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Keyboard entry or correction of radiology reports by radiologists and
transcriptionists remains necessary in many settings despite advances
in computerized speech recognition. A report entry system that imple-
ments an automated phrase completion feature based on language
modeling was developed and tested. The special text editor uses con-
text to predict the full word or phrase being typed, updating the dis-
played prediction after each keystroke. At any point, pressing the tab
key inserts the predicted phrase without having to type the remaining
characters of the phrase. Successive words of the phrase are predicted
by a trigram language model. Phrase lengths are chosen to minimize
the expected number of keystrokes as predicted by the language model.
Operation is highly and automatically customized to each user. The
language model was trained on 36,843 general radiography reports,
which were consecutively generated and contained 1.48 million words.
Performance was tested on 200 randomly selected reports outside of
the training set. The phrase completion technique reduced the average
number of keystrokes per report from 194 to 58; the average reduction
factor was 3.3 (geometric mean) (95% confidence interval, 3.2–3.5).
The algorithm significantly reduced the number of keystrokes required
to generate a radiography report (P � .00005).
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Introduction
Keyboard entry of radiology reports is a necessity
in most radiology practices, ranging from primary
report entry by transcriptionists to report correc-
tion by radiologists. Advances in the development
of speech recognition systems have made these
systems practical in some settings, but some chal-
lenges remain. For example, in noisy environ-
ments such as a busy emergency department,
speech recognition systems may be prone to er-
rors caused by background noise. Yet bustling
service areas such as the emergency department
are often the ones that could benefit most from
the rapid turnaround offered by automated re-
porting systems.

Speech recognition systems require the correc-
tion of recognition errors, which can distract the
radiologist from looking at the images being inter-
preted. As a result, the time spent by the radiolo-
gist per case is greater for speech recognition sys-
tems than for traditional dictation (1,2). Rec-
ognizing accented speech or speech in noisy
environments is particularly difficult. Another
limitation of speech recognition systems is that
they are not available for many languages other
than English.

Given that keyboard text entry is a necessity in
many environments, methods exist to improve
the efficiency of keyboard entry. Automatic word
completion and spelling checkers are commonly
available in word processing programs. In some
reporting systems, there is support for keyboard-
activated macros and predefined (“canned”) re-
port templates. While helpful, these aids have
some drawbacks, a major one being the substan-

tial effort that may be required to create, main-
tain, and memorize a concise yet generalizable
system of macros and/or predefined reports.

A large part of the success of speech recogni-
tion systems derives from their reliance on lan-
guage modeling, a computational method that
involves statistical models for describing word
sequences (3). Can language modeling also im-
prove the speed of text entry when one is typing
from a keyboard? The objective of the present
work is to improve the efficiency of keyboard en-
try of radiology reports by implementing a con-
text-sensitive phrase completion algorithm based
on language modeling. While the implementation
was done primarily with the radiologist user in
mind, the program’s main function is applicable
to other types of users performing keyboard entry,
such as transcriptionists.

Materials and Methods
A context-sensitive automatic phrase completion
algorithm was implemented as a prototype com-
puter program called ForeWord (Fig 1). Fore-
Word is a standalone application written by the
first author in the Java programming language
(version 1.4.1; Sun Microsystems, Palo Alto,
Calif). The program has been tested on both the
Mac OS 10.3 (Apple Computer, Cupertino,
Calif) and Windows 2000 (Microsoft, Redmond,
Wash) operating systems. As the user types the
report, ForeWord continuously predicts the
word(s) the user most likely intends to type next
and places the word(s) inside a suggestion box
underneath the current line. At any time, the user
can insert the entire suggested phrase by typing
the tab key without having to type the remaining
characters of the phrase. If only the beginning of
the suggested phrase is correct, the user can insert
it one word at a time by typing the backtick key
(above the tab key on most keyboards). If even
the first suggested word is incorrect, the user can
continue typing; with each additional letter, Fore-
Word will revise its suggested phrase to extend
what has been typed so far. Therefore, Fore-
Word’s computational task is to continuously
choose the optimum words and optimum number
of words to place in the suggested phrase.

ForeWord’s phrase completion algorithm em-
ploys an N-gram language model (3). An N-gram
is a group of N words. Therefore, a trigram is a
group of three words, a bigram is a pair of words,
and a unigram is a single word. ForeWord em-
ploys a trigram model (N � 3), which is the most
common model type and the one used in most
speech recognition systems. The N-gram lan-
guage model allows the calculation of word prob-
abilities given the N � 1 preceding words. The

TAKE-HOME POINTS

� Automatic phrase completion driven by language model-
ing can significantly reduce the number of keystrokes
necessary to type a report.

� Language modeling enables the automatic creation of
phrase completion systems that are optimized for each
individual user but require no memorization to use.

� Unlike the word completion function in word processors,
phrase completion extends the prediction beyond one
word up to an optimal phrase length.

� Constructing language models requires an adequate
amount of sample text from each user.
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calculation of conditional word probabilities (ie,
the probability of a word, w3, given the two pre-
ceding words, w1 and w2) is a key component in
ForeWord’s phrase completion algorithm. In
ForeWord, these probabilities are estimated using
the Katz backoff procedure with Witten-Bell dis-
counting (3). The formulas for this procedure are
available online at radiographics.rsnajnls.org/cgi
/content/full/24/5/1493/DC1.

Like other N-gram language models, Fore-
Word’s trigram language model is constructed
from a sample of text, called the corpus, taken
from the domain of the intended application. In
this work, the corpus consisted of all general radi-
ography reports generated by the first author in
his clinical practice at a large academic medical
institution from July 1997 to December 1999, a
30-month period. The reports were obtained in
electronic form from the radiology information
system. All header information was removed from
the text, including patient identifiers, examination
identifiers, and paragraph headings. All sentence
punctuation was removed, including punctuation
in the middle of sentences (eg, comma). Termi-
nating punctuation marks (period, semicolon,
colon, question mark, and exclamation mark)
were replaced with a special “end of phrase”
(EOP) token. The ends of paragraphs and reports
were considered equivalent to the ends of sen-
tences. Grouping of the text into paragraphs and

reports was otherwise ignored. For simplicity, all
alphabetic characters were converted to upper-
case. Words occurring fewer than 10 times in the
corpus were replaced with a special “out of vo-
cabulary” (OOV) token; this step eliminated most
of the misspelled words from the corpus. Both the
EOP and OOV tokens were subsequently treated
as ordinary words. The corpus was separated into
its component trigrams, bigrams, and unigrams
using scripts written in the Perl programming lan-
guage (version 5.6.1).

ForeWord’s phrase completion algorithm is
activated by every alphanumeric keystroke.
Phrase completion is also activated again after
inserting suggested text by typing the tab or back-
tick key. The phrase completion algorithm is
composed of two stages: word completion and
word chaining. Word completion guesses the rest
of the word that the user is currently typing.
Word chaining then guesses zero or more subse-
quent words to extend the prediction into a
phrase. A major component of word chaining is
the determination of the best chain length.

Both stages use the language model to guess
the most probable word given the context of the
two preceding words. Word completion chooses
the most probable word beginning with the letters

Figure 1. Main display window of the ForeWord application for generation of radiology reports. As the report is
typed in the text area on the left, the predicted word or phrase appears in the suggestion box (arrow) underneath the
cursor. The suggestion box is continuously updated with each keystroke. The user presses the tab key to insert all the
text from the suggestion box or the backtick key to insert one word of it at a time. In this prototype, a summary of the
program’s internal language processing is shown in the text area on the right.
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that the user has typed so far (Fig 2). In word
chaining, the language model is used to form a
hypothetical word chain in which each successive
word is guessed to be the most likely word given
the two preceding words, one or both of which
are guesses themselves. Whenever a new charac-
ter is typed, the entire word chain is predicted
again from the beginning, going through both
stages, and the display is updated to suggest the
new chain. Because punctuation marks were re-
moved from the corpus, they do not appear in
the suggested phrase and must be typed when
needed.

How long should the predicted word chain be?
In principle, ForeWord could extend it indefi-
nitely. However, chain prediction is essentially an
all-or-none gamble. If the chain is fully correct,
then the user can insert it into the report all at
once by pressing the tab key. If the chain is incor-
rect, then the user must fall back to a single-word
mode in which words are inserted one at a time
with the backtick key. Thus, longer chains save
more keystrokes if correct but are less likely to be
correct.

It turns out that given the context formed by
the last two words w1w2 in the text extended with
the current chain, a threshold chain length L(w1w2)
can be determined. If the current chain contains

at least L(w1w2) words, then it is not worth the
gamble to extend it any further (Fig 3). If it con-
tains fewer than L(w1w2) words, then it should be
extended by the most likely next word w3 (pro-
vided that this word is not the EOP or OOV to-
ken). In the latter case, the chaining decision pro-
cedure is repeated, to decide whether to add a
further word w4; this time it compares the length
of the newly extended chain against the new
threshold L(w2w3). Chaining is repeated until the
threshold chain length is reached or until the
most likely next word is the EOP or OOV token.

How is the threshold chain length L(w1w2)
determined? The current n–word chain ending in
w1w2 is assumed to be entirely correct, since oth-
erwise the user’s behavior is not affected by
whether ForeWord extends it further. The infinite
chain is the suggested phrase that would be pre-
dicted if we continued extending the current
chain forever using the language model. Next, we
define the maximal correct chain, which is the long-
est prefix of the infinite chain that is actually cor-
rect according to the user’s intent. Ideally, Fore-
Word would suggest the maximal correct chain to
the user, but lacking telepathy, it may often sug-
gest something shorter or longer. Finally, we de-
fine the function K(n,w1w2), which is the expected
number of tab and backtick keystrokes needed to
type the rest of the unknown maximal correct
chain (after which the user must resort to typing

Figure 2. Example of how the most likely word is determined during the
word completion stage. The user has already entered the words LEFT LAT-
ERAL and intends to type the subsequent word ABDOMEN. The user starts
by typing the letter A. ForeWord suggests the word starting with A that it
estimates to be most probable in the context LEFT LATERAL. This will be
one of the words ABDOMEN, ANGULATION, and AND, which were most
commonly found in the corpus after LEFT LATERAL, after LATERAL, and
in isolation, respectively. ForeWord grants some probability to words that
were never seen in the context LEFT LATERAL at the expense of words that
were seen in that context.
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more letters). More precisely, it is the expected
cost of typing the maximal correct chain. Cur-
rently, we consider each tab keystroke to have a
cost of Ctab � 1, and each backtick keystroke to
have a greater cost of Cbacktick � 1.4 since it is an-
noying to accept only part of a phrase and since
the backtick key is an unfamiliar key. ForeWord
applies an optimal policy, extending the current
chain if and only if this will lead to a lower ex-
pected cost K(n,w1w2).

The expected cost K(n,w1w2) is mathemati-
cally defined as follows:

�
S

Pr� S is max-

�
current chain has length n,

imal cor- ends in the two words w1w2,
rect chain and is correct by assumption �

� (cost of typing S),

where S is a sequence of words ranging over all
finite prefixes of the infinite chain, having lengths
n, n � 1, n � 2, . . . . The probability of S is de-
termined by the language model, but the number
of keystrokes needed to type all of S is determined
by ForeWord’s own word chaining policy, which
may not suggest all of S as a single phrase or may
incorrectly suggest a chain longer than S. This
means that K(n,w1w2) depends on ForeWord’s
chaining policy. As ForeWord uses an optimal

chaining policy that is defined to depend in turn
on K(n,w1w2), both K and the policy must be
found by iteratively solving a circular system of
equations.

By assumption, the current chain is correct so
far. Let Eextend be the expected number of key-
strokes to type the maximal correct chain if the
current chain were extended with (at least) the
most likely candidate word w3:

Eextend (n,w1w2) � P(w3 � w1w2)K(n � 1,w2w3)

� [1 � P(w3 � w1w2)]nCbacktick,

where P(w3 � w1w2) is the probability of w3 given
the word sequence w1w2. Note that Eextend is the
sum of two terms: the expected keystrokes if w3 is
actually the intended word and the expected key-
strokes if w3 is not the intended word. In the
former case, K(n � 1,w2w3) takes into account
any further extensions of the chain. In the latter
case, ForeWord has predicted too much: The
user must type the backtick n times to accept the
words in the suggested phrase individually up to,
but not including, the last one (w3).

Similarly, we define Enoextend, the expected
number of keystrokes needed to type the maximal

Figure 3. Example of the word chaining stage. In this example, the user
has already entered the word LEFT and wishes to continue with a phrase
starting with S. The most likely chain of words is found by the word chaining
algorithm, and the series is truncated when the threshold chain length is
reached or exceeded. Note that the threshold chain length changes with each
chained word. Among other considerations, it tends to be larger when Fore-
Word is confident about predicting the following word. In this example,
ForeWord is very confident that SUBCLAVIAN VENOUS should be ex-
tended with CATHETER.
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correct chain if the candidate word w3 were not
added to the current chain:

Enoextend(w1w2) � Ctab � P(w3 � w1w2)K(1,w2w3).

Here, the suggested phrase is just the current
chain, which is correct by assumption, so the user
will type the tab key to accept it at a cost of Ctab.
ForeWord will then immediately make a new pre-
diction beginning with the most likely next word,
w3. The second term accounts for the case in
which w3 is in fact correct. In this case, Fore-
Word’s original prediction was too short; the tab
key did not accept the entire maximal correct
chain, and the user must now type K(1,w2w3) ad-
ditional keystrokes to accept the rest of it (starting
with w3).

K is updated iteratively by recalculating the
optimal policy given the E values:

K��n,w1w2� � min�Eextend�n,w1w2�,Enoextend �w1w2�	,

where min(x,y) denotes the smaller of x and y. K
is then updated to equal K �, and new values of
Eextend and Enoextend are calculated based on this
new K. Iteration is continued until

�K��n,w1w2� � K�n,w1w2� � � ε

for all n and for all w1w2 in the corpus. For pur-
poses of this work, the tolerance ε was set to
0.001 and the initial values of all K(n,w1w2) were
set to 0. After K, Eextend, and Enoextend converge,
L(w1w2) is simply defined as the largest n for
which Eextend(n,w1w2) � Enoextend(w1w2).

Only L(w1w2) is required for ForeWord to pro-
cess user keystrokes; the iterative calculations
need to be performed only once for a given cor-
pus. Although n is unbounded, the values on
each iteration can be calculated in finite time: For
each w1w2, first compute and store Enoextend(w1w2),
then compute and store Eextend(n,w1w2) and
K�(n,w1w2) for n � {1, 2, 3, . . . } successively
until Eextend(n,w1w2) exceeds Enoextend(w1w2). Noth-
ing need be explicitly computed or stored for
higher values of n.

To test the effectiveness of the automatic
phrase completion algorithm, 200 reports outside
of the corpus were randomly chosen from general
radiography reports generated by the first author
from January 2000 to June 2000, the 6-month
period immediately following the period from
which the corpus was derived. The numbers of
keystrokes required to generate each of the 200

reports by using ForeWord were recorded by a
typist simulation function within ForeWord. The
typist simulation function is completely indepen-
dent of ForeWord’s phrase completion algorithm.
These keystroke numbers were compared to the
number of characters in each report, which is
equal to the number of keystrokes that would be
required to generate each report without the aid
of phrase completion.

The keystroke counts in the absence and pres-
ence of phrase completion were compared by cal-
culating the logarithm of their ratio and perform-
ing a t test of this log-ratio. The null hypothesis of
the t test was that the log-ratio of the keystroke
counts is 0 (corresponding to a ratio of 1). A ratio
was chosen instead of a difference so that the
comparison would be independent of report
length. The logarithm function was applied to
transform the ratios into a data set that was nor-
mally distributed. With 200 test reports and as-
suming an estimated standard deviation of the
log-ratio to be 0.2 (from preliminary data not
shown), the statistical power to detect a log-ratio
of at least 0.046 (corresponding to a 5% reduc-
tion of keystroke count) was 0.9 at the .05 level of
significance.

In addition, a paired t test was employed to
compare this log-ratio to that obtained with single
word completion only (word chaining disabled).
Normality of the distribution of the log-ratio val-
ues was examined with the Shapiro-Wilk W test.
All statistical analyses were performed with the
Stata program (version 8; StataCorp, College Sta-
tion, Tex). Means 
 standard deviation are re-
ported along with a 95% confidence interval
where appropriate.

Results
The corpus contained 36,843 general radiogra-
phy reports with a total of 10,389,657 characters
forming a total of 1,476,671 words. This corpus
contained 1965 unique unigrams, 39,184 unique
bigrams, and 139,864 unique trigrams. The re-
ports were composed of the following mixture of
radiographic examination types: 73% chest, 20%
musculoskeletal, 5% gastrointestinal or genitouri-
nary, and 2% miscellaneous.

For the 200 randomly chosen test reports,
which did not appear in the corpus, the mean
number of keystrokes without phrase completion
(ie, characters of text) was 194 
 103 (95% con-
fidence interval, 180–208). With automatic
phrase completion, the mean number of key-
strokes was reduced to 58 
 33 (95% confidence
interval, 54–63). The mean log-ratio was 1.20 

0.27 (95% confidence interval, 1.17–1.24), which
was significantly different from 0 (P � .00005).
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After converting to a ratio, this result corresponds
to a geometric mean keystroke reduction factor
(ratio) of 3.3 (95% confidence interval, 3.2–3.5).
The log-ratio values in these calculations were
found to be normally distributed according to the
Shapiro-Wilk W test.

An average of 16 
 9 (95% confidence inter-
val, 15–17) keystrokes per report were the tab key
(28% [16 of 58]). An average of 1.8 
 1.6 (95%
confidence interval, 1.6–2.0) keystrokes per re-
port were the backtick key (3% [1.8 of 58]). The
performance of ForeWord on a sample report
outside of the corpus is depicted in Figure 4.

With word chaining disabled (and only single
word completion enabled), the mean number of
keystrokes increased to 66 
 36 (95% confidence
interval, 61–71), an increase of 8 keystrokes per
report on average. The mean number of tab key-
strokes increased to 26 
 14 (95% confidence
interval, 24–28), accounting for the 8-keystroke
difference plus the absence of backtick keystrokes
(necessary only in word chaining). Disabling
word chaining resulted in a significantly lower
keystroke reduction factor of 2.9 (geometric
mean; 95% confidence interval, 2.8–3.0) (P �
.00005).

Discussion
The ForeWord program demonstrates that a
phrase completion algorithm driven by a language
model can reduce the number of keystrokes by a
factor of 3.3 in a radiology report domain. To the
extent that keystroke count is correlated with
transcription speed, the keystroke reduction im-
plies that report generation with ForeWord’s
phrase completion algorithm would be faster than
unassisted transcription. In addition to potentially
increasing the typing speed, the reduced number
of keystrokes also diminishes the likelihood of
typographical errors. Furthermore, typing is
easier because many of the keystrokes (28% in
this study) are the same key—the tab key.

Alternative methods for speeding up the key-
board entry of text include the automatic word
completion function found in many word proces-
sors and the support for report templates found in
some transcription systems. Unlike these alterna-
tive methods, the language model approach does
not require personal effort to create and memo-
rize a system of predefined text. Instead, the pro-
cess of creating the language model from a corpus
of text is purely computational. All that is re-
quired is a sample of text from each individual
user. From each user’s corpus, the language
model approach automatically generates a phrase
completion system that is optimized for that user.

Aside from its use in speech recognition and
other applications, language modeling has been
previously employed for text completion in a few
diverse applications where ordinary typing is diffi-
cult. Prominent examples include text entry for
mobile computing devices, such as wireless tele-
phones and personal digital assistants (4), and
text entry by individuals with physical or learning
disabilities (5,6). These applications use language
modeling to predict individual letters (4,5) or
single words (6).

While based on similar language modeling
methods, ForeWord can make variable-length
predictions: Its word chaining algorithm is able to
extend the prediction beyond one word. We have
found only two previous text completion projects
with this capability, perhaps because it is mainly
useful in low-entropy domains such as radiology
reports. ForeWord’s novel contribution here is its
optimal determination of chain length. The Pre-
dict and Reactive Keyboard systems for typing
computer commands (7) employ essentially the
same chaining algorithm as we do, but always
extend the prediction all the way to the right edge
of the screen; keys like our backtick, or mouse

Figure 4. Example of how automated phrase
completion works on a sample report that is not in the
corpus. The shaded characters are those typed by the
user; the underlined characters correspond to pressing
of the tab key to insert the suggested word(s); and the
double-underlined characters correspond to pressing of
the backtick key to insert a portion of the suggested
phrase. All other characters were inserted by auto-
mated phrase completion. ForeWord was particularly
effective on this report, reducing the number of key-
strokes by a factor of 4.7 (64 keystrokes to type 280
characters). Punctuation and out-of-vocabulary (OOV)
text such as “12/1/01” must be manually typed in full
because they are not part of the corpus. In this ex-
ample, the user had to type SW to trigger SWAN-
GANZ CATHETER because just typing S produced
SMALL as the suggested phrase. Two backticks were
typed to accept INTERNAL JUGULAR because the
full suggested phrase was INTERNAL JUGULAR VE-
NOUS CATHETER. When the user typed M for
MINIMAL, the optimum chain length was one word.
After accepting MINIMAL, ForeWord correctly pre-
dicted the most likely continuation, ARTERIOSCLE-
ROSIS THORACIC AORTA, without further typing.
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clicks, are used to indicate how much of the
phrase to accept. The TransType system for en-
tering translations of a known text (8) uses a more
sophisticated chaining algorithm, which recog-
nizes (unlike ForeWord) that the most probable
three-word chain may not be an extension of
the most probable two-word chain. However,
TransType always chooses the chain length with
the greatest expected immediate cost savings. By
contrast, ForeWord also takes into account the
expected effect on cost savings at subsequent
steps.

The average number of keystrokes required to
generate a character (keystrokes per character
[KSPC]) has been suggested as a measure of text
entry performance for mobile computing devices
(9). Such devices (eg, wireless telephones) typi-
cally have a limited keypad, which may require
multiple keystrokes to generate a single character
(KSPC � 1). By using word and phrase comple-
tion algorithms, it is possible to achieve a KSPC
of less than 1. For example, ForeWord’s key-
stroke reduction factor of 3.3 corresponds to a
KSPC of 0.30. Word prediction algorithms gen-
erally have a KSPC of approximately 0.5 (9).
ForeWord’s greater performance may be due
to the capability of predicting multiple-word
phrases, as evidenced by its poorer performance
(KSPC � 0.34) when word chaining is disabled.
However, even without word chaining, Fore-
Word’s performance is better than a KSPC of
0.5; this is perhaps attributable to the focused
domain of the application (radiology reporting),
which makes the next word more predictable.

Since the N-gram language model is purely
statistical and does not rely on any type of seman-
tic analysis, it should work equally well with all
languages that are based on an alphabet. There-
fore, ForeWord would require few, if any, modifi-
cations to work with other languages. Of course,
corpora in those languages would still be required
to construct the language model.

The user-specificity of language modeling is
obviously an advantage for the user. However,
this specificity also means that a text generation

system driven by language modeling will perform
poorly for a new user who has no corpus known
to the system. The system cannot be used “out of
the box” without an appropriate corpus of text.
The availability of text is arguably the most sig-
nificant limitation of language modeling applica-
tions in radiology. Even though radiology reports
are commonly transcribed and stored in elec-
tronic form in radiology information systems,
these systems are unlikely to have reasonably easy
functions for bulk export of reports in electronic
form. As radiology information systems continue
to develop, we hope that the text of the reports
does not continue to be stored inside inaccessible
proprietary database structures.

Although language modeling can make key-
board text entry faster, it is not known how the
resulting speed compares with alternatives such as
speech recognition. Further work is required to
examine the performance of ForeWord in a live
clinical setting with respect to speech recognition
and conventional dictation. Such work would
require the direct measurement of the time re-
quired to generate reports with each method. Also
needed are clinical studies with a variety of differ-
ent users to determine the relationship between
reporting style and effectiveness of the phrase
completion algorithm. As apparent in Figure 4,
the first author’s reporting style is telegraphic,
relying on short phrases rather than complete sen-
tences. Language models derived from users with
a more narrative reporting style may be less suc-
cessful than those derived from users with a more
concise telegraphic style.

While it is natural to consider ForeWord and
speech recognition as two text generation meth-
ods to be compared, a potentially effective appli-
cation of ForeWord may be one in tandem with a
speech recognition system. Reports generated by
speech recognition lack misspellings and other
visually obvious cues that indicate errors. This
increases the difficulty of proofreading. Fore-
Word’s language model could be applied to the
output of a speech recognition system to calculate
the conditional probability of each word and
highlight all words below a certain probability
threshold. The highlighting of low-probability
words could aid proofreading. In effect, the
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speech recognition system’s general-purpose lan-
guage model would be augmented with Fore-
Word’s user-specific language model.

The number of keystrokes is an incomplete
measure of system efficiency. Beside simple key-
stroke count, other factors can affect typing
speed, such as the physical distance between suc-
cessive keys, the frequency of unfamiliar keys, and
the cognitive load associated with choosing par-
ticular keys. The unfamiliarity and cognitive load
factors are addressed somewhat in ForeWord’s
cost-minimizing word chaining algorithm: The
backtick key is considered to have higher cost
than the tab key (Cbacktick � Ctab), causing Fore-
Word to suggest somewhat shorter phrases so as
to reduce the need for backticks. Further clinical
testing is required to examine the relationship
between keystroke count, typing speed, and user
satisfaction. For example, users may prefer a less
“annoying” text editor even if it slightly increases
the keystroke count or slightly decreases the di-
rectly measured typing speed. Such testing could
provide a better choice of Cbacktick. Key-specific or
contextual costs for alphanumeric keys could also
be introduced, allowing revised word completion
and word chaining algorithms that could save the
user trouble by suggesting a long or hard-to-type
word, even when another word is slightly more
probable. In principle, ForeWord could estimate
these key-specific costs as TransType does (8), by
measuring how long it takes for the user to type
each key.

The current prototype implements a static lan-
guage model derived from a static corpus. A final
implementation could benefit from a dynamic
language model whose corpus is continuously
updated with the text of each new report gener-
ated by the system. This technique would allow
the system to adapt gradually to a new user, with
performance rising rapidly at first and then level-
ing off as the language model’s probability esti-
mates converge to the truth. An individual user’s
language model could also be improved by adding
scaled-down N-gram counts obtained from other
users’ reports. Such a mixture model will perform
better in contexts where the individual user’s data
are sparse. Further improvement of ForeWord
would include the prediction of capitalization and
punctuation so that reports do not appear in all
uppercase letters.

Summary
A system of automatic phrase completion driven
by language modeling can substantially reduce
the number of keystrokes needed to generate radi-
ology reports. The key requirement is the avail-
ability of appropriate text corpora to create the
underlying language models. Language modeling
possesses a key advantage over other text genera-
tion aids because the creation of individualized
language models from a corpus can be completely
automated. A novel feature of the system de-
scribed is the prediction of multiword phrases of
optimal length.
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