
Proceedings of National Conference on Artificial Intelligence (AAAI-92), San Jose, 1992, pp. 322-328.

A Probabilistic Parser Applied to Software Testing

Documents

Mark A. Jones
AT&T Bell Laboratories

600 Mountain Avenue, Rm. 2B-435
Murray Hill, NJ 07974{0636

jones@research.att.com

Jason M. Eisner
Emmanuel College, Cambridge
Cambridge CB2 3AP England
jme14@phoenix.cambridge.ac.uk

Abstract

We describe an approach to training a statisti-
cal parser from a bracketed corpus, and demon-
strate its use in a software testing application
that translates English speci�cations into an au-
tomated testing language. A grammar is not ex-
plicitly speci�ed; the rules and contextual proba-
bilities of occurrence are automatically generated
from the corpus. The parser is extremely success-
ful at producing and identifying the correct parse,
and nearly deterministic in the number of parses
that it produces. To compensate for undertrain-
ing, the parser also uses general, linguistic sub-
theories which aid in guessing some types of novel
structures.

Introduction

In constrained domains, natural language processing
can often provide leverage. In software testing at
AT&T, for example, 20,000 English test cases prescribe
the behavior of a telephone switching system. A test
case consists of about a dozen sentences describing the
goal of the test, the actions to perform, and the con-
ditions to verify. Figure 1 shows part of a simple test
case. Current practice is to execute the tests by hand,
or else hand-translate them into a low-level, executable
language for automatic testing. Coding the tests in the
executable language is tedious and error-prone, and the
English versions must be maintained anyway for read-
ability.
We have constructed a system called KITSS

(Knowledge-Based Interactive Test Script System),
which can be viewed as a system for machine-assisted
translation from English to code. Both the English
test cases and the executable target language are part
of a pre-existing testing environment that KITSS must
�t into. The basic structure of the system is given in
Figure 2. English test cases undergo a series of trans-
lation steps, some of which are interactively guided by
a tester.
The completeness and interaction analyzer is the

pragmatic component that understands the basic ax-

GOAL: Activate CFA [call forwarding] using CFA Acti-
vation Access Code.

ACTION: Set station B2 without redirect noti�cation.
Station B2 goes o�hook and dials CFA Activation Access
Code.

VERIFY: Station B2 receives the second dial tone.

ACTION: Station B2 dials the extension of station B3.

VERIFY: Station B2 receives con�rmation tone. The
status lamp associated with the CFA button at B2 is
lit.

VERIFY: : : :

Figure 1: An Example Test Case

ioms and conventions of telephony. Its task is to
esh
out the test description provided by the English sen-
tences. This is challenging because the sentences omit
many implicit conditions and actions. In addition,
some sentences (\Make B1 busy") require the analyzer
to create simple plans. The analyzer produces a for-
mal description of the test, which the back-end trans-
lator then renders as executable code. A more com-
plete description of the goals of the system, its archi-
tecture and the software testing problem can be found
in [Nonnenmann and Eddy 1992].
This paper discusses the natural language processor

or linguistic component, which must extract at least
the surface content of a highly referential, naturally
occurring text. The sentences vary in length, ranging
from short sentences such as \Station B3 goes onhook"
to 50 word sentences containing parentheticals, subor-
dinate clauses, and conjunction. The principal leverage
is that the discourse is reasonably well focused: a large,
but �nite, number of telephonic concepts enter into a
�nite set of relationships.

Natural Language Processing in KITSS

The KITSS linguistic component uses three types of
knowledge to translate English sentences quickly and
accurately into a logical form:

ENGLISH
TEST

CASES

DOMAIN
MODEL

NL
PR

O
C

E
SS

O

R TR
A

N
SL

A
T

O
R

INTERACTION ANALYZER

EXEC.
TEST

SCRIPTS

COMPLETENESS &
USER

Interaction
Transformation

Figure 2: KITSS Architecture

1. syntactic: empirical statistics about common con-
structions

2. semantic: empirical statistics about common con-
cepts

3. referential: expert knowledge about the logical rep-
resentation of concepts

Figure 3 illustrates the syntactic, semantic, and
logical representations computed for one analysis of
the sentence \Place a call from station B1 to station
B2." We will not say much here about the referen-
tial knowledge that �nally rewrites the surface seman-
tic representation as temporal logic. KITSS currently
uses a hand-coded production system that includes
linguistic rules (e.g., active-passive and conjunction),
discourse rules (e.g., de�nite reference), and domain-
speci�c canonicalization rules.
An undirected parser would generate many alter-

native (incorrect) hypotheses regarding the structure
and interpretation of the sentence in Figure 3. It
might try attaching the prepositional phrases to the
noun phrase \a call," or treating \to station B2" as
an in�nitive phrase. In designing a parsing technique
for the KITSS system, we wanted to exploit the sta-
tistical regularities that make one interpretation far
likelier than others. In line with our earlier success
on statistical error-correction for optical character rec-
ognizers (OCR devices) [Jones et al 1991], we sought
ways to \bootstrap" the acquisition of statistical do-
main knowledge|in this case, knowledge about the
likelihood of syntactic and semantic substructures in
the test case sentences.
Note that initially we may have only a corpus of

raw sentences, not a corpus of their target syntactic
and semantic structures. While it is impractical to

hand-analyze a large portion of the corpus, it is pos-
sible to do a relatively small number of sentences by
hand, to get started, and then to use the parser itself
as a tool to suggest analyses (or partial analyses) for
further sentences. A similar approach to training is
found in [Simmons 1991]. We will assume below that
we have access to a training set of syntactic and se-
mantic structures.1

Issues in Probabilistic Parsing
To generalize from the training corpus to new sen-
tences, we will need to induce a good statistical model
of the language. But the statistical distributions in
a natural language re
ect a great many factors, some
of them at odds with each other in unexpected ways.
Chomsky's famous sentence, \Colorless green ideas
sleep furiously," is syntactically quite reasonable|but
semantic nonsense|but, for historical reasons, quite
common in conference papers. Or consider the classic
illustration of attachment ambiguity: \I saw a man in
the park with a telescope." One interpretation of this
sentence holds that I used a telescope to see a man. To
judge the relative likelihood, we maywant to know how
often telescopes are used for \seeing" (vs. \sawing");
how often a verb takes two prepositional phrases; who
is most likely to have a telescope (me, the man, or the
park); and so on.
Thus many features of a sentence may be signi�-

cant. Within a restricted domain such as KITSS, the
distributions are further shaped by the domain subject
matter and by stylistic conventions. Sentences such as
\Station B3 goes onhook" may be rare in the newspa-
per but common in the KITSS application. For sta-
tions to \go" is a test script idiom.
We want our statistics to capture more than the syn-

tactic correlations. Our strategy is to build up rich in-
terpretations of the sentences as we are parsing them.
We take care to interpret every subtree that we gener-
ate. Thus, when we are deciding whether to combine
two subtrees later on, we will know what the subtrees
\mean." Furthermore, we will have semantic readings
for other, possibly relevant portions of the sentence.
The semantic information helps to expose deep sim-

ilarities and deep di�erences among sentences. Two
trees that are semantically similar are likely to com-
bine in similar ways. With semantic interpretations,
we directly represent the fact that in one hypothesis
the telescope is used for seeing. This fact is obscured
in the corresponding syntactic tree|and even more so
in the original sentence, where \saw" and \telescope"
appear far apart.
Formally, let
 be a given space of possible inter-

pretations. We model a phrase structure rule, Lk !

1In KITSS, only the syntactic bracketing is ever fully
manual. The system automatically constructs a semantics
for each training example from its syntax, using a set of
translation rules. Most of these rules are inferred from a
default theory of syntactic-semantic type correspondences.

String: Place a call from station B1 to station B2 .
Syntax: (SP (S (VP (VP (VP (VB "Place") (NP (AT "a") (NN "call")))

(PP (IN "from") (NP (NN "station") (NPR "B1"))))
(PP (IN "to") (NP (NN "station") (NPR "B2")))))

(\. "."))
Semantics: (PLACE (:OBJECT (CALL (:NUMBER SING) (:REF A)))

(:FROM (STATION (:NUMBER SING) (:NAME "B1")))
(:TO (STATION (:NUMBER SING) (:NAME "B2")))
(:MOOD DECL) ...)

Logic: ((OCCURS (PLACES-CALL B1 B2 CALL-812)))

Figure 3: Representations Formed in Processing a Sentence

R1R2 : : :Rm, as an m-ary function taking values in
.
R1 : : :Rm give type restrictions on the m arguments.
The function describes how to build an interpretation
of type L from m contiguous substring interpretations
of types R1 : : :Rm. The rule number k distinguishes
rules that have the same domain and range, but dif-
fer functionally (e.g., in the case of a noun with two
meanings); the chart maintains distinct hypotheses for
the alternative interpretations.
In practice, our
 consists of joint syntactic-semantic

interpretations. The syntactic half of an interpretation
is simply the parse tree. The semantic half is built
compositionally from lexically-derived heads, slots and
�llers in a standard frame language, as illustrated in
Figure 3.
Experiments con�rm the value of this approach for

statistical parsing. When we run our parser with se-
mantics turned o�, its syntactic accuracy rate drops
from 99% to 66%, and it runs far more slowly.

The KITSS Algorithm

The KITSS parsing algorithm (given as Algorithm 1
in Appendix
A) is a variant of tabular or chart parsing methods
for context-free languages [Cocke and Schwartz 1970,
Earley 1970, Graham et al 1980]. It scans the sentence
from left to right, assembling possible partial interpre-
tations of the sentence; but it continually discards in-
terpretations that are statistically unlikely.
The grammar rules and statistics are generated au-

tomatically by training on a bracketed corpus. The
grammar is taken to be the smallest set of symbols
and rules needed to write down all the parse trees in
the corpus. The statistics are context-sensitive; they
concern the frequencies with which the interpreted sub-
trees co-occur. Incremental training is permitted. The
model is that the system considers a new sample sen-
tence, updates its database, and throws the sentence
away.
A grammar is given by G = (V;�; P; S), where V is

the vocabulary of all symbols, � is the set of terminal
symbols,P is the set of rules, and S is the start symbol.
The start symbol is restricted to be non-recursive. A
distinguished start symbol (e.g., ROOT) can be added

to the grammar if necessary. For an input sentence
w = a1a2 : : : ajwj (ai 2 �), let wi;j denote the substring
ai+1 : : :aj . For example, w0;3 denotes the �rst three
words.
The algorithm operates bottom-up from left to right

in the input string. At each point j in the input string,
the algorithm constructs hypotheses about the imme-
diately preceding substrings wi;j. A complete hypoth-
esis is a parse tree for some substring of the sentence;
we write it as [Lr1 r2 : : : rm], where L! R1R2 : : :Rm

is a rule in P and each subtree ri is itself a complete
hypothesis with root Ri. An incomplete hypothesis is
similar, except it is missing one or more of its rightmost
branches. We write it as [L r1 r2 : : : rq +]; 0 � q < m.
We use the notation hi;j to refer to a hypothesis

that dominates the string wi;j. If a hypothesis hi;j
is judged to be likely, it is added to a set ti;j in a
(jwj+ 1)� (jwj+ 1) chart t.
\Empty" hypotheses, which are created directly

from the grammar, have the form [L +]. \Input" hy-
potheses just assert the existence of ai and are com-
plete; these are usually assigned probability 1, but nor-
malized sets of input hypotheses could be used in noisy
recognition environments such as speech or OCR.
Longer hypotheses are created by the
 operator,

which attaches a new child to a tree. The
 product
of two hypotheses is the smallest set respecting the
condition that

whenever

(
hi;j = [L r1 : : : rq +];
hj;k = rq+1; and
(L! R1 : : :Rq Rq+1 : : :Rm) 2 P

then

�
[L r1 : : : rq rq+1 +] 2 (hi;j
 hj;k) if q + 1 < m
[L r1 : : : rm] 2 (hi;j
 hj;k) if q + 1 = m

Note that
 returns a set of 0, 1, or 2 hypotheses.
The �rst argument of
 is ordinarily an incomplete
hypothesis, while the second is a complete hypothe-
sis immediately to its right. Otherwise
 returns the
empty set. The operator can easily be extended to act
on sets and charts:
Q
R :=

S
fh
 h0 j h 2 Q; h0 2 Rg

t
R := (
S
ti;j)
R

The algorithm returns the set of complete hypotheses
in t0;jwj whose roots are S , the start symbol. Each of
these parses has an associated probability.

V = fVP; V ; \Place"; NP ; Det; \a"; N ; \call" : : :g

� = f\Place"; \a"; \call" : : :g

P = fVP ! V NP; NP ! Det N ; V ! \Place";

Det ! \a"; N ! \call" : : :g

S = VP

VP
/ \

/ NP
/ / \
V Det N
| | |

"Place" "a" "call"

Figure 4: A Parse Tree for w = \Place" \a" \call"

During the parsing process, a left-context probability
or LCP, Pr(hi;j j w0;j), is used to prune sets of com-
peting hypotheses. Pruning severity depends on the
beam width, 0 < � � 1. A beam width of 10�2 keeps
only those alternative hypotheses that are judged at
least 1% as likely as the leading contender in the set.
The correct parse can survive only if all of its con-
stituent hypotheses meet this criterion; thus � opera-
tionally determines the set of garden path sentences for
the parser. If any correct hypothesis is pruned, then
the correct parse will not be found (indeed, perhaps
no parse will be found). This can happen in garden
path sentences. It may also happen if the statistical
database provides an inadequate or incomplete model
of the language.

Probability Calculations
The parsing algorithm keeps or discards a hypothe-
sis according to the left-context probability Pr(hi;j j
w0;j). The more accurate this value, the better we will
do at pruning the search space. How can we compute
it without assuming context-freeness?
We are able to decompose the probability into a

product of corpus statistics (which we look up in a
�xed hash table) and the LCPs of other hypotheses
(which we computed earlier in the parse). Space pre-
vents us from giving the formal derivation. Instead we
will work through part of an example.
Figure 4 gives a small grammar fragment, with a

possible parse tree for a short sentence. For conve-
nience, we will name various trees and subtrees as fol-
lows:

place = \Place"0;1
a = \a"1;2

call = \call"2;3
v = [V \Place"]0;1

det = [Det \a"]1;2
n = [N \call"]2;3

np1 = [NP [Det \a"] +]1;2

np = [NP [Det \a"] [N \call"]]1;3
vp1 = [VP [V \Place"] +]0;1
vp = [VP [V \Place"]

[NP [Det \a"] [N \call"]]]0;3

These trees correspond to the hypotheses of the pre-
vious section. Note carefully that|for example|the
tree vp 2 vp1
np is correct if and only if the trees vp1

and np are also correct. We will use this fact soon.

Left-Context Probabilities

We begin with some remarks about Pr(np j w0;3), the
LCP that np is the correct interpretation of w1;3. This
probability depends on the �rst word of the sentence,
w0;1, and in particular on the interpretation of w0;1.
(For example: if the statistics suggest that \Place" is
a noun rather than a verb, the np hypothesis may be
unlikely.) The correct computation is

Pr(np j w0;3) = Pr(vp1& np j w0;3) (1)

+ Pr(X & np j w0;3)

+ Pr(Y & np j w0;3) + : : :

where vp1;X ;Y ; : : : are a set of (mutually exclusive)
possible explanations for \Place." The summands in
equation 1 are typical terms in our derivation. They
are LCPs for chains of one or more contiguous hypothe-
ses.
Now let us skip ahead to the end of the sentence,

when the parser has �nished building the complete tree
vp. We decompose this tree's LCP as follows:

Pr(vp j w0;3) = Pr(vp & vp1& np j w0;3) (2)

= Pr(vp j vp1& np &w0;3)

� Pr(vp1& np j w0;3)

The �rst factor is the likelihood that vp1 and np, if
they are in fact correct, will combine to make the big-
ger tree vp 2 vp1
np . We approximate it empirically,
as discussed in the next section.
As for the second factor, the parser has already

found it! It appeared as one of the summands in (1),
which the parser used to �nd the LCP of np. It de-
composes as

Pr(vp1& np j w0;3) (3)

= Pr(vp1& np & np1& n j w0;3)

= Pr(np j vp1& np1& n &w0;3)

�Pr(vp1& np1& n j w0;3)

The situation is exactly as before. We estimate the
�rst factor empirically, and we have already found the
second as

Pr(vp1& np1& n j w0;3) (4)

= Pr(vp1& np1& n & call j w0;3)

= Pr(n j vp1& np1& call &w0;3)

�Pr(vp1& np1& call j w0;3)

At this point the recursion bottoms out, since call
cannot be decomposed further. To �nd the second fac-
tor we invoke Bayes' theorem:

Pr(vp1& np1& call j w0;3) (5)

= Pr(vp1& np1& call j w0;2& call)

= Pr(vp1& np1 j w0;2& call)

=
Pr(call j vp1& np1&w0;2) � Pr(vp

1& np1 j w0;2)P
X Pr(call j X &w0;2) �Pr(X j w0;2)

The sum in the denominator is over all chains X, in-
cluding vp1& np1, that compete with each other to ex-
plain the input w0;2 = \Place a". Note that for each
X, the LCP of X & call will have the same denomina-
tor.
In both the numerator and the denominator, the �rst

factor is again estimated from corpus statistics. And
again, the second factor has already been computed.
For example, Pr(vp1& np1 j w0;2) is a summand in
the LCP for np1. Note that thanks to the Bayesian
procedure, this is indeed a left-context probability: it
does not depend on the word \call," which falls to the
right of np1.

Corpus Statistics

The recursive LCP computation does nothing but mul-
tiply together some empirical numbers. Where do
these numbers come from? How does one estimate a
value like Pr(vp j vp1& np &w0;3)?
The condition w0;3 is redundant, since the words also

appear as the leaves of the chain vp1& np. So the ex-
pression simpli�es to Pr(vp j vp1& np). This is the
probability that, if vp1 and np are correct in an ar-
bitrary sentence, vp is also correct. (Consistent alter-
natives to vp = [VP v np] might include [VP v np pp]
and [VP v [NP np pp]], where pp is some prepositional
phrase.)
In theory, one could �nd this value directly from the

bracketed corpus:

(a) In the 3 bracketed training sentences (say) where

� A = [VP [V \Place"] +]0;1 appears

� B = [NP [Det \a"] [N \call"]]1;3 appears

in what fraction does

[VP [V \Place"] [NP [Det \a"] [N \call"]]]0;3
appear?

However, such a question is too speci�c to be practical:
3 sentences is uncomfortably close to 0. To ensure that
our samples are large enough, we broaden our question.
We might ask instead:

(b) Among the 250 training sentences with

� A = [VP [V : : :] +]i;j
� B = [NP : : :]j;k (some i < j < k)

in what fraction is B the second child of A?

Alternatively, we might take a more semantic approach
and ask

(c) Among the 20 training sentences with

� A = a subtree from i to j

� B = a subtree from j to k

� A has semantic interpretation A0 = (v-PLACE
: : :)

� B has semantic interpretation B0 = (n-CALL : : :)

in what fraction does B0 �ll the OBJECT role of
A0?

Questions (b) and (c) both consider more sentences
than (a). (b) considers a wide selection of sentences like
\The operator activates CFA : : : ." (c) con�nes itself to
sentences like \The operator places two priority calls
: : : ."
As a practical matter, an estimate of Pr(vp j

vp1& np) should probably consider some syntactic and
some semantic information about vp1 and np. Our cur-
rent approach is essentially to combine questions (b)
and (c). That is, we focus our attention on corpus
sentences that satisfy the conditions of both questions
simultaneously.

Limiting Chain Length

The previous sections refer to many long chains of hy-
potheses:
Pr(vp1& np1& call j w0;3)
Pr(n j vp1& np1&w0;3)

In point of fact, every chain we have built extends back
to the start of the sentence. But this is unacceptable: it
means that parsing time and space grow exponentially
with the length of the sentence.
Research in probabilistic parsing often avoids this

problem by assuming a stochastic context-free lan-
guage (SCFG). In this case,
Pr(vp1& np1& call j w0;3)
= Pr(vp1 j w0;1) � Pr(np

1 j w1;2) � Pr(call j w2;3)
and
Pr(n j vp1& np1&w0;3) = Pr(n j w2;3).

This assumption would greatly condense our compu-
tation and our statistical database. Unfortunately, for
natural languages SCFGs are a poor model. Follow-
ing the derivation S)� John solved the N , the prob-
ability of applying rule fN ! �shg is approximately
zero|though it may be quite likely in other contexts.
But one may limit the length of chains less dras-

tically, by making weaker independence assumptions.
With appropriate modi�cations to the formulas, it is
possible to arrange that chain length never exceeds
some constant L � 1. Setting L = 1 yields the context-
free case.
Our parser re�nes this idea one step further: within

the bound L, chain length varies dynamically. For in-
stance, suppose L = 3. In the parse tree
[VP [V \Place"]

[NP [Det \a"] [Adj \priority"] [N \call"]]],

we do compute an LCP for the entire chain
vp1& np2&n, but the chain vp1& np1& adj is consid-
ered \too long." Why? The parser sees that adj will
be buried two levels deep in both the syntactic and
semantic trees for vp. It concludes that
Pr(adj j vp1& np1) � Pr(adj j np1),

and uses this heuristic assumption to save work in sev-
eral places.
In general we may speak of high-focus and low-focus

parsing. The focus achieved during a parse is de�ned
as the ratio of useful work to total work. Thus a
high-focus parser is one that prunes aggressively: it
does not allow incorrect hypotheses to proliferate. A
completely deterministic parser would have 100% fo-
cus. Non-probabilistic parsers typically have low focus
when applied to natural languages.
Our parsing algorithm allows us to choose between

high- and low-focus strategies. To achieve high focus,
we need a high value of � (aggressive pruning) and ac-
curate probabilities. This will prevent a combinatorial
explosion. To the extent that accurate probabilities re-
quire long chains and complicated formulas, the useful
work of the parser will take more time. On the other
hand, a greater proportion of the work will be useful.
In practice, we �nd that even L = 2 yields good

focus in the KITSS domain. Although the L = 2 prob-
abilities undoubtedly sacri�ce some degree of accuracy,
they still allow us to prune most incorrect hypotheses.
Related issues of modularity and local nondetermin-
ism are also discussed in the psycholinguistic literature
(e.g., [Tanenhaus et al 1985]).

Incomplete Knowledge

Natural language systems tend to be plagued by the
potential open-endedness of the knowledge required for
understanding. Incompleteness is a problem even for
fully hand-coded systems. The correlate for statistical
schemes is the problem of undertraining. In our task,
for example, we do not have a large sample of syn-
tactic and semantic bracketings. To compensate, the
parser utilizes hand-coded knowledge as well as statis-
tical knowledge. The hand-coded knowledge expresses
general knowledge about linguistic subtheories such as
part of speech rules or coordination.
As an example, consider the problem of assign-

ing parts of speech to novel words. Several sources
of knowledge may suggest the correct part of speech
class|e.g., the left-context of the the novel word, the
relative openness or closedness of the classes, morpho-
logical evidence from a�xation, and orthographic con-
ventions such as capitalization. The parser combines
the various forms of evidence (using a simpli�ed rep-
resentation of the probability density functions) to as-
sign a priori probabilities to novel part of speech rules.
Using this technique, the parser takes a novel sen-
tence such as \XX YY goes ZZ," and derives syntactic
and semantic representations analogous to \Station B1
goes o�hook."

The current system invokes these ad hoc knowledge
sources when it fails to �nd suitable alternatives using
its empirical knowledge. Clearly, there could be a more
continuous strategy. Eventually, we would like to see
very general linguistic principles (e.g., metarules and
�X theory [Jackendo� 1977]) and powerful informants
such as world knowledge provide a priori biases that
would allow the parser to guess genuinely novel struc-
tures. Ultimately, this knowledge may serve as an in-
ductive bias for a completely bootstrapping, learning
version of the system.

Results and Summary

The KITSS system is implemented in Franz Com-
mon Lisp running on Sun workstations. The system
as a whole has now produced code for more than 70
complete test cases containing hundreds of sentences.
The parsing component was trained and evaluated
on a bracketed corpus of 429 sentences from 40 test
cases. The bracketings use part of speech tags from
the Brown Corpus [Francis and Kucera 1982] and tra-
ditional phrase structure labels (S , NP , etc.). Because
adjunction rules such as VP ! VP PP are common,
the trees tend to be deep (9 levels on average). The
bracketed corpus contains 308 distinct lexical items
which participate in 355 part of speech rules. There
are 55 distinct nonterminal labels, including 35 parts
of speech. There are a total of 13,262 constituent de-
cisions represented in the corpus.
We have studied the accuracy of the parser in using

its statistics to reparse the training sentences correctly.
Generally, we run the experiments using an adaptive
beam schedule; progressively wider beam widths are
tried (e.g., 10�1, 10�2, and 10�3) until a parse is ob-
tained. (By comparison, approximately 85% more hy-
potheses are generated if the system is run with a �xed
beam of 10�3.) For 62% of the sentences some parse
was �rst found at � = 10�1, for 32% at 10�2, and
for 6% at 10�3. For only one sentence was no parse
found within � = 10�3. For the other 428 sentences,
the parser always recovered the correct parse, and cor-
rectly identi�ed it in 423 cases. In the 428 top-ranked
parse trees, 99.92% of the bracketing decisions were
correct (less than one error in 1000). Signi�cantly, the
parser produced only 1.02 parses per sentence. Of the
hypotheses that survived pruning and were added to
the chart, 68% actually appeared as parts of the �nal
parse.
We have also done a limited number of randomized

split-corpus studies to evaluate the parser's general-
ization ability. After several hundred sentences in the
telephony domain, however, the vocabulary continues
to grow and new structural rules are also occasionally
needed. We have conducted a small-scale test that
ensured that the test sentences were novel but gram-
matical under the known rules. With 211 sentences
for training and 147 for testing, parses were found for
77% of the test sentences: of these, the top-ranked

parse was correct 90% of the time, and 99.3% of the
bracketing decisions were correct. Using 256 sentences
for training and 102 sentences for testing, the parser
performed perfectly on the test set.
In conclusion, we believe that the KITSS applica-

tion demonstrates that it is possible to create a robust
natural language processing system that utilizes both
distributional knowledge and general linguistic knowl-
edge.

Acknowledgements

Other major contributors to the KITSS system include
Van Kelly, Uwe Nonnenmann, Bob Hall, John Eddy,
and Lori Alperin Resnick.

Appendix A: The KITSS Parsing
Algorithm

Algorithm 1. PARSE(w):

(* create a (jwj+ 1)� (jwj+ 1) chart t = (ti;j): *)
t0;0 := f[S +]g;
for j := 1 to jwj do

R1 := tj�1;j := fajg; R2 := ;;
while R1 6= ;

R := PRUNE((t
R1) [
(PREDICT(R1)
R1) [R2);

R1 := R2 := ;;
for hi;j 2 R do

ti;j := ti;j [fhi;jg;
if hi;j is complete

then R1 := R1 [fhi;jg
else R2 := R2 [fhi;jg

endfor
endwhile

endfor;
return f all complete S -hypotheses in t0;jwjg

Subroutine PREDICT(R):

return f[A +] j A! B1 : : :Bm is in P , some
complete B1-hypothesis is in R, and A 6= Sg

Subroutine PRUNE(R):

(* only likely rules are kept *)
R0 := ;;
threshold := � �maxhi;j2R Pr(hi;j j w0;j);
for hi;j in R do

if Pr(hi;j j w0;j) � threshold

then R0 := R0 [fhi;jg
endfor;
return R0

References

[Cocke and Schwartz 1970] Cocke, J. and Schwartz,
J.I. 1970. Programming Languages and Their Com-
pilers. New York: Courant Institute of Mathemati-
cal Sciences, New York University.

[Earley 1970] Earley, J. 1970. An E�cient Context-
Free Parsing Algorithm. Communications of the
ACM 13(2): 94-102.

[Francis and Kucera 1982] Francis, W. and Kucera, H.
1982. Frequency Analysis of English Usage. Boston:
Houghton Mi�in.

[Graham et al 1980] Graham, S.L., Harrison, M.A.
and Ruzzo, W.L. 1980. An Improved Context-Free
Recognizer. ACM Transactions on Programming
Languages and Systems 2(3):415-463.

[Jackendo� 1977] Jackendo�, R. 1977. �X Syntax: A
Study of Phrase Structure. Cambridge, MA.: MIT
Press.

[Jones et al 1991] Jones, M.A., Story, G.A., and Bal-
lard, B.W. 1991. Using Multiple Knowledge Sources
in a Bayesian OCR Post-Processor. In First In-
ternational Conference on Document Analysis and
Retrieval, 925-933. St. Malo, France: AFCET{
IRISA/INRIA.

[Nonnenmann and Eddy 1992] Nonnenmann, U., and
Eddy J.K. 1992. KITSS - A Functional Software
Testing System Using a Hybrid Domain Model. In
Proc. of 8th IEEE Conference on Arti�cial Intelli-
gence Applications. Monterey, CA: IEEE.

[Simmons 1991] Simmons, R. and Yu, Y. 1991. The
Acquisition and Application of Context Sensitive
Grammar for English. In Proc. of the 29th Annual
Meeting of the Association for Computational Lin-
guistics, 122-129. Berkeley, California: Association
for Computational Linguistics.

[Tanenhaus et al 1985] Tanenhaus, M.K., Carlson,
G.N. and Seidenberg, M.S. 1985. Do Listeners Com-
pute Linguistic Representations? In Natural Lan-
guage Parsing (eds. D. R. Dowty, L. Karttunen and
A.M. Zwicky), 359-408. Cambridge University Press:
Cambridge, England.

