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Abstract

A finite-state machine withn tapes describes a rational (or regular) relation onn strings. It is
more expressive than a relational database table withn columns, which can only describe afinite
relation.

We describe some basic operations onn-ary rational relations and propose notation for them. (For
generality we give the semiring-weighted case in which each tuple has a weight.) Unfortunately, the
join operation is problematic: if two rational relations are joined on more than one tape, it can lead
to non-rational relations with undecidable properties. We recast join in terms of “auto-intersection”
and illustrate some cases in which difficulties arise. We close with the hope that partial or restricted
algorithms may be found that are still powerful enough to have practical use.

1 Introduction

Multi-tape finite-state machines(FSMs) (Rabin and Scott, 1959; Elgot and Mezei, 1965; Kay, 1987;
Kaplan and Kay, 1994) are a natural generalization of the familiar one- and two-tape cases, known
respectively as finite-state acceptors and transducers.

An n-tape FSM characterizesn-tuples of strings. The set of tuples that it accepts is called ann-ary
relation. If the FSM is weighted, it defines a weightedn-ary relation that assigns eachn-tuple a weight
(in some semiring), such as a probability.

The relations defined by FSMs are known asrational (or regular) relations. Our interest inn-
tuples stems from our view of these relations as relational databases. In the familiar casen = 2, a
finite-state transducer can be regarded as a kind of (weighted) database of string pairs—for example,
〈spelling, pronunciation〉, 〈French word, English word〉, or 〈parent concept, child concept〉. An acyclic
transducer can represent any finite database of this sort. Shared substrings can make the representation
particularly efficient: a hypothesis lattice for speech processing (Mohri, 1997) represents exponentially
many pairs in linear space.



Unlike a classical database, a transducer may even define infinitely many pairs. For example, it
may characterize the pattern of the spelling-pronunciation relationship in such a way that it can map
even a novel word’s spelling to zero or more possible pronunciations (with various weights), and vice-
versa. Another transducer may attempt to map not just a word but a sentence of unbounded length to an
annotated, corrected, or translated version.

On this database view, it is natural to consider relations with more than 2 columns. In natural lan-
guage processing, multi-tape machines have recently been used to represent lattices of〈speech, gesture,
interpretation〉 triples for processing multimodal input (Bangalore and Johnston, 2000). They have also
been used in the morphological analysis of Semitic languages, using multiple tapes to synchronize the
vowels, consonants, and templatic pattern into a surface form (Kay, 1987; Kiraz, 2000). They may
be similarly useful for coordinating the multiple tiers of autosegmental phonology or articulator-based
speech recognition (Livescu, Glass, and Bilmes, 2003).

Unfortunately, one pays a price for allowing infinite multi-column databases. Finite-state methods
derive their power from arational algebra, which can combine simple FSMs using operations such as
union, closure, and composition. Databases similarly derive their power from arelationalalgebra. Cyclic
FSMs are closed under the rational operations, but not under the relational operations, as finite databases
are. For example, transducers are not closed under intersection (Rabin and Scott, 1959).

In this paper, we give a formal discussion of semiring-weightedn-ary relations (Section 2). We
define several useful operators (Section 3), offering useful notation and taking care to distinguish cases
that preserve the rationality of relations from those that do not.

The focus of the paper is a database join operator1 that generalizes intersection, composition, and
cross product (Section 3.3). Certain cases of join (single-tape or finite) are guaranteed to preserve ratio-
nality and appear practically useful.

In Section 3.4, we reduce the join problem to a somewhat simpler problem of “auto-intersection”
(Kempe, Guingne, and Nicart, 2004). In Section 4, we illustrate how auto-intersecting two tapes of
a rational relation may produce a variety of non-rational weighted or unweighted relations, including
context-sensitive languages whose emptiness is undecidable. We leave open the possibility that there
may exist a partial or approximate algorithm with enough coverage to have some practical use.

2 Definitions

After recalling the basic definitions of a monoid and a semiring, we definen-ary weighted relations
andn-tape weighted finite-state machines. Our definitions follow the usual definitions for multi-tape
finite-state automata (Elgot and Mezei, 1965; Eilenberg, 1974), with semiring weights added just as for
acceptors and transducers (Kuich and Salomaa, 1986; Mohri, Pereira, and Riley, 1998).

2.1 Semirings

A monoid is a structure〈M, ◦, 1̄〉 consisting of a setM , an associative binary operation◦ on M , and
a neutral element̄1 such that̄1 ◦ a = a ◦ 1̄ = a for all a ∈ M . A monoid is calledcommutativeiff
a ◦ b = b ◦ a for all a, b∈M .

A semiringis a structureK = 〈K,⊕,⊗, 0̄, 1̄〉 consisting of a setK, two binary operations,⊕ (col-
lection) and⊗ (extension), and two neutral elements,0̄ and1̄, that satisfies the following properties:

• 〈K,⊕, 0̄〉 is a commutative monoid

• 〈K,⊗, 1̄〉 is a monoid

• extension isleft- andright-distributiveover collection:
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) , (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) , ∀a, b, c∈K



• 0̄ is an annihilator for extension:̄0⊗ a = a⊗ 0̄ = 0̄ , ∀a∈K

Examples of semirings are:

1. 〈{FALSE, TRUE},∨,∧, FALSE, TRUE〉 : the boolean semiring, which can be used to define un-
weighted relations and machines.

2. 〈N,+,×, 0, 1〉 : a non-negative integer semiring.

3. 〈R≥0,+,×, 0, 1〉 : a non-negative real semiring that can be used to model probabilities.

4. 〈R≥0 ∪ {∞},min,+,∞, 0〉 : a “tropical” semiring, sometimes used to model negative logarithms
of probabilities.

5. 〈2Σ∗
,∪, ·, ∅, {ε}〉 : the semiring of unweighted languages over an alphabetΣ under union∪ and

pairwise concatenation·. Note that this has a subsemiring consisting of only the regular languages.
(Similar semirings exist whose elements are weighted languages and relations, but we do not define
them here.)

A semiring can have additional properties, and in this article we are interested in the following two:

1. commutativity: a⊗ b = b⊗ a , ∀a, b∈K
2. idempotency:a⊕ a = a , ∀a∈K

All examples above are commutative, except the last one, which is commutative only if|Σ| = 1. Exam-
ples 1, 4, and 5 are idempotent.

We will use the following notations for repeated collection and extension of a single valuek ∈ K:

ik = k ⊕ k ⊕ · · · ⊕ k (i times) (1)

ki = k ⊗ k ⊗ · · · ⊗ k (i times) (2)

Note thatik does not in general meani ⊗ k. Usually the latter is not even defined, as the integeri ∈ N
is usually not an element of the semiring.

2.2 Weightedn-ary Relations and Multi-Tape Weighted Finite-State Machines

A weightedn-ary relation is a function from(Σ∗)n to K, for a given finite alphabetΣ and a given weight
semiringK = 〈K,⊕,⊗, 0̄, 1̄〉. In other words, the relation assigns a weight to anyn-tuple of strings. A
weight of 0̄ can be interpreted as meaning that the tuple is not in the relation.

We are especially interested inrational (or regular) n-ary relations—that is, relations that can be
encoded byn-tape weighted finite-state machines, which we now define.

We adopt a convention that variable names referring ton-tuples of strings include a superscript(n).
Thus we writes(n) rather than~s for a tuple of strings〈s1, . . . , sn〉. We also use this convention for
the names of more complex objects that containn-tuples of strings, such asn-tape automata and their
transitions and paths.

An n-tape weighted finite-state machine(WFSM orn-WFSM),1 A(n), is defined by a six-tuple

A(n) = 〈Σ, Q,K, E(n), λ, %〉 (3)

with Σ being a finite alphabet,Q a finite set of states,K = 〈K,⊕,⊗, 0̄, 1̄〉 the semiring of weights,
E(n) ⊆ (Q × (Σ∗)n × K × Q) a finite set of weightedn-tape transitions,λ : Q → K a function that
assigns initial weights to states, and% : Q → K a function that assigns final weights to states.

1We follow some recent literature in using the term “machine” rather than “automaton.” The acronym to refer to the general
n-tape case is then FSM orn-FSM, which leaves the acronym FSA available to refer to the special case of a finite-stateacceptor
(n = 1). FST refers to the special case of a finite-state transducer (n = 2).



Any transitione(n)∈E(n) has the form

e(n) =〈p, `(n), w, n〉 (4)

We refer to these four components as the transition’s source statep(e(n))∈Q, its label`(e(n))∈ (Σ∗)n,
its weightw(e(n))∈K, and its target staten(e(n))∈Q.

A pathγ(n) of length` ≥ 0 is a sequence of transitionse(n)
1 e

(n)
2 · · · e(n)

` such thatn(e(n)
i )=p(e(n)

i+1)
for eachi∈ [[1, `−1]]. A path’s label is defined to be the elementwise concatenation of the labels of its
transitions:

`(γ(n)) def= `(e(n)
1 ) · `(e(n)

2 ) · · · · · `(e(n)
` ) (5)

This is ann-tuple of strings having the forms(n) = 〈s1, s2, . . . , sn〉. The path’s weight is defined to be

w(γ(n)) def= λ(p(e(n)
1 ))⊗

 ⊗
j∈[[1,`]]

w
(
e
(n)
j

)⊗ %(n
(
e
(n)
` )

)
(6)

The path is said to besuccessful, and toacceptits label, ifw(γ(n)) 6= 0̄. We denote byΓA(n) the set of
all successful paths ofA(n), and byΓA(n)(s(n)) the set of successful paths (if any) that accepts(n) :

ΓA(n)(s(n)) = { γ(n)∈ΓA(n) | s(n) =`(γ(n)) } (7)

Now, the machineA(n) defines a weightedn-ary relationR(A(n)) : (Σ∗)n → K that assigns to each
n-tuple,s(n), the total weight of all paths accepting it:

RA(n)(s(n)) def=
⊕

γ(n)∈Γ
A(n) (s

(n))

w(γ(n)) (8)

It is convenient to define thesupportof an arbitrary weighted relationR(n), meaning the set of tuples
to which the relation gives non-0̄ weight:

support(R(n)) def= { s(n) ∈ (Σ∗)n | R(n)(s(n)) 6= 0̄ } (9)

This support set can be regarded as an ordinary unweighted relation obtained fromR(n). A different
perspective on unweighted relations is that they are weighted relations over the boolean semiring, i.e.,
functions from(Σ∗)n → {FALSE, TRUE}.

2.3 Infinite Sums

In definingR(A(n)), we glossed over one point for simplicity’s sake. A sum over finitely many weights
can be computed by repeated application of⊕. But (8) may sometimes call for an infinite sum, whose
meaning has not been defined. This case arises ifRA(n) contains any cyclic paths with the label
〈ε, ε, . . . ε〉. Cyclic paths of this sort cannot simply be disallowed in a natural way, since they can be
re-introduced by the closure and projection operations discussed below.

Briefly, the solution is to pre-compute the geometric sumk∗ =
∞⊕
i=0

ki ∈ K for eachk ∈ K.2

In practice, one simply defines aclosureoperator∗ that satisfies certain axioms, obtaining a so-called
closed semiring.

This allows infinite sums over anyregular set of paths, as required by (8) and by section 3’s equa-
tions (11), (12), (13), and (21). One constructs a WFSM containing just those paths (e.g.,ΓA(n)(s(n))),
and then sums their weights with an algorithm that generalizes the Kleene-Floyd-Warshall technique to
closed semirings (Lehmann, 1977).

2Divergent sums can be represented byk∗ = ∞, where∞ ∈ K is a distinguished value.



3 Operations

We now describe some central operations onn-ary weighted relations and theirn-tape WFSMs, focusing
on operations that affect the number of tapes. (See (Kempe, Guingne, and Nicart, 2004).) In particular,
we introduce an “auto-intersection” operation that will simplify the discussion of multi-tape join.

Our notation is chosen throughout to highlight the connection to relational databases.

3.1 Simple Operations

The basic rational operations of union, concatenation, and closure can be used to construct anyn-ary
weighted rational relation.3 Thus, the rational operations can be used to writeregular expressionsthat
specify particular relations. On the database perspective, such expressions are useful for specifying both
actual databases (typically finite relations) and particular queries (typically infinite relations, i.e., the set
of all tuples with a given property). (Section 3.3 will discuss how to intersect a database with a query.)

The union and concatenation of two weightedn-ary relations,R(n)
1 andR(n)

2 , are the relationsR(n)
1 ∪

R(n)
2 andR(n)

1 · R(n)
2 defined by

(
R(n)

1 ∪R(n)
2

)
(s(n)) def= R(n)

1 (s(n))⊕R(n)
2 (s(n)) (10)(

R(n)
1 · R(n)

2

)
(s(n)) def=

⊕
u(n),v(n):

(∀i∈[[1,n]])si=ui·vi

R(n)
1 (u(n))⊗R(n)

2 (v(n)) (11)

The closure ofR(n) is the relation

(R(n))∗ def=
∞⋃

`=0

R(n) · R(n) · · ·R(n)︸ ︷︷ ︸
` times

, implying that

(
(R(n))∗

)
(〈s1, . . . , sn〉) =

∞⊕
`=0

⊕
u
(n)
1 ,...u

(n)
` :

(∀i∈[[1,n]])si=(u1)i·(u2)i···(u`)i

⊗̀
j=1

R(n)(u(n)
j ) (12)

These operations can be implemented by simple constructions on the corresponding nondeterministic
n-tape WFSMs (Rosenberg, 1964). Thesen-tape constructions and their semiring-weighted versions are
exactly the same as for acceptors (n = 1) and transducers (n = 2), as they are indifferent to then-tuple
transition labels.

3.2 Projection and Complementary Projection

Projection keeps certain columns of a database relation and discards the others. In the case of a rational
relation implemented by an-WFSM, it can be implemented by discarding the corresponding tapes of the
n-WFSM, yielding anm-WFSM form < n.

Projection may map several distinctn-tuples onto the samem-tuple. In this case, we will define the
weight of them-tuple by summing the severaln-tuples’ weights using⊕. This resembles aggregation
in databases, but note that only weights can be aggregated acrossn-tuples, not the (string) data in the
n-tuples themselves.

3By combining the “atomic” weighted relations, namely, those whose support is a single tuple from the finite set
{(s1, s2, . . . sn) : |s1s2 · · · sn| ≤ 1}.



For anyj1, . . . , jm ∈ [[1, n]], we formally define aprojection operatorπ〈j1,...,jm〉 that mapsn-ary
relations tom-ary relations:

(
π〈j1,...,jm〉(R

(n)
1 )

)
(s(m)) def=

⊕
u(n):

(∀i∈[[1,m]]) si=uji

R(n)
1 (u(n)) (13)

It retains only those component strings (i.e. tapes) of each tuple that are specified by the indicesj1, . . . jm,
and places them in the specified order.

Notice that our definition allows projection indices to occur in any order, possibly with repeats. Thus
the tapes ofs(n) can be permuted or duplicated. For example,π〈2,1〉 will invert a 2-ary relation.

As a convenience, we also define thecomplementary projectionof a relation. For anyj1, . . . jm ∈
[[1, n]], we define an operatorπ{j1,...jm} that removes the tapesj1, . . . jm and preserves all other tapes
in their original order. Without loss of generality we may assume thatj1 < j2 < · · · < jm; then
we can defineπ{j1,...jm} as equivalent toπ〈1,...,j1−1,j1+1,...jm−1,jm+1,...n〉, which mapsn-ary relations to
(n−m)-ary relations.

3.3 Join and Generalized Composition

Applications: Our version of the join operation is quite powerful. It can be used to join two “databases”
(typically finite relations), to conjoin two “queries” (typically infinite relations), or to select those data-
base tuples that match a query, reweighting them if the query is weighted.

Another family of uses is inspired by natural language processing, where WFSTs (n = 2) are com-
monly used to construct noisy channel models (Knight and Graehl, 1998). Usingn > 2 tapes allows us to
generalize naturally to doing constraint programming or graphical modeling over string-valued variables.
Given variablesV1, . . . Vn with unknown values in theinfinite domainΣ∗, one can specify a (weighted)
m-ary relation to express a (soft) constraint over somem ≤ n of the variables. All known constraint
relations can be systematically joined together, along tapes that correspond to common variables. This
yields a (weighted)n-ary relation that evaluates whichn-tuples are appropriate as joint values of then
variables. If thisn-ary relation specifies a probability distribution overn-tuples, one can intersect it with
anothern-ary relation describing incomplete data, in order to compute the probability of the data for
purposes of parameter training or statistical inference.

As we will see, join istoopowerful: rational relations arenotclosed under arbitrary joins. Section 4
will explore this point in detail. Nonetheless, we can mathematically define the possibly non-rational
result of a join. The operation appears so useful that it would be helpful to have a partial or approximate
algorithm.

Definition: The reader may already be familiar with the notion of natural join on databases. Our
presentation differs from the standard database treatment in that our tapes are numbered, whereas the
columns of a database are typically named. So our join operators, unlike a database join, must explicitly
select tapes by number, and as a result are neither associative nor commutative.

A join of two relations is formed by finding “matching” pairs of tuples. For example,〈abc, def, ε〉
and 〈def, ghi, ε, jkl〉 match on two of their tapes. We notate the matching of tapes in this case as
{2=1, 3=3}. They combine to yield a tuple〈abc, def, ε, ghi, jkl〉, whose weight in the joined relation
is the product (under⊗) of the two original tuples’ weights.

More precisely, for any distincti1, . . . ir∈ [[1, n]] and any distinctj1, . . . jr∈ [[1,m]], we define ajoin
operator1{i1=j1,...,ir=jr}. It combines ann-ary and anm-ary relation into an(n + m − r)-ary relation
defined as follows:



(
R(n)

1 1{i1=j1,...,ir=jr} R
(m)
2

)
(〈u1, . . . , un, s1, . . . , sm−r〉)

def= R(n)
1 (u(n))⊗R(m)

2 (v(m)) (14)

wherev(m) is the unique tuple such thatπ{j1,...jr}(v
(m)) = s(m−r) and(∀` ∈ [[1, r]])vj`

= ui` .

Relation to Cross Product: Takingr = 0 gives an important special case. Thecross productoperator
×, equivalent to1∅, combines ann-ary and anm-ary relation into an(n + m)-ary relation:

R(n)
1 ×R(m)

2
def= R(n)

1 1∅ R
(m)
2 (15)

with the result that(
R(n)

1 ×R(m)
2

)
(〈u1, . . . , un, v1, . . . , vm〉) = R(n)

1 (u(n))⊗R(m)
2 (v(m)) (16)

A WFSM forR(n)
1 ×R(m)

2 can easily be constructed from WFSMs forR(n)
1 andR(m)

2 , by concatenating
them after appropriately “padding” their transition labels into(n + m)-tuples via extra epsilons. Thus,
the cross product of weighted rational relations is always rational.

Relation to Intersection: Takingn = r = m gives another important special case. Theintersectionof
two n-ary relations is anothern-ary relation:

R(n)
1 ∩R(n)

2
def= R(n)

1 1{1=1,2=2,...n=n} R
(n)
2 (17)

with the result that (
R(n)

1 ∩R(n)
2

)
(s(n)) = R(n)

1 (s(n))⊗R(n)
2 (s(n)) (18)

It is known that the intersection of transducers (n = 2) is not necessarily rational (Rabin and Scott,
1959): {〈ajb∗, cj〉 | j ∈ N} ∩ {〈a∗bj , cj〉 | j ∈ N} = {〈ajbj , cj〉 | j ∈ N}. Nor, for that matter, is
intersection of acceptors (n = 1) if they are weighted by a non-commutative semiring. Thus rational
relations are not closed under the more general join operation, either.

Generalized Composition: For distincti1, . . . ir∈ [[1, n]] and distinctj1, . . . jr∈ [[1,m]], it is convenient
to define ageneralized compositionoperator�{i1=j1,...,ir=jr}. It carries out a join and then discards the
joined tapes:

R(n)
1 �{i1=j1,...,ir=jr} R

(m)
2

def= π{i1,...ir}

(
R(n)

1 1{i1=j1,...,ir=jr} R
(m)
2

)
(19)

Note that� can result in aggregation because it usesπ̄. For example, the special case of ordinary
composition◦ of transducers

R(2)
1 ◦ R(2)

2
def= R(2)

1 �{2=1} R
(2)
2 = π{2}(R

(2)
1 1{2=1} R

(2)
2 ) (20)

results in a summation over stringsv on the discarded tape that was joined:(
R(2)

1 ◦ R(2)
2

)
(u, w) =

⊕
v

R(2)
1 (u, v)⊗R(2)

2 (v, w) (21)

The generalized composition of rational relations is not necessarily rational.

Single-Tape Join: We speak aboutsingle-tape joinif only one tape is used in each relation (r=1). Two
well-known special cases are the join1{1=1} used to intersect two acceptors in (17) (wheren = 1), and
the join1{2=1} used during classical composition of two transducers in (20).



There are other uses of single-tape join. A composition cascade of several transducers,R(2) =
R(2)

1 ◦R(2)
2 ◦R(2)

3 , could be replaced by a join cascade,R(4) = R(2)
1 1{2=1}

(
R(2)

2 1{2=1} R
(2)
3

)
. The

intermediate results are now preserved on tapes 2 and 3 for subsequent inspection or further transduction
(Kempe, 2004). In this way, single-tape join is adequate to combine several transducers into any tree

topology: R(4) =
(
R(2)

1 1{2=1} R
(2)
2

)
1{2=1} R(2)

3 . One can use this technique to implement a

tree-structured directed graphical model (sometimes called a dendroid distribution) by joining weighted
transducers that represent the conditional probability distributions of the model.

Sometimes one wishes to join ann-ary relation with a cross product ofm languages. This operation
can be regarded asm single-tape joins. It can be used to train the parameters of the dendroid distribution
described above, as explained forn = m = 2 by (Eisner, 2002). The generalization to more tapes
is particularly useful for training a cascaded noisy channel model when intermediate results along the
channel are partly observed.

The single-tape join of weighted multi-tape rational relations is rational as long as the weights fall in
a commutative weight semiring. One can construct a WFSM for the resulting relation, using a standard
“cross-product of states” construction.

The commutativity of the weights is crucial to this construction. (The constructed WFSM’s paths
interleave weights from paths in the two input WFSMs.) No such construction is possible if the weight
semiringK is not commutative. For example, letk, k′ be weights that do not commute. LetR(1) be a
rational language such that∀j ∈ N,R(1)(aj) = kj⊗k′. Then (18) implies that∀j,

(
R(1) ∩R(1)

)
(aj) =

kj ⊗ k′ ⊗ kj ⊗ k′; this single-tape join cannot in general be computed by any WFSM.
Mohri, Pereira, and Riley (1998), writing about WFST composition, noted another subtlety in ex-

tending the “cross product of states” construction to weighted machines. Their observation and solution
apply generally to single-tape join of WFSMs (and would presumably be relevant to any partial algorithm
for multi-tape join). A pair of successful paths in the input machines are considered to “match” if they
both accept the same strings on the single tape being joined. A pair of matched input paths is supposed
to yield exactly one path in the composed machine. However, if both input paths allowε transitions on
the join tape at the same position ins, then a naive implementation of the construction may produce
i > 1 identically labeled and weighted paths, corresponding to different alignments of the input paths.
This “path multiplicity problem” will incorrectly contributei copies of the path weight to the sum in (8),
affecting the result unless the weight semiring is idempotent. The solution is to revise the construction
to allow only a canonical alignment of matched input paths.

3.4 Auto-Intersection

Our discussion of join will be simplified by reducing it to a simpler problem. For any distincti1, j1, . . .
ir, jr ∈ [[1, n]], we define anauto-intersectionoperatorσ{i1=j1,i2=j2,...,ir=jr} that maps a relationR(n)

to a “subset” of that relation, preserving tupless(n) whose elements are equal in pairs as specified, but
removing all other tuples from the support of the relation.4

(
σ{i1=j1,...,ir=jr}(R

(n))
)

(〈s1, . . . , sn〉)
def=

{
R(n)(〈s1, . . . , sn〉) if (∀` ∈ [[1, r]])si` = sj`

0̄ otherwise
(22)

Auto-intersection does not necessarily preserve the rationality ofR(n), as we will discuss in Sec-
tion 4.

4The requirement that the2r indices be distinct mirrors the similar requirement on join and is needed in (26).
But it can be evaded by duplicating tapes: an illegal auto-intersection such asσ{1=2,2=3}(R) can be computed as
π{3}(σ{1=2,3=4}(π〈1,2,2,3〉(R))).



Note that auto-intersecting a relation is different from joining the relation with its own projections.
For example,σ{1=2}(R(2)) is supported by tuples of the form〈w,w〉 ∈ R(2). By contrast,R(2) 1{1=1}(
π〈2〉(R(2))

)
is supported by tuples〈w, x〉 ∈ R(2) such thatw can also appear on tape 2 ofR(2) (but not

necessarily paired with a copy ofw on tape 1).
An example of auto-intersection is shown in Figure 1. It encodes the relation

R(3)
1 = 〈a, x, ε〉 〈b, y, a〉∗ 〈ε, z, b〉 = { 〈abj , xyjz, ajb〉 | j∈N } (23)

σ{1=3}(R
(3)
1 ) = { 〈ab1, xy1z, a1b〉 } (24)

(a)

b:y:a(3)
1Α

εa:x: :z:bε
20 1 (b)

b:y:a

(3)
Α

:z:bεεa:x:
1 2 30

Figure 1: (a) A WFSMA
(3)
1 and (b) its auto-intersectionA(3) = σ{1=3}(A

(3)
1 ). (Weights omitted)

It is possible to reduce join to auto-intersection using only rational operations (namely cross product
and complementary projection). An arbitrary join can be implemented as

R(n)
1 1{i1=j1,...,ir=jr} R

(m)
2 = π{n+j1,...,n+jr}

(
σ{i1=n+j1,...,ir=n+jr}( R

(n)
1 ×R(m)

2 )
)

(25)

Conversely, it is possible to reduce any auto-intersection to a single join with a rational relation:

σ{i1=j1,...,ir=jr}(R
(n)) = R(n) 1{i1=1,j1=2,...,ir=2r−1,jr=2r}

(π〈1,1〉(Σ
∗)×· · ·×π〈1,1〉(Σ

∗)︸ ︷︷ ︸
r times

 (26)

Thus, for any class of “difficult” join instances whose results are non-rational or have undecidable
emptiness (see section 4.4), there is a corresponding class of difficult auto-intersection instances, and
vice-versa. Conversely, a partial solution to one problem would yield a partial solution to the other. In
future work we hope to identify such a partial algorithm for auto-intersection.

The rest of this paper is therefore devoted to remarks on the auto-intersection problem only. Working
in terms of auto-intersection rather than join will simplify our discussion. First, only one machine is
involved. Second, in considering partial algorithms for auto-intersection, we do not have to worry about
the order in which non-commutative weights from two joined machines are multiplied together, or the
path multiplicity problem. Those issues have already been handled in the cross-product step of the join
construction (25), and are not of further concern to the auto-intersection step.

For simplicity, we will focus on auto-intersectionsσ{i=j} that involve only a single pair of tapes. That
is enough to expose the core difficulties. Indeed, the general case of auto-intersection can be defined in
terms of this simple case:

σ{i1=j1,...,ir=jr}( R
(n) ) def= σ{ir=jr}( · · ·σ{i1=j1}( R

(n) ) · · · ) (27)

Nonetheless, we caution that the general case might benefit from a more direct treatment. It may be wise
to computeσ{i1=j1,...,ir=jr} “all at once” rather than one tape pair at a time. The reason is that even when
σ{i1=j1,...,ir=jr} is rational, a finite-state strategy for computing it via (27) could “fail” by encountering
non-rational intermediate results. For example, consider applyingσ{2=3,4=5} to the rational 5-ary rela-
tion {〈aibj , ci, cj , x, y〉 | i, j ∈ N}. The final result is rational (the empty relation), but the intermediate
result after applying justσ{2=3} would be the non-rational relation{〈aibi, ci, ci, x, y〉 | i ∈ N}.



4 Some Difficult Examples for Auto-Intersection

Some instances of auto-intersection are “easy.” In particular, consider a finite relation (one with finite
support, representable by an acyclic WFSM). Its auto-intersection is computable and is itself finite, since
it just selects some tuples of the original relation. (Thus, by (25),R1 1 R2 is finite if R1 orR2 is.) On
such “easy” examples, the job of a good auto-intersection algorithm is merely to keep the resulting FSM
small by preserving the sharing of substrings in the original FSM.

In this section, we will discuss some “difficult” classes of auto-intersection problems, where the result
is non-rational or has undecidable properties. Each such class has a matching class of join problems, as
discussed in section 3.4.

These difficulties imply that there is no general finite-state join algorithm. Nor is there an algorithm
that produces the join whenever it is rational and returns an error code otherwise.

At the same time, the examples in this section may be instructive if one wishes to design a more
limited join or auto-intersection algorithm that can succeed (exactly or approximately) on some practical
cases. We leave such a task to future work.

4.1 Equal-Exponent Problem

Consider the unweighted binary relationR(2) = {〈aibj , ajbk〉 | i,j,k∈ N}, interpreted as a weighted
relation over the boolean semiring. The relation is rational because it can be encoded by a 2-FSM
(Figure 2a). Its auto-intersectionσ{1=2}(R(2))={〈aibi, aibi〉 | i∈ N} is, however, non-rational. Notice
that the auto-intersection would in effect need to select just those paths in Figure 2a where all three cycles
are traversed the same number of times.

(a)

b:a

ε:εε:ε

:bεεa:

210 (b)

c:bb:a

ε:ε ε:εε:ε
1 2

:cε

3

εa:

0

Figure 2: Two FSMs whose auto-intersection leads to equal-exponent problems

We can extend this example to any number of equal exponents. Consider for example the binary
relationR(2) = {〈aibjck, ajbkc`〉 | i,j,k,`∈ N}, which is rational (Figure 2b) but has a non-rational
auto-intersectionσ{1=2}(R(2))={〈aibici, aibici〉 | i∈ N}.

We say that such examples suffer from theequal-exponent problem. The equal-exponent prob-
lem may also appear on tapes other than the ones being intersected. The unweighted 3-ary relation
{〈aia, aaj , xiyzj〉 | i, j ∈ N} is rational (Figure 3a); but its auto-intersection underσ{1=2} is equal to
{〈aia, aai, xiyzi〉 | i ∈ N}, which is not rational because its projection onto tape 3 is not a regular lan-
guage.

(a)
10a:ε:x ε:a:z

a:a:y

(b)
1
/ρ1

0a:ε
2/w/w0 ε:a

/wa:a 1

Figure 3: FSMs whose auto-intersection on tapes 1,2 requires equal exponents on tape 3 or in weights

Finally, the equal-exponent problem may appear in the weights assigned by the relation, if the weight
semiring is not commutative. Figure 3b is a variant of Figure 3a that replaces the third tape with weights.



Its auto-intersection underσ{1=2} is the weighted relationR defined by

R(〈aia, aai〉) = wi
0 ⊗ w1 ⊗ wi

2 ⊗ %1 (28)

R(s(2)) = 0̄ otherwise (29)

This relation has rational support, but is not in general a rational relation. It does become rational if the
weight semiring is commutative, in which casewi

0 ⊗ w1 ⊗ wi
2 ⊗ %1 can be computed as(w0 ⊗ w2)i ⊗

w1 ⊗ %1. Notice that if the weights are rational languages over an alphabetΣ (see Section 2.1), so that
they effectively act like a third tape, then they are guaranteed to commute only if|Σ|=1.

4.2 Shuffle Problem

Theshuffle productof two stringsu tt v is defined, e.g., in (Sakarovitch, 2003) as:

u tt v
def= { u1v1 . . . ujvj | u = u1 . . . uj , v = v1 . . . vj , (∀i∈ [[1, j]])ui, vi ∈ Σ∗ } (30)

This set contains all possible “interleavings” of the symbols fromu andv. The symbols ofu keep their
respective order, as do the symbols ofv, but any order is allowed between a symbol fromu and a symbol
from v. For example:

abc tt xy = {abcxy, abxcy, abxyc, axbcy, axbyc, axybc, xabcy, xabyc, xaybc, xyabc} (31)

aa tt xx = {aaxx, axax, axxa, xaax, xaxa, xxaa} (32)

aaa tt aaa = {aaaaaa} (33)

The size of the setu tt v grows exponentially in the lengths ofu andv.
Consider the unweighted relationR(3) = {〈ai, aj , xi tt yj〉 | i, j ∈ N}, interpreted as a weighted

relation over the boolean semiring. It is rational because it can be encoded by a 3-FSM (Figure 4a). Its
auto-intersectionσ{1=2}(R(3)) = {〈ai, ai, xi tt yi〉 | i∈ N} is, however, non-rational, as its projection
onto tape 3 is the non-rational language of strings having equal numbers ofx’s andy’s.

(a)
0

a:

a:ε:

ε :x

y

(b)

0
ε: ya:a:ε:

a:ε:ε:ε:x

ε:ε:ε:a:z (c)

0
/ρ0

/w0

/w1

a:

ε:

ε

a

Figure 4: Three (W)FSMs whose auto-intersection leads to shuffle problems

Using additional tapes lets us extend this example to any number of equal exponents. For example,
the relationR(5) = {〈ai, aj , aj , ak, xi tt yj tt zk〉 | i, j, k ∈ N} is rational (Figure 2b) but has a non-
rational auto-intersectionσ{1=2,3=4}(R(5))={〈ai, ai, ai, ai, xi tt yi tt zi〉 | i∈ N}.

This shuffle problemcan be regarded as the source of other failures of rationality. IfR(1) is any
rational language, then the single-tape join{〈ai, aj , (xi tt yj)〉 | i, j ∈ N} 1{3=1} R(1) is also rational.
Auto-intersecting it using theσ{1=2} operator yields a relation whose tape 3 recognizes a “restricted
shuffle,” namely, the potentially non-rational language{xi tt yi | i ∈ N} ∩ R(1). For example, taking
R(1) to be the languagex∗y∗ creates the equal-exponent language{xiyi | i ∈ N} of section 4.1.

Beyond simply restricting the shuffle language, one can also transduce it to obtain further examples.
Consider the rational 3-relation{〈ai, aj , (xi tt yj)〉 | i, j ∈ N}�{3=1}R(2), whereR(2) is any rational



2-ary relation. Applying theσ{1=2} operator yields a relation whose tape 3 recognizes the transduction
of {xi tt yi | i ∈ N} by R(2). The transduction can replacexi and yi by arbitrary languages while
restricting their shuffling.

The shuffle problem may also appear in the weights assigned by the relation, if the weight semiring is
not both commutative and idempotent. Figure 4c is a variant of Figure 4a that replaces the third tape with
weights.5 Applying theσ{1=2} operator yields a relationR such that∀i ∈ N,R(ai) = (wi

0 ttwi
1)⊗ %0,

where the informal notationwi
0ttwi

1 denotes the “shuffle sum of two products of weights.” For example,
if k, l, p, q ∈ K, we would write

(k ⊗ l) tt (p⊗ q) = (k ⊗ l ⊗ p⊗ q)⊕ (k ⊗ p⊗ l ⊗ q)⊕ (k ⊗ p⊗ q ⊗ l)⊕
(p⊗ k ⊗ l ⊗ q)⊕ (p⊗ k ⊗ q ⊗ l)⊕ (p⊗ q ⊗ k ⊗ l) (34)

k2 tt p2 = (k ⊗ k ⊗ p⊗ p)⊕ (k ⊗ p⊗ k ⊗ p)⊕ (k ⊗ p⊗ p⊗ k)⊕
(p⊗ k ⊗ k ⊗ p)⊕ (p⊗ k ⊗ p⊗ k)⊕ (p⊗ p⊗ k ⊗ k) (35)

k2 tt k2 = 6 (k ⊗ k ⊗ k ⊗ k) = 6 ( k4 ) (36)

In general, the weighted relationR in our example is non-rational. However, it is rational if the semiring
is both commutative and idempotent. In that case,wi

0ttwi
1 = ji(w0⊗w1)i = (w0⊗w1)i, whereji ∈ N

is the number of summands in the shuffle sum and is irrelevant thanks to idempotency.

4.3 Presentation Problems

Our next example illustrates how a partial auto-intersection algorithm might be affected by the presenta-
tion of its input.

(a) 10
/w1a:a:x

a:ε:x /w0 ε:a:x /w2

(b)

10
/w1a:a:x

ε:a:x /w2

a:ε:x /w0 (c) 10
/w1a:a:x

0/w w2a:a:x

Figure 5: (a), (b) Different presentations of the same relationR(3); (c) the auto-intersection
σ{1,2}(R(3))

Provided that the weight semiring is commutative, the WFSMs in Figures 4.3a and 4.3b describe
the same relation, which for eachi ∈ N maps〈ai+1, ai+1, x2i+1〉 to wi

0 ⊗ w1 ⊗ wi
2. A naive algorithm

modeled on WFST determinization would fail to terminate on either machine, constructing a successful
path of length2i+1 for eachi ∈ N. For example, on Figure 4.3a, it would allow unrolling the first cycle
i times and then transitioning to the second cycle to allow the second tape to “catch up” with the first.

A partial algorithm for auto-intersection might attempt to detect and handle some such cases, allow-
ing it to compute the correct auto-intersection (Figure 4.3c). It seems potentially easier to detect the
Figure 4.3b case than the Figure 4.3a case.

5Again, this example can be derived by transducing the original shuffle example of Figure 4a. If all transitions in that
example are given weight̄1 in the semiring of interest, then its generalized composition�{3=1} with a simple weighted
machine will produce Figure 4c by replacing all instances ofx with w0, etc.



4.4 Post’s Correspondence Problem

Post’s Correspondence Problem or PCP (Post, 1946) is a classical undecidable problem that is some-
times used to prove the undecidability of other problems. Mark-Jan Nederhof (personal communication)
pointed out its relevance to auto-intersection.

Definition: Given an alphabetΣ, an instance of PCP is a list of pairs of strings inΣ∗: 〈u1, v1〉, . . .
〈up, vp〉. A solution is a strings such thats = ui1ui2 . . . uir = vi1vi2 . . . vir for some non-empty index
sequencei1, i2, . . . ir ∈ [[1, p]]. This sequence may contain duplicates.

Taking an example from (Zhao, 2002), the instance〈abb, a〉, 〈b, abb〉, 〈a, bb〉 has among its solu-
tions the stringabbaabbabbabb = u1u3u1u1u3u2u2 = v1v3v1v1v3v2v2, obtained from the index se-
quence1311322. For the sake of clarity, we show here both the instance and the solution in tabular form:

i 1 2 3
ui abb b a
vi a abb bb

i 1 3 1 1 3 2 2
ui abb a abb abb a b b
vi a bb a a bb abb abb

The language of solutions to a given instance is context-sensitive. That is, it is possible for a linear
bounded automaton to determine whether a given strings is a solution, simply by considering all index
sequences of length≤ 2|s|.6

What is not decidable, in general, is whether this context-sensitive language of solutions is non-
empty. To put this another way, the set of PCP instances with at least one solution is not recursive
(although it is recursively enumerable).

An instance of PCP can be represented as a 2-tape automaton,A(2), with a unique state, that is both
initial and final, andp transitions labeled with pairs of stringsui :vi, as illustrated in Figure 6a. The set of
all solutions to this instance equalsπ〈1〉(σ{1=2}(R(A(2)))). If one wishes instead to obtain the language
of index sequences of each solution, one can represent the instance as a 3-tape automatonA(3) with an
additional tape of indicesi∈ [[1, p]], as illustrated in Figure 6b, and constructπ〈1〉(σ{2=3}(R(A(3)))).

(a)

0

a:bb

b:abb
abb:a

(b)

0
2:b:abb

3:a:bb

1:abb:a

Figure 6: An instance of a PCP (a) without and (b) with an additional tape of indices

This reduction from PCP to auto-intersection demonstrates that it is undecidable whether the result
of an unweighted 2-tape auto-intersection is empty.

Furthermore, this implies that there can be no partial auto-intersection algorithm that is “complete”
in that it always returns a correct FSM if the auto-intersection is rational, and always terminates with
an error code otherwise. If such an algorithm did exist, one could use it as follows to determine the
emptiness of an unweighted auto-intersection (and hence to determine the existence of a solution to a
PCP instance, which is impossible in general). If the algorithm returned an FSM, we would test it for
emptiness by determining whether there was at least one path from an initial to a final state. If the
algorithm returned an error code, we would know that the result was non-rational and hence could not
be empty.

Despite this gloomy result, some recent work (Zhao, 2002) has explored heuristic tests that can
identify some PCP instances as empty, as well as heuristic search methods that try to find a single solution

6We may assume without loss of generality that〈ε, ε〉 is not among the strings in the instance. Then ifs = ui1ui2 . . . uir =
vi1vi2 . . . vir is a solution, we haver ≤ |ui1ui2 . . . uir vi1vi2 . . . vir | = |ss| = 2|s|.



to a PCP quickly (although not the full language of solutions). These methods might provide a starting
point for constructing a useful partial algorithm for auto-intersection.

5 Conclusion

We have provided definitions and notation for the central operations on weightedn-ary relations and the
finite-state machines that describe the rational cases. Our notation is informed by regarding these objects
as weighted databases. This perspective is pedagogically useful and motivates potential applications.

We focused primarily on the important join operation1, and the related operations of generalized
composition� and auto-intersectionσ{1=2}. In some cases, these operators preserve rationality. In
general, they do not, and we showed that the resulting relations, while individually decidable (at the level
of individual tuples), can have undecidable emptiness as a class.

Our question for future research is whether there exists a partial or approximate algorithm for auto-
intersection that can handle some practical cases of infinite relations. This would imply the existence of
a similar algorithm for join.

There is some precedent for such investigations. Regarding partial algorithms, we already noted the
work of (Zhao, 2002) on partial solutions to the generally undecidable Post’s Correspondence Problem,
which reduces to our problem. In the speech and language processing community, researchers manage
to make practical use of a WFSM determinization algorithm that is not guaranteed to terminate when
no answer exists (Mohri, 1997).7 As for approximations, context-free languages are not in general
rational, but they can be usefully approximated by FSMs that accept a close superset or subset (Nederhof,
2000). Approximation by pruning is an option for FSMs weighted by probabilities. Where a naive auto-
intersection algorithm would run forever, in an attempt to generate an infinite-state machine, it might be
possible to obtain a reasonable finite-state machine by pruning away work on low-probability paths.
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