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Abstract

We describe a general approach to the probabilis-
tic parsing of context-free grammars. The method
integrates context-sensitive statistical knowledge
of various types (e.g., syntactic and semantic) and
can be trained incrementally from a bracketed cor-
pus. We introduce a variant of the GHR context-
free recognition algorithm, and explain how to
adapt it for e�cient probabilistic parsing. In split-
corpus testing on a real-world corpus of sentences
from software testing documents, with 20 possible
parses for a sentence of average length, the sys-
tem �nds and identi�es the correct parse in 96%
of the sentences for which it �nds any parse, while
producing only 1.03 parses per sentence for those
sentences. Signi�cantly, this success rate would be
only 79% without the semantic statistics.

Introduction

In constrained domains, natural language processing
can often provide leverage. At AT&T, for instance,
NL technology can potentially help automate many
aspects of software development. A typical example
occurs in the software testing area. Here 250,000 En-
glish sentences specify the operational tests for a tele-
phone switching system. The challenge is to to ex-
tract at least the surface content of this highly ref-
erential, naturally occurring text, as a �rst step in
automating the largely manual testing process. The
sentences vary in length and complexity, ranging from
short sentences such as \Station B3 goes onhook" to 50
word sentences containing parentheticals, subordinate
clauses, and conjunction. Fortunately the discourse
is reasonably well focused: a large but �nite number
of telephonic concepts enter into a limited set of logi-
cal relationships. Such focus is characteristic of many
sublanguages with practical importance (e.g., medical
records).
We desire to press forward to NL techniques that

are robust, that do not need complete grammars in ad-
vance, and that can be trained from existing corpora of
sample sentences. Our approach to this problem grew

out of earlier work [Jones et al 1991] on correcting the
output of optical character recognition (OCR) systems.
We were amazed at how much correction was possible
using only low-level statistical knowledge about En-
glish (e.g., the frequency of digrams like \pa") and
about common OCR mistakes (e.g., reporting \c" for
\e"). As many as 90% of incorrect words could be �xed
within the telephony sublanguage domain, and 70{80%
for broader samples of English. Naturally we won-
dered whether more sophisticated uses of statistical
knowledge could aid in such tasks as the one described
above. The recent literature also reects an increas-
ing interest in statistical training methods for many
NL tasks, including parsing [Jelinek and La�erty 1991,
Magerman and Marcus 1991, Bobrow 1991,
Magerman and Weir 1992, Black, Jelinek, et al 1992],
part of speech tagging [Church 1988], and corpora
alignment [Dagan et al 1991, Gale and Church 1991].
Simply stated, we seek to build a parser that can

construct accurate syntactic and semantic analyses for
the sentences of a given language. The parser should
know little or nothing about the target language, save
what it can discover statistically from a representa-
tive corpus of analyzed sentences. When only unan-
alyzed sentences are available, a practical approach
is to parse a small set of sentences by hand, to get
started, and then to use the parser itself as a tool to
suggest analyses (or partial analyses) for further sen-
tences. A similar \bootstrapping" approach is found
in [Simmons 1990]. The precise grammatical theory
we use to hand-analyze sentences should not be cru-
cial, so long as it is applied consistently and is not
unduly large.

Parsing Algorithms

Following [Graham et al 1980], we adopt the following
notation. An arbitrary context-free grammar is given
by G = (V;�; P; S), where V is the vocabulary of all
symbols, � is the set of terminal symbols, P is the
set of rewrite rules, and S is the start symbol. For
an input sentence w = a1a2 : : :an, let wi;j denote the
substring ai+1 : : : aj and wi = w0;i denote the pre�x
of length i. We use Greek letters (�; �; : : :) to denote



symbol strings in V �.
Tabular dynamic programming algorithms are

the methods of choice for ordinary context-free
recognition [Cocke and Schwartz 1970, Earley 1970,
Graham et al 1980]. Each entry ti;j in a table or chart,
t, holds a set of symbols or rules that match wi;j.
A symbol A matches wi;j if A )� wi;j. Some of
these methods use dotted rules to represent progress
in matching the input. For all A! �� in P , A! � ��
is a dotted rule of G. The dotted rule A ! � � �
matches wi;j (and hence is in the set ti;j) if �)

� wi;j.
The dynamic programming algorithmswork by com-

bining shorter derivations into longer ones. In the CKY
algorithm, the grammar is in Chomsky Normal Form.
The symbol A may be added to tj�1;j by the lexical
rule A ! aj; or to ti;j by the rule A ! BC, if there
exist symbols B in ti;k and C in tk;j. In other words,
CKY obeys the following invariant:

Invariant 1 CKY: Add A to ti;j if and only if A)�

wi;j.

The principal drawback of the CKY method is that
the algorithm �nds matches that cannot lead to deriva-
tions for S. The GHR algorithm [Graham et al 1980]
improves the average case performance by considering
only matches that are consistent with the left context:

Invariant 2 GHR: Add A ! � � � to ti;j if and only
if �)� wi;j and S )

� wiA� for some � 2 ��.

In one sense, GHR seems to do as well as one could
expect in an on-line recognizer that recognizes each
pre�x of w without lookahead. Still, the algorithm
runs in time O(n3) and space O(n2) for arbitrary
context-free grammars. Furthermore, in many applica-
tions the goal is not simply to recognize a grammatical
sentence, but to �nd its possible parses, or the best
parse. Extracting all parses from the chart can be
quite expensive. Natural language constructs such as
prepositional phrase attachments and noun-noun com-
pounds can give rise to a Catalan number of parses
[Winograd 1983], as in the classic sentence \I saw a
man in the park with a telescope." With such inherent
ambiguity, even re�nements based on lookahead do not
reduce the overall complexity. The only way to further
improve performance is to �nd fewer parses|to track
only those analyses that make semantic and pragmatic
sense. Such an approach is not only potentially faster;
it is usually more useful as well.
It is straightforward to turn the GHR recognizer into

a chart parser. The chart will now store trees rather
than dotted rules. Let A ! �i;j � � represent a dotted
tree with root A that dominates wi;j (i < j) through a
contiguous sequence of child subtrees, �i;j. When the
context is clear, we will refer to such a tree as Ai;j, or
more generally as hi;j. Here � 2 V � as before; when �
is null the tree is called complete.
We could modify Invariants 1 and 2 to refer to dot-

ted trees. As in CKY, we could add a tree Ai;j if and

only if it dominated wi;j. A stronger condition, simi-
lar to GHR, would further require Ai;j to be syntacti-
cally and semantically consistent with the left context
wi. The problem remains, however, that the notion
of contextual consistency is too weak|we want analy-
ses that are contextually probable. Even semantic con-
sistency is not enough. Many of the readings in the
example above are internally consistent but still im-
probable. For example, it is possible that the example
describes the sawing of a man, but not likely. To ef-
fectively reduce the search space, we must restrict our
attention to analyses that are probable given the joint
considerations of syntax, semantics, etc. We desire to
form

Invariant 3 Optimal (OPT): Add the dotted tree Ai;j

if and only if it is dominated by the \best parse tree"
bS0;n, de�ned as the most probable complete tree of the
form S0;n.

Of course, when we are parsing a new (unbracketed)

sentence, bS0;n is not known ahead of time. In a strictly
left-right parser, without lookahead in the input string,
it is generally impossible to guarantee that we only
keep trees that appear as subtrees of bS0;n. Neverthe-
less, since language is generally processed by humans
from left to right in real time, it is reasonable to suspect
that the left-context contains enough information to
severely limit nondeterminism. A �rst attempt might
be

Invariant 4 Most Probable (MP):
Add Ai;j if and only if

P
�2�� Pr[S )� wiAi;j�] �P

�2�� Pr[S )� wi0Bi0;j�] for all dotted trees Bi0;j that
compete with Ai;j .

Ai;j and Bi0;j are said to compete if they o�er about
the same level of explanation (see below) and neither
dominates the other. Such trees are incompatible as
explanations for aj in particular, so only one can ap-

pear as part of bS0;n.
The MP criterion guesses the ultimate usefulness

and probability of a dotted tree by considering only its
left context. The left context may of course be unhelp-
ful: for instance, there is no context at the beginning of
the sentence. Worse, the left context may be mislead-
ing. In principle there is nothing wrong with this: even
humans have di�culty with misleading \garden path"
sentences. The price for being right and fast most of
the time is the possibility of being fooled occasionally|
as with any heuristic.
Even so, MP is too strict a criterion for most do-

mains: it throws away many plausible trees, some of
which may be necessary to build the preferred parse
bS0;n of the whole sentence. We modify MP so that
instead of adding only the most likely tree in each set
of competitors, it adds all trees within some fraction �
of the most likely one. Thus the parameter 0 � � < 1
operationally determines the set of garden path sen-
tences for the parser. If the left context is su�ciently



misleading for a given �, then useful trees may still be
discarded. But in exchange for the certainty of produc-
ing every consistent analysis, we hope to �nd a good
(statistically speaking) parse much faster by pruning
away unlikely alternatives. If the number of alterna-
tives is bounded by some constant k in practice, we can
obtain an algorithm that is O(n + ke) where e is the
number of edges in the parse tree. For binary branch-
ing trees, e = 2(n � 1), and the algorithm is O(n) as
desired.

Invariant 5 Reasonably Probable (RP): Add Ai;j

if and only if
P

�2�� Pr[S )� wiAi;j�] � � �P
�2�� Pr[S )� wi0Bi0;j�] for all dotted trees Bi0;j that

compete with Ai;j.

An alternative approach would keep m competing
rules from each set, where m is �xed. This has the
advantage of guaranteeing a constant number of can-
didates, but the disadvantage of not adapting to the
ambiguity level at each point in the sentence. The
fractional method better reects the kind of \memory
load" e�ects seen in psycholinguistic studies of human
parsing.
Algorithm 1 in Appendix A describes a parser that

obeys the RP invariant. The algorithm returns the set
of complete trees of the form S0;n. We restrict the
start symbol S to be non-recursive. If necessary a dis-
tinguished start symbol (e.g., ROOT ) can be added to
the grammar. Trees are created in three ways. First,
the trivial trees aj assert the presence of the input sym-
bols. Second, the parser creates some \empty trees"
from the grammar, although these are not added to
the chart: they have the form A ! �i;i � �, where �
denotes a sequence of zero subtrees. Third, the parser
can combine trees into larger trees using the 
 opera-
tor. 
 pastes two adjacent trees together:
(A! �i;j �B) 
 Bj;k = (A! �i;jBj;k � )

Here the �rst argument of 
 must be an incomplete
tree, while the second must be a complete tree. The
operator can easily be extended to work with sets and
charts:

Q
R = fAi;j 
 Bj;k j Ai;j 2 Q and is incomplete,
Bj;k 2 R and is completeg

t
R = (
S
ti;j) 
R

Theorem 1 No tree Ai;j can dominate an incomplete
tree Bi0;j.
Proof Suppose otherwise. Then Ai;j dominates the
completion of Bi0;j, and in particular some rightward
extension Bi0;j 
 Cj;k, where Cj;k is a complete tree
with j < k. It follows that Ai;j dominates wj;k, a con-
tradiction.
Corollary Given any two incomplete trees Ai;j and
Bi0;j, neither dominates the other.

Lemma 2 In line 5 of Algorithm 1, no tree Ai;j 2 N
can dominate a tree Bi0;j 2 N � Ej.
Proof Every tree in N �Ej has just been created on

this iteration of the while loop. But all subtrees dom-
inated by Ai;j were created on previous iterations.

Theorem 3 In line 5 of Algorithm 1, no tree Ai;j 2 N
can dominate a tree Bi0 ;j 2 N .
Proof Either Bi0;j 2 N � Ej, or Bi0;j 2 Ej and is
incomplete. The claim now follows from the results
above.

The most important aspect of the tree-building pro-
cess is the explicit construction and pruning of the set
of competing hypotheses, N , during each iteration. It
is here that the parser chooses which hypotheses to
pursue. Theorem 3 states that the trees in N are in
fact mutually exclusive. The algorithm is also care-
ful to ensure that the trees in N are of roughly equal
depth. Were this not the case, two equally likely deep
trees might have to compete (on di�erent iterations)
with each other's subtrees. Since the shallow subtrees
are always more probable than their ancestors (\the
part is more likely than the whole"), this would lead
to the pruning of both deep trees.
We now state a theorem regarding the parses that

will be found without pruning.

Theorem 4 In the special case of � = 0, Algorithm 1
computes precisely the derivations that could be ex-
tracted from the recognition sets of GHR up to position
j in the input.
Proof When � = 0, only zero-probability dotted trees
will be pruned. We assume that any parse tree permit-
ted by the formal grammar G has probability > 0, as do
its subtrees. Conversely, Pr[Ai;j ! �i;j � � j wj] > 0
means that S )� wi�i;j�j;k is a valid derivation for
some sequence of trees �j;k and some string .
Thus Pr[Ai;j ! �i;j �� j wj] > 0 is equivalent to the

statement that S )� wiA� for some � = wj;k 2 ��.
Hence Invariant 5 adds Ai;j ! �i;j � � to the chart if
and only if Invariant 2 adds A! � � �.

A signi�cant advantage of the data-driven parser de-
scribed by Algorithm 1 is its potential use in noisy
recognition environments such as speech or OCR. In
such applications, where many input hypotheses may
compete, pruning is even more valuable in avoiding a
combinatorial explosion.

Considerations in Probabilistic Parsing

Algorithm 1 does not specify a computation for
Pr[hi;j j wj], and so leaves open several important
questions:

1. What sources of knowledge (syntax, semantics, etc.)
can help determine the probability of the dotted tree
hi;j?

2. What features of the left context wi are relevant to
this probability?



3. Given answers to the above questions, how can we
compute Pr[hi;j j wj]?

4. How much training is necessary to obtain su�ciently
accurate statistics?

The answers are speci�c to the class of languages un-
der consideration. For natural languages, reasonable
performance can require a great deal of knowledge. To
correctly interpret \I saw a man in the park with a tele-
scope," we may need to to know how often telescopes
are used for seeing; how often a verb takes two prepo-
sitional phrases; who is most likely to have a telescope
(me, the man, or the park); and so on.
Our system uses knowledge about the empirical fre-

quencies of syntactic and semantic forms. However,
our approach is quite general and would apply with-
out modi�cation to other knowledge sources, whether
empirical or not.
The left-context probability Pr[hi;j j wj] depends

on the literal input seen so far, wj. How are we to know
this probability if wj is a novel string? As it turns
out, we can compute it in terms of the left-context
probabilities of other trees already in the chart, using
arbitrarily weak independence assumptions. We will
need empirical values for expressions of the form
Pr[hi;j 
 hj;k j ci&hi;j &hj;k]
Pr[ai+1 j ci]

where ci is one possible \partial interpretation" of wi

(constructed from other trees in the chart). If the lan-
guage permits relatively strong independence assump-
tions, ci need not be too detailed an interpretation;
then we will not need too many statistics, or a large set
of examples. On the other hand, if we refuse to make
any independence assumptions at all, we will have to
treat every string wj as a special case, and keep sepa-
rate statistics for every sentence of the language.
In the next section, we will outline the computation

for a simple case where ci contains no semantic infor-
mation. In the �nal section we present a range of re-
sults, including cases in which syntactic and semantic
information is jointly considered. For a further dis-
cussion of the syntactic and semantic representations
and their probabilities, including a helpful example,
see [Jones and Eisner 1992].
Note that semantic interdependence can operate

across some distance in a sentence; in practice, the like-
lihood of hi;j may depend on even the earliest words of
wj. Compare \The champagne was very bubbly" with
\The hostess was very bubbly." If we are to eliminate
the incongruous meaning of \bubbly" in each case, we
will need c4 (a possible interpretation of the left con-
text w4) to indicate whether the subject of the sentence
is human.
It remains an interesting empirical question whether

it is more e�cient (1) to compute highly accurate
probabilities, via adequately detailed representations
of left context, or (2) to use broader (e.g., non-
semantic) representations, and compensate for inac-
curacy by allowing more local nondeterminism. It can

be cheaper to evaluate individual hypotheses under (2),
and psycholinguistic evidence on on parallel lexical ac-
cess [Tanenhaus et al 1985] may favor (2) for sublexical
speech processing. On the other hand, if we permit too
much nondeterminism, hypotheses proliferate and the
complexity rises dramatically. Moreover, inaccurate
probabilities make it di�cult to choose among parses
of an ambiguous sentence.

A Syntactic Probability Computation

Our parser constructs generalized syntactic and seman-
tic representations, and so permits ci to be as broad
or as detailed as desired. Space prevents us from giv-
ing the general probability computation. Instead we
sketch a simple but still useful special case that dis-
regards semantics. Here the (mutually exclusive) de-
scriptions ci, where 0 � i < n, will take the form \wi

is the kind of string that is followed by an NP" (or
VP , etc.). We make our standard assumption that the
probability of hi;j may depend on ci, but is indepen-
dent of everything else about wi.1 In this case, ci is
a function of the single correct incomplete dotted tree
ending at i: so we are assuming that nothing else about
wi is relevant.
We wish to �nd Pr[hj;l j wl]. Given 0 � j < n,

let Ej denote the subset of incomplete dotted trees
in
S

i
ti;j. We may assume that some member of Ej

does appear in bS0;n. (When this assumption fails,
bS0;n will not be found no matter how accurate our
probability computation is.) The corollary to Theo-
rem 1 then implies that exactly one tree in Ej ap-

pears in bS0;n. We can therefore express Pr[hj;l j wl]
as
P

hi;j2Ej
Pr[hi;j &hj;l j wl]. We cache all the sum-

mands, as well as the sum, for future use.
So we only need an expression for U =

Pr[hi;j&hj;l j wl]. There are three cases. If l = j + 1
and hj;l = aj+1, we can apply Bayes' Theorem:

U = Pr[hi;j& aj+1 j wj+1]

= Pr[hi;j& aj+1 j wj & aj+1]

= Pr[hi;j j wj & aj+1]

=
Pr[aj+1 j hi;j &wj] � Pr[hi;j j wj]P

hi0;j2Ej
Pr[aj+1 j hi0;j &wj ] � Pr[hi0;j j wj]

=
X1X2P
X 0
1X

0
2

In the second case, where hj;l = hj;k 
 hk;l, we factor
as follows:

U = Pr[hi;j& (hj;k 
 hk;l) j wl]

1In the language of classical statistics, we have a binary-
valued random variable H that takes the value true i� the
tree hi;j appears in the correct parse. We may treat the un-
known p.d.f. for H as determined by the parameter wi, the
preceding input. Our assumption is that ci is a su�cient
statistic for wi.



= Pr[hj;k 
 hk;l j hi;j &hj;k& hk;l&wl]

�Pr[hj;k&hk;l j wl] �Pr[hi;j j hj;k&hk;l&wl]

= X3X4Y

Insofar as our independence assumption holds, we can
prove

Y � Pr[hi;j j hj;k&wk] =
Pr[hi;j &hj;k j wk]

Pr[hj;k j wk]
=
X5

X6

Finally, if 0 < j = l and hj;j = hj;l is an empty tree,
A! �j;j � � (X5 sometimes yields this form):

U = Pr[hi;j&hj;j j wj]

= Pr[hi;j j wj] � Pr[hj;j j hi;j &wj] = X7X8

Now X2; X
0

2; X4; X5; X6 and X7 are all left-context
probabilities for trees (and pairs of trees) that are al-
ready in the chart. In fact, all these probabilities have
already been computed and cached.
X1; X

0
1; X3 andX8, as well as the top-down probabil-

ities Pr[S0;0], may be estimated from empirical statis-
tics. Where hi;j is the incomplete tree A ! �i;j �B�,
de�ne cj(hi;j) to be the symbol B. Thus if hi;j is cor-
rect, wj is in fact the kind of string that is followed by
a constituent of type cj(hi;j) = B. According to our
independence assumption, nothing else about wj (or
hi;j) matters. We therefore write
X1 � Pr[aj+1 j cj(hi;j)]
X8 � Pr[hj;j j cj(hi;j)],

and by similar assumptions (and abuse of notation),
X3 � Pr[
 j ck(hj;k)& root(hk;l)].

An illustration may be helpful here. Suppose A =
hj;k is the dotted tree VP ! V j;k � NP . Thus A has
the property that ck(A) = NP . Suppose further that
B = hk;l is some complete tree representing an NP .
The above statistic for X3 gives the likelihood that
such an A will bind such a B as its next child (rather
than binding some deeper NP that dominatesB). Our
parser computes this statistic during training, simply
by looking at the sample parse trees provided to it.
GHR makes use of similar facts about the language,
but deduces them from the formal grammar.
The key feature of this derivation (and of the more

general version) is that it permits e�ective caching.
Thanks to Bayes' Theorem, left-context probabilities
are always written in terms of other, previously com-
puted left-context probabilities. So Pr[hj;l j wl] can
always be found by multiplying or adding together a
few known numbers|regardless of the size of the dot-
ted tree hj;l.
If the size of the sets Ej is bounded by a constant,

then the summations are bounded and each new tree
can be evaluated in constant time. Since at most one
member of Ej is actually in bS0;n, the set may be kept
small by e�ective pruning. Thus accurate probabilities
have a double payo�. They permit us to prune aggres-
sively, a strategy which both keeps the chart small and
makes it easy to estimate the probabilities of its en-
tries.

Status and Results

Our parser serves as a component of the soft-
ware testing application mentioned in the introduc-
tion (for details, see [Nonnenmann and Eddy 1992]
and [Jones and Eisner 1992]). It has been trained on
sample parse trees for over 400 sentences in the do-
main. The trees use lexical tags from the Brown Cor-
pus [Francis and Kucera 1982] and fairly traditional
phrase structure labels (S , NP , etc.). Although the
\telephonese" sublanguage is an unrestricted subset of
English, it di�ers statistically from English taken as a
whole. The strength of trainable systems is their abil-
ity to adapt to such naturally occurring (and evolving)
sublanguages.
The training corpus contains 308 distinct lexical

items which participate in 355 part of speech rules.
There are 55 distinct nonterminal labels, including 35
parts of speech. Sentences range from 5 to 47 words in
length (counting punctuation). The average sentence
is 11 long; the average parse tree is 9 deep with 31
nonterminal nodes.
We take our grammar to be the smallest set of sym-

bols and context-free rules needed to write down every
tree in the corpus. The corpus perplexity b(C) mea-
sures the ambiguity of any set of sentences C under a
given grammar:

log b(C) =

P
S2C

log(number of parses for S)P
S2C

number of words in S

Using GHR to parse the corpus exhaustively, we mea-
sure b(C) = 1:313. Thus a typical 11-word sentence
has 1:31311 � 20 parses, only one of which is correct.2

10% of the sentences have more than 1400 possible
parses each.
Our working parser uses a hand-coded translation

function � to construct the semantic interpretations of
dotted trees. It also makes use of some formal improve-
ments to the algorithm, which have been omitted here
for space reasons.
To date, we have tried to address three questions.

First, particularly when the parser has enough knowl-
edge to generate at least one parse, can it generate
and identify the correct parse? Second, how quickly
is the parser accumulating the knowledge necessary to
get at least one parse? Third, how e�ectively does
the algorithm control the combinatorial proliferation
of hypotheses?

Accuracy

We have done several experiments to measure the ac-
curacy of the parser on untrained sentences. Figure 1
summarizes two such experiments, which tested the
accuracy of (i) joint syntactic-semantic statistics, and
(ii) syntactic statistics alone (as formulated above).
To best use our rather small set of 429 bracketed

2[Black, Jelinek, et al 1992], who call b(C) the \parse
base," report almost identical numbers for an corpus of
sentences from computer manuals.



(i) joint syntax (ii) syntax
and semantics alone

%(some parse found) 81% 76%
%(top parse correct j some parse found) 96% 79%
#(parses/sentence j some parse found) 1.03 1.33
%(some parse �rst found at 10�1) 53% 30%
%(some parse �rst found at 10�2) 19% 29%
%(some parse �rst found at 10�3) 9% 17%

Figure 1: Bene�ts of semantic knowledge.

sentences, we trained on each 428 sentence subset
and tested on the remaining sentence. Each sentence
was parsed with progressively wider search beams of
� = 10�1; 10�2, and 10�3, until at least one parse was
found.
We scored a parse as correct only if it matched

the target parse tree exactly. For example, we would
disallow a parse that was in error on a part-of-
speech tag, a prepositional attachment, or the inter-
nal structure of a major constituent. Some other pa-
pers have used less stringent scoring methods (e.g.,
[Black, Jelinek, et al 1992]), sometimes because their
corpora were not fully bracketed to start with.
In experiment (i), using joint syntactic and seman-

tic statistics, the parser correctly generated the target
parse as its top choice in 96% of the cases where it
found any parse. It achieved this rate while generating
only 1.03 parses for each of those sentences. For 53% of
the test sentences, the parser found one or more parses
at the narrowest beam level, 10�1. For 19%, the �rst
parse was found at 10�2. For another 9%, the �rst
parse was found at 10�3. For the remaining 19% of
the test sentences, no parse was found by 10�3; half
of these contained unique vocabulary not seen in the
training data.
The contrast between experiments (i) and (ii) in-

dicates the importance of the statistical independence
assumptionsmade by a language model. In experiment
(ii), the left context still generated syntactic expecta-
tions that inuenced the probabilities, but the parser
assumed that the semantic role-�ller assignments es-
tablished by the left context were irrelevant. In con-
trast to the 96% accuracy yielded by the joint syntactic
and semantic statistics of experiment (i), these syntax-
only statistics picked the target parse in only 79% of
the sentences with some parse. The weaker statistics
in (ii) also forced the parser to use wider beams.

Knowledge Convergence

After 429 sentences in the telephony domain, the
grammar is still growing: the rate of new \structural"
(syntactic) rules is diminishing rapidly, but the vocab-
ulary continues to grow signi�cantly. In an attempt to
determine how well our incomplete statistics are gen-
eralizing, we ran three experiments, based on a 3-way
split, a 10-way split and a 429-way split of the cor-

pus. In the 10-way split, for example, we tested on
each tenth after training on the other nine-tenths. The
parser used joint syntactic and semantic statistics for
all three experiments. The results are summarized in
Figure 2.
When the parser was able to �nd at least one parse,

its top choice was nearly always correct (96%) in each
experiment. However, the chance of �nding at least
one parse within � = 10�3 increased with the amount
of training. The overall success rates were 70% (3-way
split), 76% (10-way split), and 77% (429-way split).
In each case, a substantial fraction of the error is at-
tributable to test sentences containing words that had
not appeared in the training. The remaining error rep-
resents grammatically novel structures and/or an un-
dertrained statistical model.
We would also like to know what the parser's ac-

curacy will be when we are very well trained. In a
fourth experiment, we trained on all 429 sentences be-
fore parsing them. Here, the parser produced only 1.02
parses/sentence and recovered the target parse 98.4%
of the time. The correct parse was always ranked �rst
whenever it was found. On the 428 sentences that had
at least one parse, the parser only failed to �nd 10 of
the 12,769 target constituents. For the present small
corpus, there is apparently no substitute for having
seen the test sentence itself.
The fourth experiment, unlike the other three,

demonstrates the validity of the independence assump-
tions in our statistical model. It shows that for this
corpus, the parser's generalization performance does
not come at the expense of \memorization." That is,
the statistics retain enough information for the parser
to accurately reconstruct the training data.

Performance

For those sentences where some parse was found at
beam 10�1 during experiment (i) above, 74% of the
arcs added to the chart were actually required. We
call this measure the focus of the parser since it quan-
ti�es how much of the work done was necessary. The
constituent focus, or percentage of the completed con-
stituents that were necessary, was even higher|78%.
The constituent focus fell gradually with wider beams,
to 75% at 10�2 and 65% at 10�3.



3-way 10-way 429-way Test on
split split split training

%(top parse correct j some parse found) 96% 96% 96% 98.6%
%(top parse correct j no unknown words) 81% 84% 85% 98.4%
%(top parse correct) 70% 76% 77% 98.4%

Figure 2: E�ect of increased training on accuracy.

To remove the e�ect of the pruning schedule, we
tried rerunning experiment (i) at a constant beam
width of � = 10�3. Here the constituent focus was
68% when some parse was found. In other words, a
correct constituent had, on average, only half a com-
petitor within three orders of magnitude.

In that experiment, the total number of arcs gener-
ated during a parse (before pruning) had a 94% linear
correlation with sentence length. The shorter half of
the corpus (� 9 words) yielded the same regression
line as the longer half. Moreover, a QQ-plot showed
that the residuals were well-modeled by a (truncated)
Gaussian distribution. These results suggest O(n) time
and space performance on this corpus, plus a Gaussian
noise factor.3

Extensibility

Hand-coded natural language systems tend to be
plagued by the potential open-endedness of the knowl-
edge required. The corresponding problem for statis-
tical schemes is undertraining. In our task, we do
not have a large set of analyzed examples, or a com-
plete lexicon for telephonese. To help compensate,
the parser can utilize hand-coded knowledge as well
as statistical knowledge. The hand-coded knowledge
expresses general knowledge about linguistic subtheo-
ries or classes of rules, not speci�c knowledge about
particular rules.

As an example, consider the problem of assigning
part of speech to novel words. Several sources of knowl-
edge may help suggest the correct part of speech class:
the state of the parser when it encounters the novel
word, the relative closedness of the class, the morphol-
ogy of the word, and orthographic conventions like cap-
italization. An experimental version of our parser com-
bines various forms of evidence to assign probabilities
to novel lexical rules. Using this technique, the exper-
imental parser can take a novel sentence such as \XX
YY goes ZZ" and derive syntactic and semantic repre-
sentations analogous to \Station B1 goes o�hook."

3In keeping with usual statistical practice, we discarded
the two 47-word outliers; the remaining sentences were
5{24 words long. We also discarded the 88 sentences
with unknown words and/or no parses found, leaving 339
sentences.

Conclusions and Future Work

Truly robust natural language systems will require
both the distributional knowledge and the general lin-
guistic knowledge that are available to humans. Such
knowledge will help these systems perform quickly and
accurately, even under conditions of noise, ambiguity,
or novelty. We are especially interested in bootstrap-
ping approaches to enable a parser to learn more di-
rectly from an unbracketed corpus. We would like to
combine statistical techniques with weak prior theories
of syntax, semantics, and/or low-level recognition such
as speech and OCR. Such theories provide an environ-
ment in which language learning can take place.
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Appendix A: The Parsing Algorithm

Algorithm 1. PARSE(w):

(* create an (n+ 1)� (n + 1) chart t = (ti;j): *)
t0;0 := fS ! �0;0 � � j S ! � is in Pg;
for j := 1 to n do

Dj := tj�1;j := fajg; Ej := ;;
while Dj 6= ;

N := (t 
Dj) [ (PREDICT(Dj)
Dj) [Ej ;
R :=PRUNE(N);
Dj := Ej := ;;
for hi;j 2 R do

ti;j := ti;j [ fhi;jg;
if hi;j is complete

then Dj := Dj [ fhi;jg
else Ej := Ej [ fhi;jg

endfor
endwhile

endfor;
return fall complete S-trees in t0;ng

Function PREDICT(D):

return fC ! �i;i � A� j C ! A� is in P , some
complete tree Ai;j is in D, and C 6= Sg

Function PRUNE(N):

(* only likely trees are kept *)
R := ;;
threshold := � �maxhi;j2N Pr(hi;j jw0;j);
for hi;j in N do

if Pr(hi;j jw0;j) > threshold

then R := R [ fhi;jg;
endfor;
return R


