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Abstract. Weighted finite-state machines with n tapes describe n-ary
rational string relations. The join n-ary relation is very important in
applications. It is shown how to compute it via a more simple opera-
tion, the auto-intersection. Join and auto-intersection generally do not
preserve rationality. We define a class of triples 〈A, i, j〉 such that the
auto-intersection of the machine A on tapes i and j can be computed
by a delay-based algorithm. We point out how to extend this class and
hope that it is sufficient for many practical applications.

1 Introduction

Multi-tape finite-state machines (FSMs) [1–5] are a natural generalization of the
familiar finite-state acceptors (one tape) and transducers (two tapes). Multi-tape
machines have been used in the morphology of Semitic languages, to synchronize
the vowels, consonants, and templatic pattern into a surface form [3, 6].

The n-ary relation defined by a (weighted) n-tape FSM is a (weighted) ratio-

nal relation. Finite relations are defined by acyclic FSMs, and are well-studied
since they can be viewed as relational databases whose fields are strings [7]. E.g.,
a two-column database can be represented by an acyclic finite-state transducer.

Unfortunately, one pays a price for generalizing to multi-column databases
with infinitely many rows, as defined by cyclic FSMs. Cyclic FSMs are closed
under the rational operations, but not under all relational operations, as finite
databases are. For example, transducers are not closed under intersection [1].

In this paper we consider a practically useful generalization of transducer
intersection, multi-tape join, which is analogous to natural join of databases.
More precisely, we study an equivalent but simpler problem, auto-intersection.
The emptiness or rationality of the result is generally undecidable [7]. Therefore
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we define a simple class Θ of triples 〈A, i, j〉 such that the auto-intersection of
the machine A w.r.t. tapes i and j is rational. Our auto-intersection algorithm
for this class is based on the notion of delay [8, 9]. We focus on the case of an
auto-intersection w.r.t. two tapes, which is sufficient to explain the basic ideas
and problems, and we briefly discuss the general case. We conclude by pointing
out possible extensions of the class Θ.

Weighted n-ary relations and their machines are introduced in Section 2. Join
and auto-intersection operations are presented in Section 3. A class of compilable
auto-intersections and the associated algorithm are defined in Section 4.

2 Definitions

We recall some definitions about n-ary weighted relations and their machines,
following the usual definitions for multi-tape automata [2, 10], with semiring
weights added just as for acceptors and transducers [11, 12]. See [7] for details.

Weighted n-ary relations: A weighted n-ary relation is a function from
(Σ∗)n to K, for a given finite alphabet Σ and a given weight semiring K =
〈K,⊕,⊗, 0̄, 1̄〉. A relation assigns a weight to any n-tuple of strings. A weight of
0̄ can be interpreted as meaning that the tuple is not in the relation.1 We are
especially interested in rational (or regular) n-ary relations, i.e. relations that
can be encoded by n-tape weighted finite-state machines, which we now define.

We adopt the convention that variable names referring to n-tuples of strings

include a superscript (n). Thus we write s(n) rather than
→
s for a tuple of strings

〈s1, . . . sn〉. We also use this convention for the names of objects that contain
n-tuples of strings, such as n-tape machines and their transitions and paths.

Multi-tape weighted finite-state machines: An n-tape weighted finite-

state machine (WFSM or n-WFSM) A(n) is defined by a six-tuple A(n) =
〈Σ,Q,K, E(n), λ, ̺〉, with Σ being a finite alphabet, Q a finite set of states,
K=〈K,⊕,⊗, 0̄, 1̄〉 the semiring of weights, E(n)⊆ (Q× (Σ∗)n ×K×Q) a finite
set of weighted n-tape transitions, λ : Q → K a function that assigns initial
weights to states, and ̺ : Q→ K a function that assigns final weights to states.
We say that q ∈ Q is an initial state if λ(q) 6= 0̄, and a final state if ̺(q) 6= 0̄.

Any transition e(n) ∈ E(n) has the form e(n) = 〈p, ℓ(n), w, n〉. We refer to
these four components as the transition’s source state p(e(n)) ∈ Q, its label
ℓ(e(n))∈(Σ∗)n, its weight w(e(n))∈K, and its target state n(e(n))∈Q. We refer
by E(q) to the set of out-going transitions of a state q∈Q (with E(q)⊆E(n)).

A path γ(n) of length k ≥ 0 is a sequence of transitions e
(n)
1 e

(n)
2 · · · e

(n)
k where

n(e
(n)
i )=p(e

(n)
i+1) for all i∈ [[1, k−1]]. The path’s label ℓ(γ(n)) is the element-wise

1 It is convenient to define the support of an arbitrary weighted relation R(n), as being
the set of tuples to which the relation gives non-0̄ weight.
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concatenation of the labels of its transitions. The path’s weight w(γ(n)) is

w(γ(n))
def
= λ(p(e

(n)
1 ))⊗




⊗

j∈[[1,k]]

w
(

e
(n)
j

)



⊗ ̺(n(e
(n)
k )) (1)

The path is said to be successful, and to accept its label, if w(γ(n)) 6= 0̄.
We denote by ΓA(n) the set of all successful paths of A(n), and by ΓA(n)(s(n))
the set of successful paths (if any) that accept the n-tuple of strings s(n). Now,
the machine A(n) defines a weighted n-ary relation R(A(n)) : (Σ∗)n → K that
assigns to each n-tuple, s(n), the total weight of all paths accepting it:

RA(n)(s(n))
def
=

⊕

γ(n)∈Γ
A(n) (s(n))

w(γ(n)) (2)

3 Operations

We now describe some central operations on n-ary weighted relations and their
n-WFSMs [13]. The auto-intersection operation is introduced, with the aim of
simplifying the computation of the join operation. Our notation is inspired by
relational databases. For mathematical details of simple operations see [7].

Simple Operations: The set of n-ary weighted rational relations can be con-
structed as the closure of the elementary n-ary weighted relations (those whose
support consists of at most one tuple) under the basic rational operations of
union, concatenation and Kleene closure. These rational operations can be im-
plemented by simple constructions on the corresponding nondeterministic n-tape
WFSMs [14]. These n-tape constructions and their semiring-weighted versions
are exactly the same as for acceptors and transducers, since they are indifferent
to the n-tuple transition labels.

The projection operator π〈j1,...jm〉, with j1, . . . jm ∈ [[1, n]], maps an n-ary
relation to an m-ary one by retaining in each tuple components specified by the
indices j1, . . . jm and placing them in the specified order. Indices may occur in
any order, possibly with repeats. Thus the tapes can be permuted or duplicated:
π〈2,1〉 inverts a 2-ary relation. The complementary projection operator π{j1,...jm}

removes the tapes j1, . . . jm and preserves the order of other tapes.

Join operation: Our join operator differs from database join in that database
columns are named, whereas our tapes are numbered. Since tapes must explicitly
be selected by number, join is neither associative nor commutative.

For any distinct i1, . . . ir∈ [[1, n]] and any distinct j1, . . . jr∈ [[1,m]], we define
a join operator 1{i1=j1,...ir=jr}. It combines an n-ary and an m-ary relation into
an (n + m− r)-ary relation defined as follows:2

(

R
(n)
1 1{i1=j1,...ir=jr} R

(m)
2

)

(〈u1, . . . un, s1, . . . sm−r〉)
def
= R

(n)
1 (u(n))⊗R

(m)
2 (v(m)) (3)

2 For example the tuples 〈abc, def, ǫ〉 and 〈def, ghi, ǫ, jkl〉 combine in the join
1{2=1,3=3} and yield the tuple 〈abc, def, ǫ, ghi, jkl〉, with a weight equal to the prod-
uct of their weights.
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v(m) being the unique tuple s. t. π{j1,...jr}(v
(m)) = s(m−r) and (∀k ∈ [[1, r]]) vjk

= uik
.

The intersection of two n-ary relations is the n-ary relation defined by the join
operator 1{1=1,2=2,...n=n}. Examples of single-tape join (where r = 1) are the
join 1{1=1} (the intersection of two acceptors) and the join 1{2=1} that can be

used to express transducer composition. The cross product ×, as in R
(n)
1 ×R

(m)
2 ,

can be expressed as 1∅, the join of no tapes (r = 0). Our main concern in this
paper is multi-tape join (r > 1).

Some practical applications require the multi-tape join operation, for exam-
ple: probabilistic normalization of n-WFSMs conditioned on r tapes,3 or search-
ing for cognates [16]. Unfortunately, rational relations are not closed under arbi-
trary joins [7]. The join operation is so useful that it is helpful to have a partial
algorithm: hence our motivation for studying auto-intersection.

Auto-Intersection: For any distinct i1, j1, . . . ir, jr ∈ [[1, n]], we define an
auto-intersection operator σ{i1=j1,i2=j2,...ir=jr}. It maps a relation R(n) to a

subset of that relation, preserving tuples s(n) whose elements are equal in pairs
as specified, but removing other tuples from the support of the relation.4 The
formal definition is:

(
σ{i1=j1,...ir=jr}(R

(n))
)
(〈s1, . . . sn〉)

def
=

{

R(n)(〈s1, . . . sn〉) if (∀k∈ [[1, r]])sik
=sjk

0̄ otherwise
(4)

It is easy to check that auto-intersecting a relation is different from joining
the relation with its own projections. Actually, join and auto-intersection are
related by the following equalities:

R
(n)
1 1{i1=j1,...ir=jr} R

(m)
2 = π{n+j1,...n+jr}

(

σ{i1=n+j1,...ir=n+jr}( R
(n)
1 ×R

(m)
2 )

)

(5)

σ{i1=j1,...ir=jr}(R
(n)) = R(n)

1{i1=1,j1=2,...ir=2r−1,jr=2r}




(π〈1,1〉(Σ

∗)×· · ·×π〈1,1〉(Σ
∗)

︸ ︷︷ ︸

r times




 (6)

Thus, for any class of difficult join instances whose results are non-rational
or have undecidable properties [7], there is a corresponding class of difficult
auto-intersection instances, and vice-versa. Conversely, a partial solution to one
problem would yield a partial solution to the other.

The case r = 1 is single-pair auto-intersection. An auto-intersection on mul-
tiple pairs of tapes (r > 1) can be defined in terms of multiple single-pair auto-
intersections:

σ{i1=j1,...ir=jr}( R
(n) )

def
= σ{ir=jr}( · · ·σ{i1=j1}( R

(n) ) · · · ) (7)

3 This is a straightforward generalization of J. Eisner’s construction for probabilistic
normalization of transducers (n = 2) conditioned on one tape (r = 1) [15].

4 The requirement that the 2r indices be distinct mirrors the similar requirement on
join and is needed for (6) to hold. But it can be evaded by duplicating tapes: the
illegal operation σ{1=2,2=3}(R) can be computed as π{3}(σ{1=2,3=4}(π〈1,2,2,3〉(R))).
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Nonetheless, it may be wise to compute σ{i1=j1,...ir=jr} all at once rather than
one tape pair at a time. The reason is that even when σ{i1=j1,...ir=jr} is rational,
a finite-state strategy for computing it via (7) could fail by encountering non-
rational intermediate results. For example, consider applying σ{2=3,4=5} to the
rational 5-ary relation {〈aibj , ci, cj , x, y〉 | i, j ∈ N}. The final result is rational
(the empty relation), but the intermediate result after applying just σ{2=3} would
be the non-rational relation {〈aibi, ci, ci, x, y〉 | i ∈ N}.

4 Single-pair auto-intersection

As indicated by (5), a join can be computed via an auto-intersection, which
can be decomposed as a sequence of single-pair auto-intersections as in (7). We
therefore focus on the single-pair case, which is sufficient to explain the basic
ideas and problems. As a consequence of Post’s Correspondence Problem, there
exists no fully general algorithm for auto-intersection [7]. We show that it is
however possible to compile the auto-intersection σ{i=j}(A) for a limited class
of triples 〈A, i, j〉 whose definition is based on the notion of delay.

By delay we mean the difference of length of two strings of an n-tuple:5

δ〈i,j〉(s
(n)) = |si|−|sj | (with i, j ∈ [[1, n]]). The delay of a path γ is determined

from its respective labels on tapes i and j: δ〈i,j〉(γ) = |ℓi(γ)|−|ℓj(γ)|.

For any R
(n)
1 , its autointersection R(n) = σ{i=j}(R

(n)
1 ) assigns a weight 0̄

to each string tuple s(n) such that si 6= sj . For simplicity, our auto-intersection
construction will ensure this by never creating any successful paths γ for which
ℓi(γ) 6= ℓj(γ). One consequence is that all successful paths of our constructed

A(n) = σ{i=j}(A
(n)
1 ), where A

(n)
1 expresses R

(n)
1 , will have a delay equal to 0 :

∀γ ∈ ΓA(n) , ℓi(γ) = ℓj(γ)⇒ |ℓi(γ)| = |ℓj(γ)| ⇒ δ〈i,j〉(γ) = 0.

To be more specific, let Γ 0 ⊆ Γ
A

(n)
1

be the set of successful paths of A
(n)
1

with a delay of 0. Then our construction will “copy” an appropriate subset of Γ 0

into the constructed A(n). Note that ∀γ = γ1γ2 · · · γr ∈ Γ 0,
∑r

h=1 δ〈i,j〉(γh) =
δ〈i,j〉(γ) = 0.

4.1 Bounded delay auto-intersection

We now focus temporarily on n-WFSMs such as A
(n)
1 in Figure 1, whose cycles

all have a positive delay with respect to the tapes i, j of the single-pair auto-
intersection.

Such an n-WFSM might contain paths with arbitrarily large delay. How-
ever, if we consider only its paths γ ∈ Γ 0, it turns out that they must have

bounded delay . That is, that there is a bound δmax

〈i,j〉(A
(n)
1 ) for the WFSM such

that |δ〈i,j〉(γ1)| ≤ δmax

〈i,j〉(A
(n)
1 ) for any prefix γ1 of any γ ∈ Γ 0.

In this section, we outline how to compute the bound δmax

〈i,j〉(A
(n)
1 ). Then, while

the algorithm of the next section (4.2) is copying paths from A
(n)
1 , it can avoid

5 We use the notion of delay similarly as in the synchronization of transducers [8, 9].
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1c 2c 3c

a2 a3 a4a1

Fig. 1. An example n-WFSM A
(n)
1 , having four acyclic factors ah and three cycles ch

with positive delay.

4

0

δ

γ

a

a1

1c 1c 1c
a2

2c
2c

a3

3c 3c 3c

Fig. 2. Hypothetical monitoring of the delay of successively longer prefixes γ1 of one
path γ through A

(n)
1 whose total delay δ〈i,j〉(γ) = 0. Global extrema are marked. By

assumption, each of the cycles c1, c2, c3 has positive delay.

extending any prefix whose delay’s absolute value exceeds δmax

〈i,j〉(A
(n)
1 ). (Such a

prefix is useless because it will not extend into a path in Γ 0, let alone a path
with ℓi(γ) = ℓj(γ).)

If we plotted the delay for successively longer prefixes γ1 of a given path
γ ∈ Γ 0, as γ1 ranges from ǫ to γ, we would obtain a curve that begins and ends
with delay δ〈i,j〉(γ1)=0, as shown in Figure 2. How can we bound the maximum

δ̂〈i,j〉(γ1) and minimum δ̌〈i,j〉(γ1) along this curve?

A lower bound is given by δ̌LR
〈i,j〉(A

(n)
1 ) ≤ 0, defined as the minimum delay of

any acyclic path that begins at an initial state of A
(n)
1 . Why? Since γ ∈ Γ 0 is a

successful path, any prefix γ1 of γ can be regarded as an acyclic path of this sort
with zero or more cycles inserted. But these cycles can only increase the total

delay (by the assumption that their delay is positive), so δ〈i,j〉(γ1) ≥ δ̌LR
〈i,j〉(A

(n)
1 ).

An upper bound is given by δ̂RL
〈i,j〉(A

(n)
1 ) ≥ 0, defined as the negation of

the minimum delay of any acyclic path that ends at a final state of A
(n)
1 . By

symmetry, that minimum delay is a lower bound on the delay of any suffix γ2 of
γ. But if we factor γ = γ1γ2, we have δ〈i,j〉(γ1) + δ〈i,j〉(γ2) = δ〈i,j〉(γ) = 0, since

γ ∈ Γ 0. It follows that δ̂RL
〈i,j〉(A

(n)
1 ) is an upper bound on the delay of γ1.

The minimum δ̌LR
〈i,j〉(A

(n)
1 ) is finite because there are only finitely many acyclic

paths from initial states to consider. δ̂RL
〈i,j〉(A

(n)
1 ) is similar. Exhaustively consid-

ering all these acyclic paths by backtracking, as illustrated in Figure 3, takes
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(a)

0
LR

δLR

γa1

1c

a2

2c

a3

3c

a4

(b)

0

δRL

RLγ

a4

3ca3

2c

a2
1ca1

Fig. 3. Monitoring the delay on all acyclic paths of A
(n)
1 , exploring (a) forward from ini-

tial states and (b) backward from final states. In (b), the sign of the delay is negated.
Global extrema are marked. Gaps denote points where the search algorithm back-
tracked to avoid completing a cycle. Dashed arrows lead from a choice point to alter-
native paths that are explored after backtracking.

exponential time in the worst case.6 However, that is presumably unavoidable

since the decision problem associated with finding δ̌LR
〈i,j〉(A

(n)
1 ) is NP-complete

(by a trivial reduction from Hamiltonian Path).

Visually, all acyclic prefix paths are represented in Figure 3a, so a given
acyclic prefix path must fall entirely above the minimum of Figure 3a. A possibly
cyclic prefix path as in Figure 2 can only be higher still, since all cycles have
positive delay. A visual argument can also be made from Figure 3b.

These prefix-delay bounds, δ〈i,j〉(γ1) ∈ [[δ̌LR
〈i,j〉(A

(n)
1 ), δ̂RL

〈i,j〉(A
(n)
1 )]], in fact ap-

ply whenever γ1 is a prefix of a γ ∈ Γ 0 that traverses no cycle of negative delay.
If on the other hand γ traverses no cycle of positive delay, we have similarly

δ〈i,j〉(γ1) ∈ [[δ̌RL
〈i,j〉(A

(n)
1 ), δ̂LR

〈i,j〉(A
(n)
1 )]], where these bounds are found by consid-

ering maximum rather than minimum delays. In either case, we see that

|δ〈i,j〉(γ1)| ≤ δmax

〈i,j〉(A
(n)
1 ) (8)

def
= max

(

|δ̂LR
〈i,j〉(A

(n)
1 )| , |δ̂RL

〈i,j〉(A
(n)
1 )| , |δ̌LR

〈i,j〉(A
(n)
1 )| , |δ̌RL

〈i,j〉(A
(n)
1 )|

)

(9)

Definition of the class: Let Θ be the class of all the triples 〈A
(n)
1 , i, j〉 such

that A
(n)
1 does not contain a path traversing both a cycle with positive delay

and a cycle with negative delay (with respect to tapes i and j). The Algorithm
AutoIntersectSinglePair (see Section 4.2) computes the auto-intersection

A(n) = σ{i=j}(A
(n)
1 ) for any triple in Θ, thanks to the property that it has a

delay not exceeding the limit δmax

〈i,j〉(A
(n)
1 ) defined in (9).

6 In practice, one would first trim A
(n)
1 to remove edges and states that do not appear

on any successful path. This may reduce the problem size, without affecting the
defined relation or its auto-intersection.
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(a)
2

/w3ba:ab

a:ε /w1

a:a

1

0

/ρ1

/w2ε:ε

ε:a /w4

/w0

(b)

εa:
2

ba:ab 3/w

7

ν=0
aξ=(  ,ε)

a:a 0/w

ε:ε 2/w

1

/w

ν=2
ξ=(ε,ε)

4/w:aε

ν=0
aaξ=(    ,ε)

1

/ρ
ξ=(ε,  )

ν=1
ξ=(ε,ε)

ν=0
ξ=(ε,ε)

ba:ab 3/w

6

a:a 0/w

ε:ε 2/w

0

3

a

1

5
ν=1

aξ=(  ,ε)

4

1/wεa:

ν=2
(ba,ab)ξ=

4/w:aε

ν=2

Fig. 4. (a) An n-WFSM A
(2)
1 and (b) its auto-intersection A(2) =σ{1=2}(A

(2)
1 ) (dashed

parts are not constructed).

4.2 Algorithm for bounded delay auto-intersection

We take first the example of the n-WFSM A
(2)
1 of Figure 4a. The triple 〈A

(2)
1 , 1, 2〉

is obviously in the class Θ. The delay of the auto-intersection A(2) = σ{1=2}(A
(2)
1 )

is bounded by δmax

〈1,2〉(A
(2)
1 ) = 1. The support ((a:a ∪ a:ε)∗ (ba:ab)∗ ε:a) of A

(2)
1

is equal to { 〈ai+j(ba)h, ai(ab)ha〉 | i, j, h ∈ N }.
To construct the auto-intersection,7 we copy states and transitions one by

one from A
(2)
1 (Figure 4a) to A(2) (Figure 4b), starting with the initial states.

We assign to each state q of A(2) two variables: ν[q]=q1 is the associated state of

A
(2)
1 , and ξ[q]=(s, u) gives the “leftover strings” of the path read while reaching

q: s has been read on tape i but not yet on tape j, and vice-versa for u. (Thus
the delay accumulated so far is |s| − |u|. In practice either s or u will be ǫ.)

In our example, we start at the initial state q1 = 0, with ν[0] = 0 and
ξ[0] = (ε, ε). Then, we copy the three outgoing transitions of q1 = 0, with their
original labels and weights, as well as creating their respective target states with
appropriate ν and ξ. If a target state has already been created with this ν and
ξ, we reuse it. If not, we create it and proceed to copy its outgoing transitions.

The target state of a transition e has an ξ[n(e)] that is obtained from the
ξ[p(e)] of its source state, concatenated with the relevant components of its label

7 Our construction bears resemblance to known transducer synchronization proce-
dures. The algorithm of Frougny and Sakarovitch [8] and Mohri’s algorithm [9] can,
however, not cope with n-FSMs having unbounded delay, such as the one in Fig-
ure 4a. Furthermore, they generate synchronized n-FSMs, which is not necessarily
what one is aiming for. The algorithm [8] is based on a K-covering of the transducer.
Our algorithm is based on a general reachability-driven construction, as [9], but the
labeling of the transitions is quite different since our algorithm performs a copy of
the original labeling, and we also construct only such paths whose delay does not
exceed some limit that we are able to determine.
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ℓ(e). The longest common prefix of s and u in ξ[n(e)]= (s, u) is then removed.
For example, for the cyclic transition e on q =5 (a copy of that on q1 = 1), the
leftover strings of the target are ξ[n(e)] = 〈ab, ab〉−1(〈a, ε〉〈ba, ab〉) = 〈a, ε〉. Also,
ν[n(e)] = 1. This implies that n(e)=p(e) because they have the same ξ and ν.

In Figure 4b, new state q = 2 and its incoming transition are not created
because here the delay of 2 (determined from ξ[q]) has an absolute value that

exceeds δmax

〈1,2〉(A
(2)
1 ) = 1, which means that any path to new state q=2 cannot be

in A(2). State q=4 and its incoming transitions are not created either, because
both leftover strings in ξ[4] are non-empty, which means that any path traversing
q=4 has different strings on tape 1 and 2 and can therefore not be in A(2). State
q = 6 is non-final, although q1 = 2 = ν[6] is final, because ξ[6] is not (ε, ε),
which means that any path ending in q = 6 has different strings on tape 1 and
2. As expected, the support ((a:a)∗ a:ε (a:a)∗ (ba:ab)∗ ε:a) of the constructed
auto-intersection A(2) is equal to { 〈ai+j+1(ba)h, ai+j+1(ba)h〉 | i, j, h ∈ N }.

Algorithm: The formal algorithm AutoIntersectSinglePair in Figure 5

finds the auto-intersection, provided only that δmax

〈i,j〉(A
(n)
1 ) is indeed an upper

bound on the absolute value of the delay of any prefix γ1 of any successful path

γ in A
(n)
1 such that ℓi(γ) = ℓj(γ).

We have seen how to find such a bound when 〈A
(n)
1 , i, j〉 is in the class Θ.

Such a bound may also exist in other cases. Even when such a bound is not
known or does not exist, one could impose one arbitrarily, in order to obtain an
approximate auto-intersection.

The loop at line 5 must terminate, since a finite state set Q will be constructed
for A(n) and each state is pushed only once. Q is finite because distinct states
q ∈ Q must have distinct values for ν[q] and/or ξ[q]. The number of values of
ν[q]=q1 is limited by |Q1| (the number of states of A1), and the number of values
of ξ[q] = (s, u) both by |Σ1| and δmax

〈i,j〉 because either s or u is empty and the

other string is not longer than δmax

〈i,j〉. As a result, |Q| < 2 |Q1|
|Σ1|

δmax

〈i,j〉
+1

−1
|Σ1|−1 .

5 Conclusion

We conclude with two enhancements of the auto-intersection construction. Both
attempt to remove cycles of A that prevent 〈A, i, j〉 from falling in Θ.

First, one can eliminate paths γ such that ℓi(γ) not only differs from ℓj(γ),
but differs from ℓj(γ

′) for all γ′ such that A(γ′) 6= 0̄, or vice-versa. Given

〈A(n), i, j〉, define A
(1)
i to be the projection π〈i〉(A

(n)).8 Define A
(1)
j similarly,

8 More precisely, A
(1)
i should define a “neutrally weighted” version of the projected

language, in which non-0̄ string weights have been changed to 1̄. To obtain this,
replace all 0̄ and non-0̄ weights in the weighted acceptor π〈i〉(A

(n)) with false and
true respectively to get an ordinary unweighted acceptor over the Boolean semiring;
determinize this by standard methods; and then replace all false and true weights
with 0̄ and 1̄ respectively.
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AutoIntersectSinglePair(A
(n)
1 , i, j, δmax

〈i,j〉) → A(n) :

1 A(n) ← 〈Σ← Σ1, Q← 6©, K← K1, E(n)← 6©, λ, ρ〉
2 Stack ← 6©

3 for ∀q1 ∈ {Q1 : λ(q1) 6= 0̄} do

4 getPushState(q1, (ε, ε))
5 while Stack 6= 6© do

6 q ← pop(Stack)
7 q1 ← ν[q]
8 (s, u) ← ξ[q]
9 for ∀e1 ∈ E(q1) do

10 (s′, u′) ← createLeftoverStrings( s · π〈i〉(ℓ(e1)), u · π〈j〉(ℓ(e1)))

11 if (s′=ε ∨ u′=ε) ∧ ( |(|s′| − |u′|)| ≤ δmax

〈i,j〉(A
(n)
1 ) )

12 then q′ ← getPushState( n(e1), (s
′, u′))

13 E ← E ∪ { 〈q, ℓ(e1), w(e1), q
′〉 }

14 return A(n)

createLeftoverStrings(ṡ, u̇) → (s′, u′) :
15 x ← longestCommonPrefix(ṡ, u̇)
16 return (x−1 · ṡ, x−1 · u̇)

getPushState(q1, (s
′, u′)) → q′ :

17 if ∃q ∈ Q : ν[q] = q1 ∧ ξ[q] = (s′, u′)
18 then q′ ← q

19 else q′ ← createNewState( )
20 ν[q′] ← q1

21 ξ[q′] ← (s′, u′)
22 if s′ = ε ∧ u′ = ε

23 then λ(q′) ← λ(q1)
24 ρ(q′) ← ρ(q1)
25 else λ(q′) ← 0̄
26 ρ(q′) ← 0̄
27 Q ← Q ∪ {q′}
28 push(Stack, q′)
29 return q′

Fig. 5. The main algorithm AutoIntersectSinglePair. It relies on a prior compu-
tation of δmax

〈i,j〉(A
(n)
1 ).
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and put A′(n) = (A(n)
1{i=1} A

(1)
j ) 1{j=1} A

(1)
i .9 Now σ{i=j}(A) can be found

as σ{i=j}(A
′), which helps if 〈A′, i, j〉 falls in Θ.

The second point is related to the generalization (7) for auto-intersection on
multiple pairs of tapes. Given a problem σ{i1=j1,...ir=jr}(A), we nondeterministi-
cally select a pair (ih, jh) (if any) such that 〈A, ih, jh〉 ∈ Θ, and use our method
to compute A′ = σ{ih=jh}(A). We now attempt to continue in the same way by
auto-intersecting A′ on the remaining r− 1 tapes. Note that A′ may have fewer
cycles than A, so we may have 〈A′, ih′ , jh′〉 ∈ Θ even if 〈A, ih′ , jh′〉 6∈ Θ.
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