to “ride the maximum” &  given throughG as a control on the locality of influ-
moves toward 1. ence of each noun on the cluster centroids, so that as
DA guarantees iterative improvement of the ob-/3 is raised, each noun exerts less influence on more
jective function (see Ueda and Nakano (1998) fordistant centroids and more on the nearest centroids.
proofs). But it does not guarantee convergence to DA has also been applied in speech recognition.
a global maximum, or even to a better local maxi-Rao and Rose (2001) used DA for supervised dis-
mum than EM will find, even with extremely slow criminative training of HMMs. Their goal was
B-raising. A new mountain on the surface of theto optimize not likelihood but classification error
objective function could arise at any stage that igate, a difficult objective function that is piecewise-
preferable to the one that we will ultimately find.  constant (hence not differentiable everywhere) and
To run DA, we must choose a few control param-riddled with shallow local minima. Rao and Rose
eters. In this paper we s@l,.x = 1 so that DA applied DA? moving from training a nearly uni-
will approach EM and finish at a local maximum of form classifier with a concave cost surfage# 0)
likelihood. fmin and thes-increase factorr can be  toward the desired deterministic classifigt (—
set high for speed, but at a risk of introducing lo- +00). They reported substantial gains in spoken
cal maxima too quickly for DA to work as intended. letter recognition accuracy over both a ML-trained
(Note that a “fast” schedule that tries only a fgw classifier and a localized error-rate optimizer.
values is not as fast as one might expect, since itwill Brown et al. (1990) gradually increased learn-
generally take longer to converge at egchalue.)  ing difficulty using a series of increasingly complex
To conclude the theoretical discussion of DA, wemodels for machine translation. Their training al-
review its desirable properties. DA is robust to ini- 90rithm began by running an EM approximation on
tial parameters, since whehis close to 0 the ob- the simplest model, then used the result to initialize
jective hardly depends dh DA gradually increases th€ next, more complex model (which had greater
the difficulty of search, which may lead to the avoid- Prédictive power and many more parameters), and
ance of some local optima. By modifying the an-S© On. Whereas DA provides gradated difficulty
nealing schedule, we can change the runtime of thil! Parameter search, their learning method involves
DA algorithm. DA is almost exactly like EM in im- gradated difficulty among classes of models. The
plementation, requiring only a slight modification to WO are orthogonal and could be used together.

the E step (seg3) and an additional outer loop. 3 DA with dynamic programming

2.3 Prior work We turn now to the practical use of determinis-
tic annealing in NLP. Readers familiar with the
EM algorithm will note that, for typical stochas-
tic models of language structure (e.g., HMMs and
SCFGs), the bulk of the computational effort is re-
quired by the E step, which is accomplished by
a two-pass dynamic programming (DP) algorithm
_(like the forward-backward algorithm). The M step
Ofor these models normalizes the posterior expected
);ounts from the E step to get probabilitfes.

DA was originally described as an algorithm for
clustering data iR (Rose et al., 1990). Its pre-
decessorsimulated annealingmodifies the objec-
tive function during search by applying random per-
turbations of gradually decreasing size (Kirkpatrick
et al., 1983). Deterministicannealing moves the
randomness “inside” the objective function by tak
ing expectations. DA has since been applied t
many problems (Rose, 1998); we describe two ke
applications in language and speech processing. 3with an M step modified for their objective function: itim-
Pereira, Tishby, and Lee (1993) used DA for softproved expected accuracy ungenot expected log-likelihood.
hierarchical clustering of English nouns, based on, (T = assuiing B usis, senersue perereenalon o
the verbs that,seIeCt them as direct Obje(_:ts' In Fhelzlrjlown as Iog’-linear %r maximum entropy models) the M step,
case, whenj is close to 0, each noun is fuzzily \yhile still concave, might entail an auxiliary optimization rou-
placed in each cluster so thBt(cluster | noun)  tine such as iterative scaling or a gradient-based method.




Running DA for such models is quite simple and § 7 |

requires no modifications to the usual DP algo-g 70
rithms. The only change to make is in the valuesig
of the parameters passed to the DP algorithm: sim%
ply replace each; by&ﬁ. For a givene, the forward 2

pass of the DP computes (in a dense representatiorg 55

Fig. 3: Learning curvesfor |
EM and DA. Thestepsin DA’s
curve correspond to changesin 3. The-

shape of the DA curveis partly afunction
fof the annealing schedule, which only gradually |
5o i alowsthe parameters to move away from the |
uniform distribution.

— —

Pr(y | z, @) for all y. EachPr(y | z, 8) is a product

of some of they; (eachd; is multiplied in once for

each time its corresponding model event is present 45 0

in (z,y)). Raising thef; to a power will also raise

their product to that power, so the forward pass will,. . in the obiective function bet ¢

computePr(y | ,8)° when giverd® as parameter tive increase in the o_Jgectlve unction between two
’ i iterations fall belowl 0.

values. The backward pass normalizes to the sum;

in this case it is the sum of ther(y | =,6)?, and 4.1 Experiment

we have the E step described in Figure 2. We therem the DA condition, we s, = 0.0001, Bpax =

fore expect an EM iteration of DA to take the same1, anda = 1.2. Results for the completely unsuper-

amount of time as a normal EM iteratién. vised condition (no labeled data) are shown in Fig-
4 Part-of-speech tagging ure 3 and Table_ 1. Accur_acy was nearly monotonic:
the final model is approximately the most accurate.
We turn now to the task of inducing a trigram POS DA happily obtained a 10% reduction in tag er-
tagging model (second-order HMM) from an unla- ror rate on training data, and an 11% reduction on
beled corpus. This experiment is inspired by thetest data. On the other hand, it did not manage to
experiments in Merialdo (1994). As in that work, improve likelihood over EM. So was the accuracy
complete knowledge of the tagging dictionary is as-gain mere luck? Perhaps not. DA may be more re-
sumed. The task is to find the trigram transitionsjstant to overfitting, because it may favor models
probabilitiesPr(tag; | tag;_;,tag; ) and emis- \whose posteriorg have high entropy. At least in
sion probabilitiesr(word; | tag;). Merialdo's key  this experiment, its initial bias toward such models
I'eSU":f5 If some labeled data were used to initialize carried over to the final learned mod'eL
the parameters (by taking the ML estimate), then it |n other words, the higher-entropy local maxi-
was not helpful to improve the model’s likelihood mum found by DA, in this case, explained the ob-
through EM iterations, because this almost alwayserved data almost as well without overcommit-
hurt the accuracy of the model's Viterbi tagging onting to particular tag sequences. The maximum en-
a held-out test set. If Only a small amount of |abe|edtropy and latent maximum entropy princip|es (Wang

data was used (200 sentences), then some accuragyal., 2003, discussed in footnote 1) are best justi-
improvement was possible using EM, but only for fied as ways to avoid overfitting.

a feW iterations. When no Iabeled data were Used, For a Supervised tagger’ the maximum entropy

EM was able to improve the accuracy of the taggerprinciple prefers a conditional modet (7 | ) that
and this improvement continued in the long term. g maximally unsure about what tag sequepde

Our replication of Menaldp's experiment used gpply to the training word sequenge(but expects
the Wall Street Journal portion of the Penn Tree+the same feature counts as the tjleSuch a model
bank corpus, reserving a randomly selected 2,008 hoped to generalize better to unsupervised data.
§entences (48,526 WOI’dS) fOI’ testlng. The remain- We can make the same argument_ The Overﬁtting
ing 47,208 sentences (1,125,240 words) were used not evident from Table 1, however, because in our
in training, without any tags. The tagging dictionary setting the training/test split doest correspond to
was constructed using the entire corpus (as done byjpervised vs. unsupervised data. Our supervised
Merialdo). To initialize, the conditional transition gata are, roughly, the fragments of the training cor-
and emission distributions in the HMM were set to pus that are unambiguously tagged thanks to the

was smoothed using add-0.1 smoothing (at every M
step). The criterion for convergence is that the rela- “We computed the entropy over possible tags for each word
in the test corpus, given the sentence the word occurs in. On
SWith one caveat: less pruning may be appropriate becausaverage, the DA model had 0.082 bits per tag, while EM had
probability mass is spread more uniformly over different recon-only 0.057 bits per tag, a statistically significant differenge(
structions of the hidden data. This paper uses no pruning. 10~°%) under a binomial sign test on word tokens.
5Similar results were found by Elworthy (1994). Swithout the tag dictionary, our learners would treat the tag

200 400 600 800 1000 1200
EM iterations




final training cross- final test cross- % correct training tags % correct test tags
E steps| entropy (bits/word)| entropy (bits/word)| (all) (ambiguous)| (all) (ambiguous)
EM 279 9.136 9.3211] 82.04 66.61| 82.08 66.63
DA 1200 9.138 9.325| 83.85 70.02| 84.00 70.25

Table 1: EM vs. DA on unsupervised trigram POS tagging, using a tag dictionary. Each of the accuracy results is significant when
accuracy is compared at either the word-level or sentence-level. (Significapce at0~% under a binomial sign test in each

case. E.g., on the test set, the DA model correctly tagged 1,652 words that EM’s model missed while EM correctly tagged 726
words that DA missed. Similarly, the DA model had higher accuracy on 850 sentences, while EM had higher accuracy on only 287.
These differences are extremely unlikely to occur due to chance.) The differences in cross-entropy, compared by sentence, were
significant in the training set but not the test get( 0.01 under a binomial sign test). Recall that lower cross entropy means higher
likelihood.

parameters to these fragments. The higher-entropgccuracy of this model. We replicated these experi-
DA model may be less likely to overfit, allowing it ments and compared EM with DA; DA damaged the
to do better on the unsupervised data—i.e., the part:odels even more than EM. This is unsurprising; as
of the trainingandtest corpora with uncertain tags. noted before, DA effectively ignores the initial pa-
In summary, DA has settled on a local maximumrametersJq). Therefore, even if initializing with a

of the likelihood function that (unsurprisingly) cor- model trained on small amounts of labeled data had
responds well with the entropy criterion, and per-helped EM, DA would have missed out on this ben-
haps as a result, does better on accuracy. efit. In the next section we address this issue.

4.2 Significance

Seeking to determine how well this result general-
ized, we randomly split the corpus into ten equally-The EM algorithm is quite sensitive to the initial pa-
sized, nonoverlapping parts. EM and DA were runrameters) ). We touted DA's insensitivity to those

on each portiorf;the results were inconclusive. DA parameters as an advantage, but in scenarios where
achieved better test accuracy than EM on three ofvell-chosen initial parameters can be provided (as
ten trials, better training likelihood on five trials, in §4.3), we wish for DA to be able exploit them.

and better test likelihood on all ten tridi&. Cer- In particular, there are at least two cases where
tainly decreasing the amount of data by an order ofgood” initializers might be known. One is the
magnitude results in increased variance of the perease explored by Merialdo, where some labeled data
formance of any algorithm—so ten small corporawere available to build an initial model. The other is
were not enough to determine whether to expect aa situation where a good distribution is known over
improvement from DA more often than not. the labelgy; we will see an example of this i6.

43 Mixing labeled and unlabeled data (1) We wish to find a way to incorporate an initializer

N . ) into DA and still reap the benefit of gradated diffi-
In the other conditions described by Merialdo, vary-cylty. To see how this will come about, consider

ing amounts of labeled data (ranging from 100 SeNygain the E step for DA, which for ajf:
tences to nearly half oj the corpus) were used to Pr(a,y |6 Pr(z,y | 6)Puly)—"
initialize the parameter$, which were then trained Ply) = — = =2

using EM on the remaining unlabeled data. Only ] z (9’6_) o Z(_a’ﬁ)

in the case where 100 labeled examples were use¥here u is the_uniform dJSt”bUt'Onl ovefy and
and only for a few iterations, did EM improve the £ (0, 58) andZ(0, 5) = 2'(0, 8) - u(y) 7 are nor-
malizing terms. (Note thaf (¢, 5) does not depend
names as interchangeable and could not reasonably be evalé-ny because:(y) is constant with respect tp) Of
ated on gold-standard accuracy. course, wherg is close to 0, DA chooses the uni-

9 .
The smoothing parameters were scaled down so as to b, . . .
proportional to the corpus size. form posterior because it has the highest entropy.

91t js also worth noting that runtimes were longer with the ~ Seen this way, DA isnterpolatingin the log do-
10%-sized corpora than the full corpus (EM took 1.5 times asmain between two posteriors: the one givenioy

many E steps; DA, 1.3 times). Perhaps the algorithms travele n ; . ; ; 3
farther to find a local maximum. We know of no study of the g;lnd@ and the uniform one; the interpolation coef

effect of unlabeled training set size on the likelihood surface,ﬁCi_":‘nt is 3. TO generalize DA,_We will replace the
but suggest two issues for future exploration. Larger datasetsiniform « with another posterior, the “skew” pos-
contain more idiosyncrasies but provide a stronger overall sigterior 5, which is an input to the algorithm. This

nal. Hence, we might expect them to yield a bumpier Iikelihooq posterior might be specified directly, as it will be in
surface whose local maxima are more numerous but also dift

fer more noticeably in height. Both these tendencies of Iarger§6’ or it m|g'ht_ 'beqcomputed using an M step from
datasets would in theory increase DAs advantage over EM. some good |n|t|al9(0).

5 Skewed deterministic annealing




TheskewedA (SDA) E step is given by: where) is a conditional distribution over possible
1 . . . .

S\ Pr(z,y | 6)°p(y) " 3 tag-sequence yields (given whether the yield is a

Ply) Z(B) @y | 6)°5) ) constituent or not) ang is a conditional distribu-
When g is close to 0, the E step will choogeto tion over possible contexts of one tag on either side
be very close tgp. With small 3, SDA is a “cau-  of the yield (given whether the yield is a constituent
tious” EM variant that is wary of moving too far or not). There are therefore four distributions to be
from the initializing posteriop (or, equivalently, the estimatedPr(y) is taken to be uniform.
initial parameterd)). As § approaches 1, the ef-  The model is initialized using expected counts of
fect of p will diminish, and wheng = 1, the algo-  the constituent and context features given that all
rithm becomes identical to EM. The overall objec- the trees are generated according to a random-split

tive (matching (2) except for the boxed term) is: modelll
7 1 Lo 7 The CCM generates each tag not once®(it?)
7 <9’p7 5) - EH(p) + B [log Pr (“ Y 9)} times, once by every constituent or non-constituent

5 span that dominates it. We suggest the following
+| —=E;y {log}ﬁ (?)} (4)  modification to alleviate some of the deficiency:

8 Pr(z,y) = Pr(y) - H {1/1 (:cf yi,p)

1<i<j<|z|
X (i1, x| Vi)

Mixing labeled and unlabeled data (II) Return-
ing to Merialdo’s mixed condition$;¢.3), we found _ N )
that SDA repaired the damage done by DA but didThe change is to condition the yield featupeon
not offer any benefit over EM. Its behavior in the thelengthof the yield. This decreases deficiency by
100-labeled sentence condition was similar to thaflisallowing, for example, a constituent over a four-
of EM’s, with a slightly but not significantly higher tag yield to generate a seven-tag sequence. It also
peak in training set accuracy. In the other condi-decreases inter-parameter dependence by breaking
tions’ SDA behaved ||ke EM, W|th Steady degrada_'-the constituent (and non'ConStituer.]t) diStribU:tionS
tion of accuracy as training proceeded. It ultimatelyinto a separate bin for each possible constituent
damaged performance only as much as EM did otength. We will refer to Klein and Manning's CCM
did slightly better than EM (but still hurt). and our version as models 1 and 2, respectively.
This is unsurprising: Merialdo’s result demon- .
strated that ML and maximizing accuracy are gener-e'2 Experiment
ally not the same; the EM algorithm consistently de-We ran experiments using both CCM models on
graded the accuracy of his supervised models. SDAhe tag sequences of length ten or less in the Wall
is simply another search algorithm with the sameStreet Journal Penn Treebank corpus, after extract-
criterion as EM. SDAdid do what it was expected iNg punctuation. This corpus consists of 7,519 sen-

to do—it used the initializer, repairing DA damage. tences (52,837 tag tokens, 38 types). \We report
PARSEVAL scores averaged by constituent (rather

6 Grammar induction than by sentence), and do not give the learner credit

We turn next to the problem of statistical grammarfor getting full sentences or single tags as con-
induction: inducing parse trees over unlabeled textstituents'? Because the E step for this model is
An excellent recent result is by Klein and Manning computationally intensive, we set the DA parame-
(2002). The constituent-context model (CCM) theyters atfyi, = 0.01,a = 1.5 so that fewer E steps
present is a generative, deficient channel model owvould be necessafy. The convergence criterion
POS tag strings given binary tree bracketings. Wevas relative improvement 107 in the objective.
first review the model and describe a small mod- The results are shown in Table 2. The first point
ification that reduces the deficiency, then compardo notice is that a uniform initializer is a bad idea,

both models under EM and DA.
] \we refer readers to Klein and Manning (2002) or Cover
6.1 Constituent-context model and Thomas (1991, p. 72) for details; computing expected

Let (x’ y) be a (tag sequence, binary tree) pmi counts fc?r a sentence is a qlqsfeq fo_rm opere}tion. Klgin and
denotes the subsequencezofrom the ith to the Mannlngs argument for this initialization step is that it is less
‘th word. Letw: . be 1 if the vield fromi to 7 is a biased toward balanced trees than the uniform model used dur-
éonstitue'nt in?#]ﬂe treg and O ?]i it is not Thé]CCM ing learning; we also found that it works far better in practice.

- . he followi bability: 12This is why the CCM 1 performance reported here differs
givestoa pall(x, y) the fo owmg_pro aoility: from Klein and Manning’s; our implementation of the EM con-
Pr(e,y) =Pry)- [[ |v (<

yi_]) dition gave virtually identical results under either evaluation
1<i<i<|a| ' scheme (D. Klein, personal communication).
T X (w1, w41 Y g) 13A pilot study got very similar results fQBmi, = 107°.




E steps| cross-entropy (bits/tag) UR upP F CB

CCM1 EM (uniform) 146 103.1654| 61.20 45.62 52.27 1.69
DA 403 103.1542| 55.13 41.10 47.09 1.91

EM (split) 124 103.1951| 78.14 58.24 66.74 0.98

SDA (split) 339 103.1651| 62.71 46.75 53.57 1.62

CCM 2 EM (uniform) 26 84.8106| 57.60 4294 49.20 1.86
DA 331 84.7899| 40.81 30.42 34.86 2.66

EM (split) 44 84.8049| 78.56 58.56 67.10 0.98

SDA (split) 290 84.7940| 79.64 59.37 68.03 0.98

Table 2: The two CCM models, trained with two unsupervised algorithms, each with two initializers. Note that DA is equivalent
to SDA initialized with a uniform distribution. The third line corresponds to the setup reported by Klein and Manning (2002).
UR is unlabeled recall, UP is unlabeled precisidhis their harmonic mean, and CB is the average number of crossing brackets
per sentence. All evaluation is on the same data used for unsupervised learning (i.e., there is no training/test split). The high
cross-entropy values arise from the deficiency of models 1 and 2, and are not comparable across models.

as Klein and Manning predicted. All conditions but  In order to get multiple points of comparison of
one find better structure when initialized with Klein EM and SDA on this task with a larger amount of
and Manning’s random-split model. (The exceptiondata, we jack-knifed the WSJ-10 corpus by split-
is SDA on model 1; possibly the high deficiency of ting it randomly into ten equally-sized nonoverlap-
model 1 interacts poorly with SDA's search in someping parts then training models on the corpus with
way.) each of the ten sub-corpora excludédrhese trials
Next we note that with the random-split initial- are not independent of each other; any two of the
izer, our model 2 is a bit better than model 1 onsub-corpora hav% of their training data in com-
PARSEVAL measures and converges more quicklymon. Aggregate results are shown in Table 3. Using
Every instance of DA or SDA achieved higher model 2, SDA always outperformed EM, and in 8 of
log-likelihood than the corresponding EM condi- 10 cases the difference was significant when com-
tion. This is what we hoped to gain from annealing:paring matching constituents per sentence (7 of 10
better local maxima. In the case of model 2 withwhen comparing crossing constituent$)rhe vari-
the random-split initializer, SDA significantly out- ance of SDA was far less than that of EM; SDA not
performed EM (comparing both matches and crossenly always performed better with model 2, but its
ing brackets per sentence under a binomial sign tesperformance was more consistent over the trials.
p < 107%); we see a> 5% reduction in average  We conclude this experimental discussion by cau-
crossing brackets per sentence. Thus, our stratedioning that both CCM models are highly deficient
of using DA but modifying it to accept an initial- models, and it is unknown how well they generalize
izer worked as desired in this case, yielding our besto corpora of longer sentences, other languages, or
overall performance. corpora of words (rather than POS tags).
The systematic results we describe next suggest
that these patterns persist across different trainind Future work

sets in this domain. There are a number of interesting directions for fu-
ture work. Noting the simplicity of the DA algo-

e ) o . rithm, we hope that current devotees of EM will
The difficulty we experienced in finding generaliza- ., comparisons of their models with DA (or SDA).
tion to small datasets, discussed#h?2, was appar-

ent here as well. For 10-way and 3-way random, “*Note that this isot a cross-validation experiment; results
nonoverlapping splits of the dataset, we did not havere reported on the unlabeled training set, and the excluded sub-
consistent results in favor of either EM or SDA. In- °°§E§; L?};?;'Z?g‘:}”t:zfdwith significance definedgse 0.05
terestingly, we found that training model 2 (usmgthough all significant results hag< 0.001. ’

EM or SDA) on 10% of the corpus resulted on av- TO0% SO0%

erage in models that performed nearly as well on o corpus o corpus

6.3 Significance

their respective training sets as the full corpus con-serT—Ev 1 6200 L0911 66 12— 06643
dition did on its training set; see Table 3. In ad- SDA | 63.00 4.689| 5353 0.2135
dition, SDA sometimes performed as well as EM [cCM2 EM 166.74 1.402 67.24 0.7077
under model 1. For a random two-way split, EM SDA || 66.77 1.034| 68.07 0.1193

and SDA converged to almost identical solutions on

one of the sub-corpora, and SDA outperformed EMTable 3: The meap and standard deviation of F-measure
L ' performance for 10 trials using 10% of the corpus and 10 jack-
significantly on the other (on model 2). knifed trials using 90% of the corpus.



Not only might this improve performance of exist- These results support the case that annealing tech-
ing systems, it will contribute to the general under-niques in some cases offer performance gains over
standing of the likelihood surface for a variety of the standard EM approach to learning from unla-
problems (e.qg., this paper has raised the question dfeled corpora, particularly with large corpora.
how factors like dataset size and model deficiency
affect the likelihood surface). Acknowledgements
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