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Much of my research in computational linguistics has been bound up with two emerging strategies
of the 1990's: statistical optimality and phonological optimality.

Statistics properly used can translate and enrich linguistic theories|rather than replacing
them|and can connect those theories to processing models. That is, the statistical worldview
need not be tied to simplistic engineering tricks: it is a plausible framework for rethinking linguis-
tic competence, variation, and acquisition (see e.g. Abney 1996). Statistical techniques emerged
in the computational community as a way of coping with real-world, ambiguity-riddled, sometimes
ungrammatical language. I have worked to incorporate more linguistic sophistication into the
statistical models|obtaining both linguistic and computational payo�s.

Optimality Theory, by contrast, has developed in the world of pure linguistics. It has been used
primarily as a framework for thinking about phonologies, but has some computational trappings.
I have worked to add more computational sophistication to OT|proposing constraints on
constraints, a representational formalism, and an e�cient generation algorithm that can handle
in�nite candidate sets. Again, the bene�ts are interdisciplinary: well-speci�ed theories are more
congenial for both linguists and computers.

Statistical Syntax

Statistics is a useful response to the poverty of the stimulus. It is the science of reasoning under
uncertainty, for drawing conclusions from limited or incomplete or noisy data. And limited, incom-
plete, noisy data is exactly what we humans are faced with|not only when learning language, but
also when conversing with anyone who prefers to mumble rather than draw full syntactic structures.
I have been especially interested in statistical notions of syntactic competence and processing.

Parsing

A constraint on language comprehension is that it must take ambiguity in stride. A typical newspa-
per sentence has hundreds of possible parses. Humans unconsciously rule out almost all of these|
avoiding implausible modi�er attachments, and avoiding perverse conspiracies of rare grammatical
constructions and word senses.

Since many parses are admissible, a good strategy is to bet on the most probable parse tree.
In the case of a lexicalized grammar formalism (such as LFG, HPSG, LTAG, LCFG, CG, DG, or
Minimalism), we can de�ne a probable parse tree as one that is assembled from probable lexical
entries.

Thus statistical parsing requires us to associate the entries of a syntactic lexicon with probabilities|
yielding a kind of extended notion of syntactic competence. We need to know that \eat" is most
commonly used as a simple transitive or intransitive verb, at 40% and 45% respectively. Less
probable lexical entries for \eat" describe other possible local syntactic con�gurations, which may
involve particles (\eat up"), passivization, object extraction, and so on.

In practice, this idea proves to be quite successful when combined with a statistical notion of
selectional preferences, i.e., the obvious semantic notion that \eat" prefers certain complements
and adjuncts to others. In 1992 at Bell Labs, Mark Jones and I built the �rst statistical parser to
use such semantic preferences, which reduced our error rate �vefold. My subsequent work studied
and improved the probability models and developed more e�cient parsing algorithms, resulting in
a 1996 parser that achieved a state-of-the-art 93% accuracy (with partial credit) on Wall Street
Journal sentences.
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Inducing Grammars From Examples (thesis)

Parsing with probabilities is all very well, but where does the grammar come from? We need to
extrapolate a complete syntactic lexicon, with probabilities, based on only the entries that have
shown up in a small collection of sample parses.

We could try to simply scan the sample parses and tally the various lexical entries used. Alas,
there are never enough. For English we are fortunate to have a \treebank" of 50,000 hand-parsed
Wall Street Journal sentences, created at a cost of $250,000|but for a typical new Wall Street
Journal sentence, even the treebank omits 5{20% of the lexical entries needed for a correct parse.

For this reason, we must always 
esh out the lexicon somehow. Current practice is to do a
quick-and-dirty job, using crude statistical techniques. But is there a more principled and accurate
approach?

The answer is yes. We need to discover and exploit the internal, language-speci�c structure
of the lexicon.1 The various lexical entries for \eat" mentioned earlier are not independent of one
another. They are related by the syntactic principles of English, such as Bresnan's (1978) rule
that derives passive lexical entries from active transitive ones. Knowing these principles is part
of grammatical competence. If the sample parses use a rare word \snurf" as a transitive verb, a
competent speaker can infer the corresponding passive lexical entry; or conversely, from the passive,
she can reconstruct the active that it was probably derived from. Similarly, one can estimate the
probability that \snurf" allows object drop, middle formation, heavy shift, and so on. The rules
involved are essentially transformations that apply within the syntactic lexicon, where they can
permute the local domain of a lexical head or introduce placeholders for long-distance gaps.

How to make use of this idea? There are several challenges. First, we need a way to correctly
discover the language's lexical redundancy rules, such as active ! passive, by studying the lexical
entries that happen to be attested in the sample parses. Second, our rules have to attach probabil-
ities to the new lexical entries they create. Third, in encoding systematic structure in the lexicon,
we don't want to override the lexicon's traditional ability to represent well-attested idiosyncrasy:
after all, some verbs don't passivize, and some passivize at an unusually high rate.

My approach is guided by Occam's Razor: other things equal, a lexicon is more likely to be
right if it has more derived entries and fewer listed ones. In a probabilistic lexicon, a \derived"
lexical entry is one whose associated probability is well-predicted from the other entries via lexical
redundancy rules. Any deviation from this prediction corresponds to \listing" or \delisting" the
entry, so we prefer deviations to be numerically close to zero.

The learner starts with a universal set of possible rules, which are initially assumed to apply
infrequently. The rules compete in parallel, and apply in sequence, to convert lexical entries of
various kinds into other lexical entries. An \obligatory transformation" is a rule that converts
A! B at a rate near 100%; a rate of 50% can arrange for A and B to be about equally probable
lexical entries, since half the A's are transformed; and a rate near 0% means that the transformation
does not apply in the language.

The learner continuously adjusts the transformation rates and lexical entry probabilities in order
to optimize the lexicon. On the one hand, we try to arrange for the lexical entries' probabilities to be
well-predicted from each other via transformations, as discussed above. On the other, we also try to
arrange for the probabilities to account well for the entries' observed frequencies among the sample
parses. This delicate balance between generalization and empirical description is implemented by
a hierarchical Bayesian model that also incorporates a number of other statistical techniques.

1Recall that in a lexicalized theory of grammar, the compositional apparatus is simple and universal. The lexicon
is therefore the seat of all language-speci�c information|systematic as well as idiosyncratic.
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In a direct comparison, this procedure induces better grammars from English newspaper text
than any described in the literature. (The objective measure is cross-entropy, i.e., the ability of the
induced lexicon to predict unseen test data.) Moreover, the transformations it identi�es as having
high rates in English can be inspected directly and are plausible. The approach is 
exible enough
to accomodate a wide range of linguistic frameworks, i.e., notions of what lexical entries and the
rules transforming them should look like in natural language grammars.

Learning from Scratch (future work)

The Achilles' heel of the work described above is its dependence on a corpus of sample parses.
One would like to reduce or eliminate that dependence. Children learn language from raw speech
signals, situated in a real-world environment. Could a computer induce a grammar from raw text?
What innate statistical biases would help it do so?

Raw text is intuitively useful in gradually extending one's grammatical competence. Humans
can usually parse a sentence that contains a single novel lexical entry (i.e., a novel word or con-
struction). Statistical parsers also have this ability, and for the same reason: the requirements of
the surrounding context make a particular parse overwhelmingly likely.

Thus, a child or computer reading an age-appropriate text may have to skip the most di�cult
sentences, but there are other sentences|at the edge of its competence|for which it will posit novel
lexical entries with high con�dence. The strength of the transformation-learning model above is
that it can generalize from these novel lexical entries, in a kind of one-shot learning. In short,
parsing raw text can result in interesting new sample parses that can in turn be fed back into the
statistical engine to improve the grammar.

I also plan to incorporate further linguistic ideas into the syntactic model. For example, the
model currently cannot distinguish \NP ate" (object drop) from \NP opened" (decausative), al-
though these distinctions in the �-grid correlate usefully with selectional preferences. It also has
no real ability to learn word classes (e.g., � telic, � animate).

Primitive Optimality Theory

Optimality Theory is an elegant framework for phonological description. In practice, though, it has
produced something of a zoo of ad hoc descriptive constraints. To have a falsi�able theory making
strong universal claims about the phonological apparatus, we must tackle some central questions:

� The Con question: What constraints are allowed?

� The Gen question: What (kind of) representations do they constrain?

Formalizing what OT can and cannot say is part of stating UG. In addition, computational work on
OT is impossible without a (good or bad) formalization. I have proposed a restrictive formalization
that is empirically motivated and easy to use, yet surprisingly clean and computationally tractable.

The Primitive Constraints

A reasonable start is to look at the hundreds of constraints that are proposed in the 200+ papers
on the Rutgers Optimality Archive. They have more in common than one might think at �rst
glance. Two simple, highly local families are ubiquitous, and can serve a unifying function:

(1) Alignment/Licensing : � ! � \Each � overlaps with some �."
(If not, it incurs one violation.)

(2) Disalignment/Clash: � ? � \Each � overlaps with no �."
(One violation for each overlap.)
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In these constraints, � and � may be either autosegmental objects (features, syllables, mor-
phemes) or their edges.2 I use a carefully formalized variant of autosegmental phonology in which
autosegmental objects have explicit edges. Autosegmental association and I-O Correspondence are
both represented simply by temporal overlap of the relevant objects along an unmarked \timeline."

The primitive constraint families are extremely well-attested. I have compiled a list of over 120
distinctive constraints from the OT literature, which shows each formal possibility allowed by these
families to be widely used, not only cross-linguistically but across several domains of phonology:
features, prosody, feature-prosody interaction, I-O relations (not limited to Correspondence), and
morphophonology. A few examples are given in (3){(6) at the end of this section.

Adequacy of the Primitive Constraints

What would happen if OT allowed only the primitive constraints? What would the resulting system
of \primitive OT" (OTP) look like, and would it be descriptively adequate?

I have hardly been able to �nd any constraint in the literature that cannot be replaced by a
primitive constraint or a small block of them. Relying on these carefully speci�ed, well-attested
families, and using their consistent notation, can make rigorous descriptive work in OT much easier
to carry out. It seems that phonology may be mainly about local alignment and disalignment!

The one big exception is the Generalized Alignment (GA) family. The primitive alignment
constraint given in (1) is purely local (cf. Zoll 1996). But GA needs to perform non-local, arithmetic
tricks such as measuring the distance from every foot to the edge of the word and summing these
distances. GA is a questionable mechanism for phonology, since it can be used to achieve unattested
e�ects of greater than context-free power (!), such as requiring a pair of 
oating tones to fall 1

4
and

3

4
of the way through a word. OTP is provably unable to describe such a phonology; it is therefore

more constrained than GA.
Can we eliminate GA in favor of the primitive constraints? The non-local, distance-counting

features of GA have been most central in accounts of metrical stress. However, non-OT accounts
of metrical stress have scrupulously avoided using any mechanisms with such power.

To answer this question, I have published an explanatory typology of metrical stress that uses
only primitive constraints. \Iterative" footing e�ects result not from GA but from interactions of
an extrametricality constraint with constraints on local stress clash or lapse. Indeed, the typology
uses a single, coherent, rerankable set of primitive constraints to obtain all the basic facts about
metrical stress3|including the well-known gaps and asymmetries in the non-OT paradigm of Hayes
(1995). These gaps and asymmetries fall out of the account naturally; they can be traced back
to the onset-coda asymmetry and the nearly universal preference for right-edge extrametricality.
The typology also makes a new prediction|that left-to-right trochees should be incompatible with
right-edge extrametricality|which is robustly con�rmed in Hayes's survey of languages. GA-based
accounts can stipulate these facts but explain none of them.

Computational Properties

On the simplest assumptions about Gen|roughly, that it can place anything anywhere|Optimality
Theory has to choose among in�nitely many candidates. This poses a challenge for processing. It
also makes it di�cult for linguists to be sure what their grammars predict.

2Certain limited forms of conjunction and disjunction can also be used when specifying � or �. For example, �
may refer to voiced continuants.

3Iambic and trochaic foot form, quantity sensitivity, iambic lengthening, unbounded feet, simple word-initial and
word-�nal stress, directionality of footing, syllable (and foot) extrametricality, degenerate feet, and word-level stress.

4



Once the system has been pinned down formally, however, we can bring computational tech-
niques to bear on the generation problem. I have designed and implemented an e�cient algorithm
that can perform the required optimization for OTP grammars. The algorithm uses �nite-state
automata to represent the successively winnowed, potentially in�nite candidate sets.

I have also proved a number of computational results about the formal power and computational
complexity of OTP, and its relationship to other formal accounts of the phonological device.

Future Work

On the linguistic side, I am interested in continuing to study the descriptive and explanatory ade-
quacy of the OTP formalism as new ideas develop in the OT community. One area for exploration
concerns \sequential" versions of the primitive constraints|versions in which a violation incurred
at point x is irredeemably worse than if it had been incurred at any point to the left of x. I would
also like to explore the potential of OT syntax, although that area is still too immature to formalize.

On the computational side, the time is ripe for working on OTP algorithms that can do e�cient
comprehension and learning, not just generation.

Examples

(3) a. Fill-F(R): ]F ! ]� (cf. Inkelas, ROA-39)
\Feet must end on syllable boundaries."

b. NonFinality: ]F ? ]PrWd (N�i Chios�ain, ROA-89)
\Feet should not be word-�nal."

c. *Ons/N: � [ ? nas[ (Smolensky, ROA-86)
\Syllables may not begin with nasal segments."

(4) a. NasVoi: nas ! voi (Itô, Mester, & Padgett, ROA-38)
\Nasals must be voiced."

b. *TENSE-low: tense ? low (Benua, ROA-74)
\No tense low vowels."

c. Parse �: � ! � (Myers, ROA-6)
\Every mora must be contained in a syllable." (Actually \must overlap," but separate prosodic
hierarchy constraints � [ ! �[ and ]� ! ]� prevent it from being only partly contained in the
syllable.)

(5) a. Min-2m: F ! ]� (Green & Kenstowicz, ROA-101)
\A metrical foot contains at least two moras."

b. Geminate: C ? ]� (Oostendorp, ROA-84)
\No geminate consonants."

(6) a. MaV(Pro): round ! ( back or stress ) (F�ery, ROA-34)
\Umlauted vowels fall in prominent syllables. That is, a +round vowel that fails to be +back
must bear stress."

b. CodaCond: ( ]C and ]� ) ? ]lab (cf. Lombardi, ROA-105)
\No syllable-�nal consonant may bear a labial feature."

Other Interests

I am interested in various formalisms for syntax, in semantic theory, and in the data that motivate
these. I would also be happy to advise students interested in applied research in natural language
engineering, such as text processing or information retrieval (IR), where I have co-authored patents.
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