
Dynamical-Systems Behavior

in Recurrent

and Non-Recurrent

Connectionist Nets

An Honors Thesis Presented
by

Jason M. Eisner

to
The Department of Psychology

in Partial Ful�llment of the Requirements
for the Degree of Bachelor of Arts

with Honors in the Subject of Psycholgy

Harvard-Radcli�e Colleges

Cambridge, Massachusetts

April 2, 1990



Abstract

A broad approach is developed for training dynamical behaviors

in connectionist networks. General recurrent networks are powerful

computational devices, necessary for di�cult tasks like constraint sat-

isfaction and temporal processing. These tasks are discussed here in

some detail. From both theoretical and empirical considerations, it is

concluded that such tasks are best addressed by recurrent networks

that operate continuously in time|and further, that e�ective learn-

ing rules for these continuous-time networks must be able to prescribe

their dynamical properties. A general class of such learning rules is

derived and tested on simple problems. Where existing learning algo-

rithms for recurrent and non-recurrent networks only attempt to train

a network's position in activation space, the models presented here can

also explicitly and successfully prescribe the nature of its movement

through activation space.

I am indebted to Jay Rueckl, my advisor, both for his suggestions

and for his support. Jay Rueckl and Greg Galperin provided com-

putational facilities that proved indispensable. I would also like to

thank my family and the many friends whose encouragement saw this

project through its �nal stages.

Contents

1 Introduction 3

1.1 The uses of recurrent networks : : : : : : : : : : : : : : : : : : 3
1.1.1 Recurrent networks and constraint satisfaction : : : : : 3
1.1.2 Recurrent networks and temporal problems : : : : : : : 4
1.1.3 The computational power of recurrent networks : : : : 5

1.2 Recurrent networks in practice : : : : : : : : : : : : : : : : : : 6
1.2.1 Existing models of constraint satisfaction : : : : : : : : 6
1.2.2 Existing temporal models : : : : : : : : : : : : : : : : 8

1.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2 Some Theoretical Observations 11

2.1 Thoughts on temporal pattern processing : : : : : : : : : : : : 12

1



2.1.1 The usefulness of gradual-response nets : : : : : : : : : 12
2.1.2 The dynamical systems approach : : : : : : : : : : : : 14
2.1.3 Dynamics of small clusters : : : : : : : : : : : : : : : : 16

2.2 Thoughts on constraint satisfaction : : : : : : : : : : : : : : : 19
2.2.1 The need for hidden units : : : : : : : : : : : : : : : : 19
2.2.2 A �rst attempt at a satisfaction model : : : : : : : : : 20
2.2.3 A learning rule for the non-resonant case : : : : : : : : 21
2.2.4 Extending our rule to the resonant case : : : : : : : : : 23
2.2.5 The problem with this approach : : : : : : : : : : : : : 25

2.3 Summary of Theoretical Observations : : : : : : : : : : : : : : 26

3 A General Model and its Learning Rule 26

3.1 Conception of the general model : : : : : : : : : : : : : : : : : 26
3.1.1 Molding a dynamical system : : : : : : : : : : : : : : : 26
3.1.2 The role of input : : : : : : : : : : : : : : : : : : : : : 27
3.1.3 How to use the error measure : : : : : : : : : : : : : : 28
3.1.4 How weight changes shift the trajectory : : : : : : : : 31

3.2 Formal derivation of the general model : : : : : : : : : : : : : 32
3.2.1 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : 33
3.2.2 Calculating the gradient in weight space : : : : : : : : 34
3.2.3 An algorithm : : : : : : : : : : : : : : : : : : : : : : : 35

3.3 Summary of the general model : : : : : : : : : : : : : : : : : : 37

4 Particular Models 38

4.1 Some models of potential interest : : : : : : : : : : : : : : : : 38
4.2 Some topologies of potential interest : : : : : : : : : : : : : : 41
4.3 Detailed derivation of particular error measures : : : : : : : : 42

4.3.1 Mapping model I: Nodes toward targets : : : : : : : : 42
4.3.2 Mapping model II: System toward target : : : : : : : : 44
4.3.3 General gradient-descent model : : : : : : : : : : : : : 45
4.3.4 Content-addressable memory model : : : : : : : : : : : 46

5 Simulation Results 49

5.1 Results for feedforward XOR : : : : : : : : : : : : : : : : : : : 51
5.2 Other tasks : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

6 Conclusions 54

2



1 Introduction

In the 1960's, Minsky and Papert pointed to hidden units as a potential
remedy for some of connectionism's problems. Recurrent connections have
lately been attracting the same kind of interest. Much as hidden units extend
the computational power of perceptrons, recurrent connections extend the
computational power of feedforward networks.

The work reported here is ultimately concerned with both recurrent and
non-recurrent networks. However, it focuses on network properties that are
most evident (and most useful) in the presence of recurrence. These are
dynamical properties of networks|properties describing how networks' states
change or remain stable over time.

The paper has three major aims, as follows. First, to highlight the fea-
tures of recurrence that make it useful. Second, to demonstrate that certain
network architectures exhibit especially rich kinds of behavior. Finally, to
develop a training algorithm that can produce the desired behaviors in net-
works that use these architectures.

1.1 The uses of recurrent networks

Since it is useful to focus on actual problems, the early sections of this pa-
per will pay special attention to two domains in which recurrent networks
have proved especially useful. These are the constraint satisfaction domain
and the temporal domain. In a constraint satisfaction problem, the network
is supposed to discover any regularities that hold among various static in-
puts. The temporal domain includes all those tasks where a network's inputs
and/or outputs are to change over time in a principled way.

1.1.1 Recurrent networks and constraint satisfaction

The general constraint satisfaction task is simple. Various patterns (vectors
of numbers) are shown to a network. The network is supposed to discover
regularities in the set of patterns it sees. When it is shown only part of a
pattern, it should correctly �ll in the missing elements.

The purest form of constraint satisfaction makes no distinction between
input and output nodes of the network. There is simply a set of visible nodes,
which hold the patterns. A partial pattern can be \clamped" onto some of

3



the visible nodes|this means that the nodes' activations are held constant
at the component values of the pattern|and the remaining, \free" visible
nodes are supposed to assume a set of activations that could consistently
complete the partial pattern.

It should be clear why recurrence is necessary for a network to perform
this sort of operation. The net must be able to run both backwards and
forwards, depending on which visible nodes are clamped: sometimes node i
might have to inuence node j and sometimes vice-versa. If the network does
contain mutually inuential nodes like i and j, then its graph must contain
cycles. In short, the network must be recurrent.

Note that constraint satisfaction techniques would often be helpful if ap-
plied to other problems. Any network whose input patterns are often in-
complete, or partly erroneous, might do well to �lter them through such a
procedure at the outset. Ideally, this �ltering would not even be a separate
phase of the network's operation, but would develop naturally as the net-
work's internal representations learned to feed back and inuence its input.

1.1.2 Recurrent networks and temporal problems

Recurrent networks are also well-suited to temporal problems, because re-
current connections help a network preserve information from one moment
to the next. They allow the net to a�ect its own subsequent behavior.

For some temporal problems, the network does not have to preserve
particularly complex information. A simple record of past input may suf-
�ce. This was roughly the approach of Sejnowski and Rosenberg's NETtalk
(1987). NETtalk had no recurrent connections, but its \moving window"
provided continuity in the input stream. A certain amount of its past input
could continue to a�ect it.

This approach is not very general. An input bu�er of �xed size can only
hold a limited number of past events|but some tasks require memory for
input events that happened arbitrarily far in the past. For example, one may
have to remember the subject of an arbitrarily long sentence. The \cumu-
lative XOR" task illustrates the di�culty clearly. In this task, a network is
presented with a continuous input stream of 0's and 1's, and is expected at
every moment to output the cumulative XOR of all the input to date. The
problem can be easily solved by a network that maintains just one bit of
state information. To solve it by remembering actual input, however, would

4



require a bu�er of in�nite length, because every bit is signi�cant.
Even when a problem can be solved by preserving past input, it may be

more useful to preserve some other kind of state information instead. For
most problems, a network does not have to remember the exact pattern of
raw input data that it has seen, but only certain relevant features of those
data. Indeed, the features of past input that the network must remember
are typically the same features it was required to extract when it originally
saw that input. A bu�er for raw data is clearly superuous here.

Finally|and most important|input bu�ers fail to capture temporal in-
variance in a natural way. Suppose a network is processing a stream of data
that contains, among other things, copies of two special input sequences des-
ignated START and STOP. Say the network needs to recognize the following
condition:

I, the net, have received a START sequence
since the last STOP sequence.

If the network relies on an appropriately long bu�er to remember its past
input, then it must learn how to detect START and STOP sequences at each
position in the bu�er. This requires a great deal of learning and a complete
set of training examples. It would be much more natural for the input to
simply a�ect some internal variable as it arrives.

In general, it seems most sensible to let a network use any internal repre-
sentations that help it do its job. Certainly there is a strong case for letting
networks have internal states that reect their past input and processing.
And short of augmenting a network's units with some sort of storage capac-
ity, recurrent connections seem to be the only way that a network can achieve
such states.

1.1.3 The computational power of recurrent networks

Recurrent networks are a proper superset of non-recurrent networks, and
constitute a more powerful class of computational devices.1 Hence a �nal
reason to study them is simply to �nd out what they can do. Recurrent
networks may be capable of many kinds of behavior other than constraint
satisfaction and temporal tasks.

1Indeed, digital electronics was founded upon the ip-op memory, a recurrent electrical
circuit.

5



As is always true in connectionism, we are especially interested in the
class of behaviors that our networks can learn. Unless there is a natural way
to teach recurrent networks particular tasks, their power is not especially use-
ful. Later sections of this paper will derive actual algorithms for supervised
learning in recurrent nets.

1.2 Recurrent networks in practice

The algorithms of this paper �t into an existing body of research involving
recurrent networks. The best-known models to date, which are reviewed
below, can be easily divided into the two groups discussed earlier. Some
perform constraint satisfaction; others perform temporal tasks.

1.2.1 Existing models of constraint satisfaction

A classic example of a constraint satisfaction device is the interactive activa-
tion (IA) model of letter perception (Rumelhart & McClelland, 1986). Part
of the interest of this model stems from its ability to predict experimental
results on letter perception in humans, but it is also an excellent example of
how recurrence operates in the constraint satisfaction domain. The IA model
has three levels of units: visual feature detectors, letters, and words. The
feature detectors simply respond to di�erent kinds of line segments; they ex-
cite the letters that are known to contain those segments. The words excite,
and are equally excited by, the letters they contain. Finally, all words inhibit
each other, being inconsistent hypotheses, and so do all letters.2

Stimulating the feature detectors causes a set of possible letters to be
activated, some more strongly than others. The object of the model is to
decide which of these possible letters are really present in the word shown. It
does this through the way the units interact. Words try to inhibit each other,
and the word with the greatest activation will tend to be most successful in
inhibiting the others. Letters compete for top activation in the same way. It
follows that if a word or letter starts out with slightly more activation than
its competitors, it will be likely to end up with substantially more activation.

2Why should letters be inconsistent with each other? The actual IA model has four
copies of all of its letter units: one set for the �rst position in a four-letter word, one set
for the second position, and so on. (Each set has its own feature detectors.) Inhibitory
connections only occur among letters in the same set.

6



However, the word and letter units interact so as to produce a solution that
is consistent on both levels simultaneously. Initially likely letters, if they do
not combine to make any word, can be suppressed by other letter units that
are supported by word units.

In short, the IA model �nds a set of activations over the letter and word
units that is internally consistent and also consistent with the active feature
detectors. (Two units are consistent if they have an excitatory connection and
similar activations, or an inhibitory connection and dissimilar activations.)
This is similar to the \pure" constraint satisfaction idea described in 1.1.1.3

One can clamp the feature detectors to get plausible activations over the
letter and word units, or clamp a few of the letter units to get plausible
activations over the word units and remaining letter units, and so on.

The IA model is a model of perception, not of perceptual learning, and
has so no explicit learning rule. This is a serious shortcoming. The other
constraint satisfaction architecture discussed here does have a learning rule,
albeit a slow one. This is the Boltzmann machine of Hinton and Sejnowski
(1986).

The Boltzmann machine, like the earlier model by Hop�eld (1982) from
which it derives, has an unusual architecture. Each node can only output
0 or 1, and its output its back and forth between these two values. The
itting is stochastic; its probabilities are arranged in such a way that the
node's total output per unit time is, on average, a logistic function of its
input. The logistic function is made steeper over time so that the network
eventually settles into a �xed pattern of 0's and 1's. This is called lowering
the system's temperature.

Any pattern the network settles into will tend to be highly consistent, in
the above sense of the term: that is, any two units with a positive connection
will tend to have the same value.4 Furthermore, the network can be trained
to settle into particular patterns. The weights should be adjusted gradually
in such a way as to make the desired patterns slightly more consistent, and
the network's actual patterns slightly less consistent. If the desired patterns
match the actual patterns, the weight changes will cancel each other out.

3Adding connections from the letter units back to the feature detectors would make it
100% pure.

4The network's likelihood of settling into a particular pattern is an exponential function
of the pattern's consistency (appropriately measured), where the exponential function
depends on temperature and is exactly as steep as the logistic function.

7



This is a very attractive model: each weight a�ects the consistency of
a pattern in a local manner, and hence can be adjusted using only local
information. However, it su�ers from an extremely slow learning rule. The
odd network architecture also presents some practical di�culties. Units must
be assumed to produce only �xed binary outputs, since if the logistic function
is left gentle enough for the units to output a mixture of 0's and 1's, the state
of the system as a whole will be unstable.

Perhaps the most unfortunate aspect of the Boltzmann architecture is
that it cannot be extended to the temporal domain. Section 1.1.1 noted that
constraint satisfaction can be a very useful feature within other networks.
However, the Boltzmann architecture simply is not suited to temporal prob-
lems. In order to correctly respond to new input, a Boltzmann machine has
to raise its temperature and then gradually lower it again. Once its tem-
perature is high, stochastic forces may cause its state to change completely.
Successive states of the network are therefore not guaranteed to have any
relation to each other.

The ideal constraint satisfaction model would do the job of a Boltzmann
machine without relying on randomness. Section 2.2.5 demonstrates the dif-
�culty of adapting Boltzmannmethods to non-stochastic nets. The trouble is
that once the network is made deterministic, it will only be able to settle into
one pattern (for a given starting state)|and will not necessarily choose the
most consistent one. The network's choice, therefore, cannot be controlled
simply by controlling pattern consistencies.

Without randomness, the particular pattern a network settles into is the
result of complex time-governed interactions among its units. It is much
harder to control those interactions than to control pattern consistencies.
Nonetheless, section 3 will describe a method for doing just that.

1.2.2 Existing temporal models

The other important models using recurrent networks are models of tem-
poral processes. Earlier, section 1.1 de�ned temporal tasks as \tasks where
a network's inputs and/or outputs are to change over time in a principled
way." In other words, for a device that accomplishes the task, past inputs
and outputs must have predictive power with respect to future inputs and
outputs.

The best-known model of temporal output is the serial order model of

8



Michael Jordan (1986). Jordan's model is based directly on the idea that past
outputs should predict future behavior. His network is a back-propagation
net with two kinds of input: a constant \plan" vector specifying what se-
quence of outputs the network is to generate, and a \state" vector that
reminds the network what output it has just generated.5 Under any given
plan, the past outputs completely determine the future behavior of the sys-
tem. If we identify state with output, as Jordan does, the function of the
network itself is simply to compute the system's next state from its previous
states.

Jordan's model is the inverse of a model like NETtalk, where limited past
input was available to the system: here, limited past output is available. The
technique successfully describes how a network can be trained to produce a
simple sequence of \actions," on its own, without step-by-step guidance from
the input. The resulting network also has an interesting tendency to make
successive actions overlap in time when possible, by increasing their duration.

Je� Elman (1988) has devised a variation of Jordan's model that can deal
with the temporal structure of input. His architecture, instead of feeding the
network its past outputs, feeds it the past values of its hidden units. This
is a simple but useful idea. Whereas Jordan's networks can only consider
states prescribed by the environment|the output vectors|Elman's can cre-
ate their own state variables.

Elman has demonstrated that a network with this architecture can dis-
cover non-trivial ordinal structure in its input. With relatively short training
regimens, it can be made to predict at each time step the input value it is
about to receive. And although Elman does not mention it explicitly, the
architecture should be capable of producing Jordan-like output sequences as
well.

Both Jordan and Elman rely on back propagation to train their networks.
They use the standard form, which does not properly apply to recurrent ar-
chitectures, because the recurrent connections in their models have �xed
weights. For the purposes of the learning algorithm, the recurrent connec-
tions might as well not exist. The learning algorithm can treat the model as
a feedforward network whose input just happens to reect its previous state.6

5To arrange that outputs before the most recent one can help determine the next
output, Jordan uses a state vector whose value is an exponentially weighted average of all
past outputs. The state vector is updated using recurrent weights.

6Or so Jordan and Elman imply. In truth, their learning algorithm is approximate. The

9



These two models use only restricted recurrence. The feedback connec-
tions are carefully chosen and not permitted to change. While the networks
are successful at solving certain problems, they do not allow the full range
of behavior possible in unrestricted recurrent nets.

Williams and Zipser (1988) overcome these restrictions by deriving a full-
edged extension of back propagation.7 Their gradient-descent algorithm can
be applied to networks that contain any recurrent connections whatsoever.
However, it pays a price for this generality: it is nonlocal and computationally
intensive.

In the Williams and Zipser paradigm, a continuously running network
receives input at each simulated time step, and has a target output at each
time step. The network's error at a single time step is given by the usual sum-
of-squares expression; but the learning rule always adjusts weights so as to
reduce the network's total error, summed over all time steps. In other words,
the network learns to compute the correct outputs any way that it can. If the
target outputs are determined by the current inputs alone, for example, the
network will learn an ordinary mapping. If they are determined by the past
inputs, it will develop some sort of state variables. If they are determined
solely by the passage of time, it will learn to produce a Jordan-style output
sequence.

One might describe this algorithm as powerful, but greedy. Its time
requirement is O(n4), where n is the number of nodes. The algorithm set
forth in section 3 will turn out to work on similar principles. It is rather
more powerful, and, unfortunately, equally greedy.

1.3 Summary

We have now seen how several previous researchers have thought about re-
current networks.

�xedness of the recurrent weights does not really make them irrelevant to the learning
algorithm. To see why, consider the hidden units in Elman's network. Standard back
propagation tries to arrange for them to have activations that are helpful to the output
units; but it misses the chance to make them helpful to the hidden units on the next cycle.
In other words, error ought to be propagated backwards along the recurrent connections,

even if the weights on those connections are not modi�able. This requires a recurrent
learning rule of the Williams and Zipser sort. For Jordan's and Elman's models, however,
ignoring this limited recurrence does not seem to have hurt the learning procedure much.

7Rumelhart, Hinton, and Williams (1986) had already given an approximate extension.

10



In the constraint satisfaction world, the IA and Boltzmann machine mod-
els take nearly opposite approaches. Units in IA have continuous activations
and inuence each other steadily, so that when one unit's activation over-
takes another's, it is a qualitatively signi�cant event. By contrast, there is no
such thing as a steady inuence in Boltzmann machines. Each unit simply
modulates the probabilistic behavior of other units. The network's behavior
does not change at all over time, except insofar as the temperature does.

The temporal processing research takes a di�erent view. In the models of
Jordan and Elman, the point of recurrent connections is to permit feedback.
A network that is to operate in time needs knowledge of its past history.
Recurrent connections, then, transmit information. In the case of discrete-
time networks, they transmit a new packet of information on each time step.

Finally, Williams and Zipser take no particular position on the proper
role of recurrent connections, except to note that they increase a network's
computational power. For them, the main point of any connection is to make
it easier for a network to produce exactly the right outputs at the right times.

The next section will discuss the constraint satisfaction and temporal
domains in more detail, and will begin to make the case for a new way to
think about recurrent networks: in terms of their dynamics. The whole point
of connections is to allow units to inuence each other. If a network operates
over time, its connections determine its dynamical properties|its patterns of
movement through activation space. The next section concludes that these
dynamical properties are important. A network's ability to solve a problem
often depends on the way its activations change over time, or remain the
same.

2 Some Theoretical Observations

A primary aim of this paper is to develop an actual computational model.
We begin by considering what sorts of models might be successful. The
following remarks, then, are exploratory. They o�er some techniques with
which one might try to design a useful recurrent net, and provide some of
the motivation for the model described later.

As we have seen, some recurrent network architectures are good at re-
sponding over time. Others are good at discovering regularities in their in-
put. An ideal approach would be able to address both problems; we discuss

11



them in turn.

2.1 Thoughts on temporal pattern processing

2.1.1 The usefulness of gradual-response nets

In the temporal domain, the most useful recurrent architectures may be those
that exhibit a gradual response. In discrete-time networks, a unit's activation
at time t + 1 simply replaces its activation at time t. A gradual-response
network, by contrast, runs in continuous time. Units change their activations
continuously; a unit's activation at t + 1 follows from the accumulation of
in�nitesimal changes over the interval (t; t+ 1].8

If we implement such a net on digital hardware, we are obviously forced
to use discrete time steps. However, we can make these time steps as close to
in�nitesimals as we like. The system can be described without the assump-
tion of discrete time; it performs a computation that is sensitive to the total
time elapsed, not to the number of time steps.

Such a network is well-suited to temporal problems because its state
changes continuously. As with any computational system, the environmental
input may vary with time, perhaps discontinuously. But the net will respond
gradually even to abrupt changes in input. This property is what allows it
to preserve state.9

8To put this a little more formally, the activation of a unit, act , is to be di�erentiable
with respect to time, so that act 0(t) exists and

act(t + 1) = act(t) +

Z t+1

�=t

act 0(� )d� :

9By contrast, a feed-forward network ordinarily does not take state into account at all.
The network responds independently to input patterns at times t, t + 1, and so forth; its
units' activations at time t+ 1 have nothing to do with their activations at t.
We can certainly imagine discrete-time networks whose state at t + 1 is a function of

both their input at t + 1 and their state at t. This is in fact the approach of Elman
(1988). Such a model has certain disadvantages, however. It assumes that the system's
input (and its desired output) can be described as changing only at regular clock ticks. If
more frequent ticks become necessary to describe the environment, the net might have to
be completely retrained, because its operation depends in a fundamental way on the step
size, i.e., the temporal graininess with which the environment is sampled. Furthermore,
since activations do not change continuously, state properties of a discrete-time network

12



Note that state preservation is not strictly necessary for all temporal
processing. All that is really required is that the system's current state
can somehow inuence its later behavior; its current state need not persist
over time. But lasting states are important for two reasons. First, when
states remain relatively constant over short periods of time, the network
is not a�ected by slight temporal distortions in its input, and as Jordan
(1986) observes, will produce outputs that are \spread in time" (i.e., non-
instantaneous). Second, many temporal problems do happen to require the
preservation of state over longer intervals. In this context, the tendency to
preserve state is sometimes referred to as memory. It allows a system to take
advantage of the relative stability of the physical world, to keep track of the
subject of a sentence, and so on.

A gradual-response net is guaranteed to preserve state over at least the
very short term, simply because its activations change continuously with
time. A unit's activation may also stay constant for longer. In the standard
case where the activation of a unit increases in proportion to the total input
it receives, a unit will be relatively stable if it receives little input from other
units and has little tendency to change on its own (e.g., by decaying).

To demonstrate that recurrent nets are well-suited to maintain their states
over long periods of time, we can consider the extreme case in which the net's
only goal is to keep its activations constant. In practice, such a net would
not be very interesting. We ordinarily want activations to change in response
to input and/or the passage of time. However, certain parts of the network
might learn to act as memories, and stay constant except in the presence of
certain external inputs. We want to be sure that the behavior is natural for
our network to achieve.

It is easy to ensure that, by default, units receive little input. We can sim-
ply initialize weights to small values before any learning takes place. More-
over, if the weights are initially large, a network that wants to be stabler can
easily learn to make them smaller. If I is the input vector and A is the vector
of activations in the network, the weights serve to map fI;Ag directly onto
dA=dt, with no hidden units. The network only has to learn the 0 mapping
that takes each I;A to the zero vector. Any rule that adjusts network weights
in a manner consistent with the delta rule will learn this mapping easily; in

have no intrinsic tendency to persist over time|a property whose possible importance will
be discussed in a moment.

13



particular, any gradient-descent rule will su�ce.10

Section 2.1.3 discusses other ways to encourage a recurrent network to
preserve state.

2.1.2 The dynamical systems approach

Recurrent networks can do more than just sit in the same state, of course.
Input may a�ect them; and even when input is held constant, the activations
in a network may continue to change. Indeed, the behavior of the network
may depend in complex ways on both the input and the current activations
of the network.

This notion is captured nicely by a construct used in mathematical physics,
the dynamical system. A dynamical system consists of two parts: a contin-
uous state space, which represents the set of possible states of the system,
and a continuous function v over the state space, which speci�es an instan-
taneous velocity vector at each point in the state space. The idea is that the
system moves continuously through state space; its speed and direction in
state space are completely determined by its current position and speci�ed
by v. Any continuous path that the system may take through state space is
called a trajectory.

For example, consider a pendulum. The state of the pendulum is spec-
i�ed along two dimensions. One dimension is the interval [��;+�), which
represents the possible angles that the pendulummay make with the vertical.
The other dimension gives the pendulum's rate of rotation. If we know the
pendulum's current angle and rate of rotation, we can compute how quickly

10This discussion is not unique to a gradual-response architecture. In a model like
Elman's, where the total input to a node replaces its activation instead of modifying it,
the network could still preserve state. However, it would need to implement a di�erent
mapping to do so. Let C be the vector of activations on the context units (which, in
Elman's model, record the value of A from the last time step). The weights in the network
map fI; Cg onto A. For the network to retain its state, the weights must map each fI; Cg
to C.
In other words, all weights should be 0 except for any weight from a context unit to its

associated hidden unit, which must be 1. We could initialize the weights in this manner
(somewhat awkwardly). We could also learn them if necessary. However, the mapping
is somewhat harder to learn than the direct 0 mapping that our architecture requires.
Its output is not a constant; and depending on the topology of the network, it may be
necessary to train multiple layers of weights between C and A. Static-state behavior is
slightly more \natural" than this for a gradual-response network.

14



each is changing. In other words, if we know its current state, we know how
it is currently moving in state space.

Any gradual-response network with �xed topology and weights, di�eren-
tiable output functions, and constant input, speci�es a dynamical system in
input space � activation space.11 If we know the current constant input vec-
tor to the network and the current activations of all the units, then we know
how the input is changing (not at all) and how the activations are changing
(e.g., in proportion to their units' net inputs).

The network may be initialized at any point in this state space and \re-
leased," i.e, allowed to run. Its own architecture determines what trajectory
it follows after that. Changing the input means sliding the system to a
di�erent point in its state space and releasing it again.

This dynamical systems perspective is potentially useful, because it al-
lows us to borrow some terminology, and equips us to think about certain
phenomena that are commonly observed in dynamical systems. For instance,
an equilibrium point of the system is any point in state space whose associ-
ated vector is 0|that is, any point from which the system will not move.
Most such points happen to be point attractors. To say that p is an attractor
means that if the system is released at a point q su�ciently near p, it will
trace a trajectory that reaches p (and stays there). The complete set of such
points q is called the attractor basin of p.

In general, an equilibrium set is any subset S of state space having the
property that if the system is released anywhere in S, it remains in S. S need
not be a point; sometimes, for example, one sees periodic trajectories, where
the system repeatedly traces a closed loop in state space. Nearby trajectories
may converge to this loop, in which case it is called a cyclic attractor or limit
cycle, and has a basin like any other attractor.

Note that the state space of a dynamical system is divided up among
lower-dimensional attractors and their basins, other equilibrium points, and
points on divergent trajectories.

11Input space is the Euclidean space of possible input vectors. Activation space is the
Euclidean space of possible activation vectors. In some models, like those described later,
one provides input to the system by setting the activations of certain \input units." In
this case there is no need for a separate input space.

15



2.1.3 Dynamics of small clusters

Within a recurrent network, it is possible to build small clusters of highly
interconnected units that exhibit interesting and stable dynamic behaviors
in their own activation spaces. These clusters need only be 2 to 5 units in
size. Because they are capable of both time-dependent behavior and state
preservation, they o�er some exciting possibilities for future work in temporal
pattern processing.

This section argues for the potential usefulness of cluster-based architec-
tures. The argument is made not only for its own sake, but also to underscore
the importance of being able to teach dynamical behavior to networks.

Actual cluster dynamics were explored through a computer simulation.
The clusters studied were tiny, fully recurrent networks, made up of ordinary
connectionist units with logistic output functions and decay. As it turns out,
such minature dynamical systems are capable of features such as these:

� Single point attractors with di�erent basin dynamics. A cluster with
a single point attractor p is useless as a memory, since it will always
end up at the attractor. However, by choosing the recurrent weights
carefully, we can achieve interesting dynamics in the basin of p. The
basin dynamics determine how the cluster responds in the short term
if an input stimulus moves it away from the attractor.

For instance, one kind of cluster will converge very quickly when near
p, but very slowly when far away. In other words, if it is displaced from
p by a strong input, it will stay away from it for a certain period of
time before returning. If it is at the attractor, this indicates that it has
not received such an input for at least this much time.

Another possible behavior, for a cluster that has been jiggled o� p in the
right direction, is to loop around and return to p. For example, a slight
input stimulus might cause a cluster to snap out to high activation and
right back again. In other words, the cluster generates a standardized
pulse when prodded.

� Multiple point attractors. A cluster with two or more attractors is
useful as a memory. Appropriate input can move the cluster from one
attractor to another. A simple example is a pair of mutually inhibiting
units, which has two stable states (on-o� and o�-on) and acts like an

16



ordinary ip-op. These states are more useful as stable memories than
the persistent states described in 2.1.1: without giving up the ability
to be a�ected by strong inputs, they resist being a�ected by weak ones.

With multiple attractors, each basin can still adopt the same sorts of
dynamics that we considered for single attractors earlier. It is even
possible to build a cluster with two attractors, p and q, in such a way
that the basin of p is non-convex and curves partway around the basin
of q. This allows the same source of input to move the cluster's state
from p to q, and if the stimulus is repeated, from q back into the basin of
p. In other words, although the input source always pushes the cluster
in the same direction in its activation space, input serves to toggle the
cluster between p and q. The initial state of the cluster determines
where it ends up after input.12

� Quantum units. By carefully creating a cluster with several multiple
attractors, and by paying attention to the output of only one node
in the cluster, one can implement a potentially useful device called
a quantum unit. A quantum unit behaves for the most part like an
ordinary connectionist unit, but its activation space is discrete. It has
only a small �nite number of characteristic activations. Any induced
activation will tend to snap to the nearest of these. The unit always
outputs its activation (no logistic or threshold function is necessary).

12This is a somewhat counterintuitive result. To see that such toggling behavior is
possible, consider how we would produce it by augmenting an ordinary two-state memory
cluster. Suppose we already have a cluster C with two attractive states, which we call -1
and +1. Ordinarily, a positive input puts C in state +1; a negative input puts it in state
-1. We want to arrange things so that a positive input always toggles the state of C.
The solution is simple, and similar to the solution for the classic XOR problem. We

introduce an extra semilinear unit, D, that is weakly excited both by the input and by C,
and that can inhibit C just enough to turn it o�.
If C is at -1, a positive input pulse toggles it to +1. D will only cross threshold if a

positive input pulse arrives when C is already at +1. In that case, once the input pulse
ends, D's high output is able to move C back to -1. This system of C and D, then, produces
the behavior promised in the text.
The attractor at (C = �1; D = 0) does indeed have a non-convex basin. Choosing

appropriate numbers, the basin contains the point (C = +3; D = 1), which is the state the
system assumes if C is at +1 and a positive input pulse arrives. The basin also contains the
attractor itself. But it certainly excludes the point halfway in between, (C = +1; D = 0:5),
because that point happens to be the other attractor!

17



Such units could be useful for several reasons. First, they respond only
to strong inputs. Second, although they can produce a range of outputs,
those outputs are quantized in the style of threshold units. Third,
they retain their state over time (and can accumulate state changes
over time). Finally, their relative insensitivity to changing input would
make them quick to settle when used in a recurrent network.

� Limit cycles. Finally, it is possible to produce a limit cycle within a
small cluster. Surprisingly, this behavior requires only three units. One
unit remains constant (acts as a bias) while the other two trace a circle
in the plane. This limit cycle is a stable attractor whose basin is the
whole space: if the cluster's trajectory is jolted o� the cycle, it will
spiral inward or outwards and return to the trajectory. (By increasing
or decreasing all the weights, we can make it return faster or slower.)
Such a cluster can easily be made to generate regular pulses in another
unit. This feature might be useful as an internal \clock" for a larger
network.

All these behaviors may be easily veri�ed with a short computer program.
It is easy to imagine network topologies that would make good use of such
clusters. For example, we might construct a continuous-time feedforward net
using both ordinary units and quantum units. Such a network would retain
state information from one pattern presentation to the next, changing state
variables only under strong input.

More generally, any cluster implements some deterministic �nite automa-
ton (DFA) that has only a few states. The input lines to the cluster supply
the DFA with transition elements; the passage of time may also serve as a
transition element. In a hierarchical architecture where most clusters take
their input from other clusters, the higher levels may be able to recognize
complex temporal patterns in the environmental input. This would be a
worthwhile area to explore.

Unfortunately, without a learning rule, these are simply observations
about useful topologies. It is unclear how we would train a cluster to adopt
a particular behavior|or how we would decide what behavior the cluster
ought to adopt in order to be useful. The work in section 3, which develops
a learning rule for dynamical systems, was performed with an eye toward
solving either or both of these learning problems.

18



2.2 Thoughts on constraint satisfaction

2.2.1 The need for hidden units

The ambition of any young constraint satisfaction network is to discover
the regularities in its input environment. If the activations of visible units
V1; V2; : : : Vn represent environment variables, the object is to �nd weights
that capture the relations among these activations. In particular, given values
for a subset S of the Vi, the mature network should be able to predict values
for visible units not in S.

Some constraint satisfaction networks have no hidden nodes, and simply
try to �nd direct relationships among the visible units. The network can
take advantage of these with appropriate direct weights between correlated
or anticorrelated units.

Typically, such a network is expected to compute a consistent solution for
all visible nodes at once. This parallelism is often helpful. An XOR problem
mentioned by Hinton and Sejnowski (1986) provides a good illustration. In
this problem's environment, there are four variables, A, B, and C, and D.
Four patterns over these variables are regularly found in the environment:
0000; 0110; 1010; and 1101. Inspection shows that C is the exclusive \or" of
A and B, while D is their logical \and."

If a network without hidden units is given the values of A and B, no set
of direct weights will enable it to �nd the value of C. (Neither A nor B is
at all correlated with C.) Luckily, the value of D can be found using direct
connections from A and B. Since the network is looking for values for all
the nodes at once, it will determine the value of D|and then A, B, and D
together can determine C with only direct connections.

The point of this example is that D, an environment variable, performs
a necessary function in the computation of C. The network only manages
to determine C because it is simultaneously interested in determining D,
and has already learned from the environment how D is related to the other
variables.

This is the same trick that Rumelhart and McClelland (1981) used in
their interactive activation model. Their model was designed to recognize
words from their visual features, but it did not attempt to correlate features
in isolation with particular words. Rather, features helped to predict the
presence of letters, which in their turn were correlated with the words. The

19



model would certainly have failed if feature units had just been connected
directly to word units.

Unfortunately, intermediate representations as helpful as letters may not
always be available from the environment. To capture the regularities of
the environment, the network may have to compute properties that are not
recorded by any visible unit. This means training hidden units. In the XOR
example mentioned earlier, the network might be able to do without D if it
could develop a hidden unit to assume the same function.

In general, hidden units are necessary to do constraint satisfaction when
the constraints are complex, just as they are necessary to implement complex
mappings in feedforward nets. Hidden units are the only way to detect
important features of the environment that are not directly available in the
environment.

2.2.2 A �rst attempt at a satisfaction model

The remainder of section 2.2 attempts, unsuccessfully, to develop a straight-
forward model for constraint satisfaction in a recurrent net. The approach
fails, but for reasons that are worth understanding: in particular, because
it pays insu�cient attention to network dynamics. The model described in
section 3 tries to address its problems.

The model takes the same tack as Hinton and Sejnowski (1986), who
wrote:

We would like to �nd a set of weights so that when the network
is running freely, the patterns of activity that occur over the
visible units are the same as they would be if the environment
was clamping them. (p. 292)

Rather than using a Boltzmann-style device with stochastic binary units,
however, we will use a gradual-response network of the sort described in
2.1.1. At any given time, some or all of the visible units may be designated
as clamped, which means that their activations are not permitted to change.
The dynamics of the network are given by the equations

ai(t+ �) =
�
ai(t) if i is clamped;
ai(t) + �net i(t)� �decay(ai(t)) if i is free

(1)

20



where
net i(t) =

X
j

f(aj)wij (2)

(Here ai is the activation of unit i; net i is its instantaneous input, de�ned
by equation (2); and wij is the weight to j from i. All three may range from
-in�nity to +in�nity. There are also network parameters that �gure in the
above equations. f is the continuous output function for all units; decay is
the continuous and invertible function that speci�es the instantaneous decay
rate of a given activation; and � is the size of the time step. Good choices
are to make f the logistic function and let decay(a) be proportional to a.)

To train the unit on a pattern, we clamp the visible nodes with that
pattern and wait for the network to settle. We want our weights to have
the e�ect that on every pattern, each visible unit will receive exactly enough
input to maintain its clamped activation. In other words, we want to train
the network so that the clamped units can be released and still hold the
correct values at which they were clamped. This is similar to the learning
procedure in a Boltzmann machine.

2.2.3 A learning rule for the non-resonant case

We see from (1) that unit i is at equilibrium if

ai(t+ �)� ai(t) = �net i(t)� �decay(ai(t)) = 0;

or in other words,
net i(t) = decay(ai(t)): (3)

This means that to stay at its current activation, a unit must get just
enough input to balance its rate of decay. Note that it is decay that keeps ai
from becoming in�nite.13 Wemay call this a subsistence input. Since clamped
nodes are supposed to get just enough input to maintain their activations,
our learning rule will try to make the above equation hold for all clamped

13Since decay is required to be a continuous invertible function, the equilibrium value of

ai under constant input is uniquely given by the continuous function decay
�1

(neti). Thus
if neti does not increase without bound while the network is running, ai will not do so
either. This condition on neti is easy to arrange. Choosing the logistic function for f

restricts the output values of all units j to the interval (0; 1); then for �xed weights wij,
the input to i is bounded.

21



nodes. That is, the nodes' actual activations, to which they are clamped,
ought to be their equilibrium activations as well.

For a given clamp pattern, then, we de�ne the local error at a clamped
node i by

ei = net i � decay(ai): (4)

We want a learning rule that minimizes the global error measure E =
1
2

P
i e

2
i for all patterns. Following the approach of Rumelhart, Hinton, and

Williams (1986), we will derive a rule that descends against the gradient of
E in weight space.

We begin by considering a special case, where there are no connections
among the hidden units. A hidden unit may connect only to visible units.
This is an easy case because when the visible units are clamped, there is
no resonant behavior in such a network. Changing a weight will a�ect the
activation of one unit at most, and in a straightforward way.

When we release the clamped units, of course, resonance will become
possible. But if we have trained the network well, no activations will change.
There will indeed be recurrent cycles operating in the network, but they are
now exactly suited to maintain the correct activations. Where the visible
units formerly produced the output that they were instructed to, now they
produce the same output freely.

The gradient of E for this case is computed as follows:

@E

@wij
=

X
k clamped

ek
@ek
@wij

(5)

There are two cases for determining @ek=@wij. If i is a clamped node,

@ek
@wij

=
@netk
@wij

= �ikf(aj) (6)

(The Kronecker delta, �, represents the identity matrix. It has the value
1 if its subscripts are equal, 0 otherwise. Here it is used as a notational
convenience.)

On the other hand, if i is free, we can write

@ek
@wij

=
@ek
@ai

@ai
@wij

(7)

22



=
@netk
@ai

@ai
@wij

(8)

=
@net k
@f(ai)

df(ai)

dai

@ai
@net i

@net i
@wij

(9)

= wkif
0(ai)decay

�1 0(net i)f(aj) (10)

(The �nal line of this derivation is the one that takes advantage of our as-
sumptions. The substitution in the third term requires that the network has
settled|it follows from the equilibrium condition (3)|and the substitutions
in the �rst and fourth terms only work for the present non-resonant case.)

We can summarize these results as

@E

@wij
=

X
k clamped

ek
@ek
@wij

(11)

=

(
eif(aj) if i is clamped;

(
P

k clamped ekwki)f(aj)f 0(ai)decay
�1 0(net i) if i is free.

(12)

In general, @E=@wij is given by multiplying an error term at i by the
output of j, and by an additional factor that describes how the output of i
changes with its net input. This is not unlike the rule for back propagation.

2.2.4 Extending our rule to the resonant case

It turns out to be very di�cult to extend this learning rule to the more
general case. If we permit resonance during training, it is simply too much
work to calculate the weight changes.

Briey, the problem lies in the computation of @ai=@wij: Suppose that
f(j) is positive and we increase wij. Then the input to i from j will certainly
increase. The e�ect of that increase on ai, however, depends on i's interaction
with the rest of the network. If i excites a node that excites it in turn, for
example, then the e�ect will be augmented through that other node. On the
other hand, if excitation to i causes i to be inhibited more (or excited less)
by other units, then the e�ect of the additional input will be damped.

This interaction of i with the rest of the network has nothing in particular
to do with j or wij: We can isolate the interaction itself by introducing a
further abstraction. Let stimi be the input from an imaginary electrode
stimulating node i. We rede�ne net i to add this new source of input. In

23



practice, stimi is always zero|but we can still di�erentiate with respect to
it. So we displace the in�nitesimal change to wij onto stimi, allowing us to
write

@ai
@wij

=
@ai

@stimi
f(j):

Let cij stand for @ai=@stimj: We merely need to compute cii for each
unit i in the network. Unfortunately, this turns out to be an inherently serial
computation. If we derive an equation relating the values of c in the network,

cij = decay
�1 0(net i)

X
k

wikf
0(ak)ckj;

we see that they cannot all be determined from each other by a single relax-
ation computation. The only interrelated values of c are those with the same
second subscript. In order to �nd @ai=@stimj, we must actually stimulate
j and measure the resulting changes in the network's activation vector; so
�nding values for all the cij requires us to stimulate all the j, one at a time.
This is an ugly result. It is similar to saying that the only way to determine
the error gradient in weight space is to tweak each weight individually and
see what happens to the error.

If we require that weights be symmetric, which in a Boltzmann machine
is the characteristic that allows error gradients to be determined locally, we
can get so far as proving that cij = cji for all i and j. Even so, we still
have to compute cii separately for each i. A simple example suggests that no
amount of cleverness will make it possible to compute the cii in parallel. Let
i be a clamped unit and j be any other unit. Then cii = 0; and cij = cji = 0,
but we have no idea from these numbers what cjj is.

As a last hope, one might try generalizing the non-resonant rule from
its form alone. There are a few generalizations that look promising. When
tested empirically, however, none of them can reliably minimize error on
more than one pattern at a time. One presumes this is because they do not
perform gradient descent.14

14Even if weights move in the right direction on a given pattern, usually enabling the
network to learn that pattern in isolation, they do not necessarily move at the right speed.
This means that when multiple patterns are being trained, the sum of the weight changes
for an epoch may not have the right sign (even if all the individual summands do).

24



2.2.5 The problem with this approach

The above discussion illustrates the di�culty of computing the correct weight
changes for recurrent nets. It is far harder to minimize our error measure on
a resonant net than on a non-resonant one.

The constraint satisfaction problem is harder still, because the derivation
above was oversimpli�ed. The analysis was only valid with respect to the
error measure given. To solve the constraint satisfaction problem, a network's
error measure actually has to be more sophisticated than that.

To see why, suppose we have trained all the putative error out of the
net, so that E = 0: For every clamped pattern, the network now succeeds
in delivering subsistence inputs to the clamped visible nodes. The nodes
will maintain their activations when they are freed; the system knows not to
stray from the right answer. This means that each pattern has become an
equilibrium point in activation space.

This is well and good, but the problem is that the network may have
many other equilibrium points as well. Even if we assume that a pattern is
an attractor, we cannot be sure that it has a very large basin. The system
may not settle to the attractor unless it starts close by. So we can have a
perfectly trained network that is nonetheless unable to generate the correct
solutions without prompting.

For di�cult tasks, this situation almost always happens in practice. If we
train the reasonable non-resonant network of section 2.2.3 on the symmetric
XOR problem, whose clamped patterns are 000, 010, 101, and 110, it is
usually able to reduce E to 0 within a dozen or so epochs.15 However, it
has not really solved the symmetric XOR problem in any useful sense. If
we set the three visible units to the activations (1; 0; 0:5) and clamp the �rst
two, the third unit may assume an activation close to 1|but a ludicrous
activation like -2.31 is just as likely.

Why exactly should this be so? We have trained the system so that, when
a pattern p0 is clamped on the visible nodes, the hidden units assume a state
S0 that supports p0. However, if we do not clamp p0 exactly, the hidden
units may not move toward state S0 at all|or toward S1, S2, or any state
that supports a pattern in the training set. We have left some visible nodes
free, and their values may be crucial in getting the hidden units to assume a

15This result is for networks with one to four hidden units and no visible-visible
connections.

25



particular state.
How can we �x this problem? Again, it is useful to regard the network

as a dynamical system. The problem at hand is not strictly a problem about
keeping the visible nodes in place. Rather, it is a problem about getting them
to move to the right place and then keeping them there. In other words, the
learning rule needs to extend the basin of an attractor that it already knows
how to create: it needs to control the dynamics of the system.

2.3 Summary of Theoretical Observations

We have now de�ned a straightforward architecture for a gradual-response
recurrent network, and discussed how such a network might learn to do tem-
poral pattern processing and constraint satisfaction. In both cases, we have
run up against the problem of training the network to be some particular
dynamical system.

What would be really helpful is a learning rule that could train the net-
work to assume any desired dynamics. It is just such a rule that we will
develop in the next section.

Adopting arbitrary dynamics is an intrinsically di�cult problem, and it
should be noted that it is more general and perhaps more di�cult for the
network to solve than the particular dynamical problems we have encountered
so far. Simpler algorithms may exist for special cases. It may be, for example,
that there are easy ways to train a cluster to be a quantum unit.

Nonetheless, in the interest of generality, the remainder of this paper will
focus on a learning rule that is su�cient to cover any dynamics we want
to induce in a network, recurrent or otherwise. We will see that such a
rule exists, derive its form, and attempt to apply it to particular learning
situations.

3 A General Model and its Learning Rule

3.1 Conception of the general model

3.1.1 Molding a dynamical system

Let us return briey to the unsuccessful constraint satisfaction model of
section 2.2. That model learned how to maintain visible nodes already at

26



their target values. It was at a loss, however, when it had to force the visible
nodes to change their activations.

A better model would be able to make the visible nodes change their
activations. Consider what should happen if the activation of unit i is wrong.
If the activation is too low, we are only interested in stimulating it enough
to make it increase, at whatever speed; any large enough input will do.
Similarly, if the activation is too high, all the model must do is to deliver
any input low enough for the node to decrease. The input to a node must be
precise only when the model needs to sustain the node exactly at its target.

We can design an error measure that recognizes these conditions. Such
a measure must pay attention to whether activations are increasing or de-
creasing. In particular, it must rely on equation (1), which shows that ai will
increase whenever net i > decay(ai), and decrease whenever net i < decay(ai).

Indeed, we can develop error measures to prescribe the dynamics of the
system in any detail whatsoever. Most traditional error measures have only
considered ai for each unit. When working with dynamic recurrent nets,
however, we may also want to consider dai=dt. It follows immediately from
(1) that

dai
dt

= net i � decay(ai): (13)

This result holds for discrete-time simulations, where � > 0, as well as in the
limit case where � approaches 0. It provides a local de�nition of dai=dt that
an error measure can easily take into account.

In general, we can choose error measures that consider the system's posi-
tion in A, its direction of movement in A, and the current time. For example,
a measure might require that the system's direction be related to its posi-
tion in some time-dependent way. The formal algorithm that we are soon
to consider is able to minimize such an error measure|unlike other learning
rules.

3.1.2 The role of input

At the same time that the net is being required to perform certain stunts in
activation space, it may also receive some sort of input. Typically, this input
will be useful in helping the network achieve the desired behavior (much as
knowing the problems on a test helps one get the right answers!).

27



The environment can supply the network with input in one of two ways.
For tasks where the network needs only one input per trajectory, the starting
activation A0 can play this role. Di�erent behaviors are required of the
network depending on where it starts in A. (Note that the error measure
may vary for di�erent values of A0.)

For other tasks, the input may change over time. Here the preferred way
of presenting input is to clamp some of the units to input values. Changing
the clamping pattern changes the input. (Jordan's (1986) plan vector works
this way.) This method conforms well to the dynamical system perspective.
We always want the network's behavior to be some function of its input. In
this case, that means its behavior is to be a function of its current position
in A.

3.1.3 How to use the error measure

Once we have chosen an error measure E for a particular dynamical problem,
we want to choose weights that will minimize it. But E is de�ned at every
point of activation space. At which points do we need to minimize it?

Let A represent activation space. In order to induce the correct dynamics
for the entire dynamical system, we might try to minimize the surface integral
of E over all of A. This would create a very robust network. Regardless of
the place in activation space where the net was released, it would behave
according to the dynamics prescribed for it.16

Unfortunately, there is usually no set of weights that will achieve low
error everywhere in the space. We have seen that a network often requires
hidden units in order to achieve interesting behavior on its visible units.
These hidden units have no say in determining the desired behavior of the
visible units|but so long as they can inuence the rest of the network, they
certainly have a say in determining those units' actual behavior. Thus they
control the discrepancy between desired and actual behavior. Even with the
best weights possible, then, a network can never get low error everywhere
in activation space. We can still increase or decrease its error simply by
changing the activations of some hidden units.

16The current weights specify an error surface in activation space; the idea is to minimize
the volume under this surface. For practical purposes, this means minimizing total E over
a lattice of points distributed evenly through activation space (under the assumption that
E is continuous).

28



For example, suppose our error measure requires unit i to always be
moving toward an activation of +2. The desired direction of movement is
thus determined by the current value of ai. But the direction in which ai
actually moves is also dependent on net i. Di�erent points in activation space
may have the same value of ai, but still deliver very di�erent amounts of input
to i. These points cannot all have low error.

The right approach is instead to train the system dynamically. In other
words, we want to run the network as we would in practice, watch the trajec-
tories it actually follows through activation space, and minimize error along
those. Thus we only try to control the network's dynamics in the important
parts of activation space.17

Our strategy, then, is to minimize the result of integrating E over the tra-
jectories that the system actually follows. This raises an interesting question
that has not been asked before. Should we integrate by length or by time?
Some thought suggests that integrating by length makes more sense.

First of all, fast trajectories should not be able to escape getting blamed
for error. If error is integrated with respect to time, however, an erroneous
part of the trajectory can speed up and automatically reduce its contribution
to the total error.18

One might attempt to make a similar case against the alternative. If
the learning rule integrates by length, a network that is required to make
a series of complex loops in A could reduce its error substantially by just
cutting through, i.e., taking an erroneous but short detour through that
region. However, a time-integrating network does no better at learning to
trace such a Gordian knot; it pro�ts from the same shortcut. So length-
integrating networks seem to have the overall advantage.

There is another, more signi�cant advantage to integrating by length.
Suppose we are training a network to settle at a particular activation vector
A. If the network settles at some other point A0 instead, its failure to continue
moving toward A should contribute to the error for the trajectory. But how
much should it contribute? If we integrate by time, the answer depends

17Similarly, when adjusting the second level of weights in a three-layer feedforward net,
the object is not to produce the right outputs given any activations of the hidden units,
but only for the activations that the hidden units presently assume in response to input.

18In some cases, we may actually want the learning rule to favor fast trajectories, but
such a property should not be intrinsic to the network. The error measure is the appro-
priate place to specify such a preference.

29



on how long we let the network remain at A. For every additional second
that elapses, the erroneousness of the system's behavior at A0 becomes more
signi�cant to the system (and soon overwhelms the error on the rest of the
trajectory). We cannot get around this in a principled way by stopping the
network as soon as it settles, because the network may stay forever in the
neighborhood of A0 without ever quite converging to it|and if we respond
with an approximate criterion to decide that the network has come \pretty
close" to settling, then our error gradient is going to depend critically on the
strictness of this criterion.

Integrating by length solves this problem nicely. It ensures that a trajec-
tory generates less error per unit time as it slows down. When the network
reaches A0 and is no longer moving, it can remain there for an instant or
forever without making any di�erence to the computation of total error or
the error gradient. Moreover, once the trajectory has gotten close to A0, it
has generated virtually all of the error that it ever will; so we can legitimately
stop the network when it is \pretty close" to settling.

So on each trajectory T, our goal is to minimize

ET =
Z
EdL (14)

=
Z
E
sX

i

(dai)2 (15)

=
Z
E

0@sX
i

(dai=dt)
2

1A dt (16)

(In the standard fashion, dL represents an in�nitesimal step along the length
of a one-parameter function, E(t) in this case.)

One �nal point. Usually we will want the network to minimize the total
error for several patterns. Each pattern has a di�erent starting point in
activation space and hence a di�erent trajectory. The network is supposed
to minimize the sum of the errors on these trajectories.

As things stand, if trajectory T1 is longer than trajectory T2, T1's error
will have extra clout. This is usually inappropriate. For example, suppose
that T2 begins at an equilibrium point of the system and never moves; its
error will not be counted at all relative to T1's! To remove this e�ect, we

30



divide the error on each trajectory by the length of the trajectory:

ET =

R
T EdLR
T dL

: (17)

One can think of this as
R
Eds, where each s 2 [0; 1] represents a point some

fraction of the distance along the trajectory; e.g., s = 0:5 is the halfway
point.

3.1.4 How weight changes shift the trajectory

The previous section describes the desired learning rule as minimizing an
error function along a trajectory in activation space. It is to accomplish this
by changing the weights in the network. However, changing the weights will
not only change the value of the error function at points along the trajectory.
Changing the weights will also shift the actual course of the trajectory.

Might such a shift interfere with the attempt to reduce error? Not if the
error function is continuous over A. Suppose the trajectory formerly passed
through a point A 2 A, but in�nitesimally adjusting the weights has shifted
it an in�nitesimal distance, so that it now passes through A0. Because E is
continuous, the error gradient is virtually the same at A and A0. The two
gradients only di�er by an in�nitesimal. Hence reducing error at A0 requires
weight changes in the same direction as reducing error at A. The weight
changes that we made for the old trajectory are also correct for the new
one.19

One consequence of this argument is that weight changes can be calcu-
lated independently at di�erent points in the trajectory. Reducing error at
A1 may mean that we will no longer pass through A2, but it doesn't a�ect
our computation of weight changes for A2.

The trajectory shifts are important nonetheless. The error measure of
(17) asks for each s 2 [0; 1]: How could I change weights to reduce error s of
the distance along the trajectory? All we have shown is that this question
asked at s1 is independent of the same question asked at s2. It doesn't mean

19In short, moving in�nitesimally along a gradient doesn't really change the gradient.
This happens to be part of the de�nition of gradient. If it weren't true, the function
wouldn't be di�erentiable.
In practice we will have to move a little faster than in�nitesimally, of course, but (ac-

cording to the standard excuse) not much faster.

31



that we can answer the question at s1 without considering the total e�ect of
weight changes on the trajectory from s = 0 to s = s1.

Indeed, changes to the trajectory are often necessary to reduce error.
One reason to change weights is to ensure that the hidden units will have
more helpful activations at some s1. This means that we must redirect the
trajectory so that at s1 it is passing through a more helpful part of activation
space.

So to �gure out how in�nitesimal weight changes will a�ect the network's
activations at s1, we have to consider the cumulative e�ect of those changes
over the distance [0; s1]. A little thought shows that this is actually possible.

For each weight w, we can determine the e�ect on the trajectory of an
in�nitesimal change to w alone. The technique boils down to this: While
simulating the net with the actual weights, we also simulate a hypothetical
net where w is replaced by w+dw. This is a straightforward way to determine
the hypothetical trajectory and thus the value of @E=@w. If we carry out the
procedure for every modi�able weight w in the system, we will have enough
information to determine the gradient of E in weight space.

This is the same technique used by Williams and Zipser (1988). The
resulting algorithm will be computationally intensive. It essentially requires
us to run n simultaneous copies of the network, where n is the number of
modi�able weights.

Unfortunately, such a method seems necessary to solve the general prob-
lem. We could rewrite it somewhat to reduce the actual requirements on
the network. For instance, the learning algorithm could repeatedly choose
a weight at random, make some tentative modi�cation to it, and later com-
pute a permanent modi�cation based on the observed change in error. Such
a learning algorithm would not require any storage space of its own; but it
would learn more slowly and be no more elegant. The fundamental di�culty
of the problem would be unchanged.

3.2 Formal derivation of the general model

This section gives the technical details of the algorithm, and may be skipped
by the general reader.

32



3.2.1 Notation

Some additional notation will be necessary.
A denotes activation space, A0 its di�erential space.
W denotes weight space. T denotes the timeline [0;+in�nity).
We use conventional variables A 2 A, D 2 A

0, W 2 W, t 2 T. Units in
the network are enumerated, and the integer variables i, j, k, and l stand for
particular units.

The components of a vector A are represented by a1; a2; a3 : : :. The same
convention is used for D. W is a square matrix; the component wij represents
the weight to unit j from unit i, and is considered to be 0 if no connection
exists.

The following functions are assumed to be continuous and di�erentiable
on all their arguments, except as noted.

A : W�A�T! A describes possible trajectories for a net of �xed topology.
We write AW;A0

(t) to denote the position that the system will arrive at when
given weight vectorW , initialized at A0, and allowed to run for a time interval
t. Generally we leave the subscripts o�, so that A(t) denotes the activation
vector of a particular network at time t, assuming some particular vector of
starting activations.

D : W � A ! A
0 describes the dynamics of the net. We write DW (A) for

limt!0
AW;A(t)�AW;A(0)

t
, i.e., for AW;A

0(0): DW (A) need not be di�erentiable
with respect to A, though it must be continuous.

E : T�A�A
0! R

+ describes the error of the system at a particular time,
given its position and direction in activation space. We usually abbreviate
Et(AW;A0

(t);DW (AW;A0
(t))) simply as E(t), sinceW and A0 are usually clear

from context. E may depend on t, even discontinuously.
The derivation below will sometimes use expressions like

@f(bx; x3)
@x

and
@f(x;cx3)

@x3
:

These stand respectively for the �rst and second partials of f , evaluated at
the point (x; x3). The peaked hat on top indicates which argument is the
variable. This notation is a little easier to follow than the standard

@f(a; b)

@a
(x;x3) and

@f(a; b)

@b
(x;x3):

33



In the same style, we may write @f(bx; x3)=@t to stand for

@f(a; b)

@a
(x;x3) � dx

dt
:

The idea is simply to describe how f changes over t when only its �rst
argument is allowed to vary.

3.2.2 Calculating the gradient in weight space

We want an expression for @EW;A0
(t)=@W: We can �nd this by expressing W

in terms of its basis vectors, so we only need to �nd @EW;A0
(t)=@wij for each

weight wij .

@EW;A0
(t)

@wij
=

@E(AW;A0
(t);DW (AW;A0

(t)))

@wij
(18)

=
@E( dA(t);D(t))

@A(t)
� @A(t)

@wij

+
@E(A(t); dD(t))

@D(t)
� @D(t)

@wij

(19)

Note that the multiplicands are vectors, and their dot product a scalar.
The �rst term of each product is simply a partial derivative of E, and can

be found directly from E's de�nition (whatever it is). The interesting terms
are @A(t)=@wij and @D(t)=@wij. To derive them, we must specify A and D
for the particular network architecture we're using.

We de�ne DW (A) as follows:

di =
�
net i � decay i (where net i(t) =

P
j f(aj)wij),

or 0 if i is clamped.
(20)

Now we de�ne AW;A0
(t1) in terms of D:

AW;A0
(t1) = A0 +

Z t1

t=0
DW (AW;A0

(t))dt: (21)

In the case where time is discrete, this is approximated by

AW;A0
(t1) = A0 +

(t1=�)�1X
(t=�)=0

�D(AW;A0
(t)) (22)

= AW;A0
(t1 � �) + �D(AW;A0

(t1 � �)) with AW;A0
(0) = A0(23)

34



which is exactly how we simulate the net iteratively.
In order to continue, we will also have to �nd the partial derivatives of

DW (A).

@D bW (A)

@wij
is given by

@dk(A)

@wij
=

@net k
@wij

(24)

=
@

@wij

X
l

f(al)wkl (25)

=
X
l

f(al)
@wkl

@wij
(26)

= f(aj)�ik: (27)

@DW ( bA)
@al

is given by
@dk( bA)
@al

=
@

@al
netk � @

@al
decay(ak) (28)

= f 0(al)wkl � �kldecay
0(al): (29)

Now we have all the terms necessary to �nd the e�ect of individual weight
changes on D and A. The two equations are written recursively in terms of
each other.

@DW (A(t))

@wij

=
@D bW (A(t))

@wij

+
@DW ( dA(t))

@A(t)
� @A(t)
@wij

(30)

i.e.,
@dk
@wij

=
@dk(A)

@wij
+
X
l

@dk( bA)
@al

� @al(t)
@wij

(31)

@AW;A0
(t1)

@wij
=

8>>>><>>>>:

R t1
t=0

@DW (AW;A0
(t))

@wij
dt (continuous case)

@AW;A0
(t1��)

@wij
+ �

@DW (AW;A0
(t1��))

@wij
dt (discrete case)

with
@AW;A0

(0)

@wij
= @A0

@wij
= 0.

(32)

3.2.3 An algorithm

The above equations, together with (14) and (17), lead directly to the fol-
lowing learning algorithm. For a network with a given set of weights W , this
algorithm describes how to change the weights so as to reduce the error along
the trajectory that starts at A0 2 A:

35



1. Start the trajectory at A0: Set A(0) = A0 and @A(0)=@wij = 0 (for
each weight wij).

2. For each sampled time t, where t takes on the values t0 = 0; t1 =
t0 +�t0; t2 = t1 +�t1; : : : :

(a) Compute D(A(t)) and @D(A(t))=@wij from A(t), @A(t)=@wij,
and W . This determines the network's direction from its cur-
rent position, and its hypothetical direction (under a small weight
change) from its hypothetical position.

(b) Using the de�nition ofE, compute the partials ofE(A(t);D(AW;A0
(t)))

with respect to A(t) and D(AW;A0
(t)). These numbers indicate

how E would change if the system's position in A changed but not
its dynamics, or vice-versa.

(c) From the quantities mentioned in the above two steps, calculate
the partials of E with respect to each wij. This gives the gradient
of E in W at time t.

(d) Calculate the distance �L = (�t)
qP

i d
2
i that the network will

move in A over the next time step, where �t is the expected du-
ration of that time step.

(e) Accumulate weight changes against the gradient of E, in propor-
tion to the learning rate and the instantaneous distance �L.

(f) FindA(t+�t) fromA(t) and D(A(t)); and �nd @A(t+�t)=@wij

from @A(t)=@wij and @D(A(t))=@wij: That is, determine where
the network will be (and would be with di�erent weights) on the
next time step.

3. When the trajectory is complete, divide the accumulated weight changes
by the total length of the trajectory and institute them. (Depending
on the problem, we may call the trajectory complete when it has set-
tled, used up more than its allotted time or distance, run out of input,
�nished producing its output, accumulated too much error, etc.)

So long as all the �t's are small,20 there is no reason that they must be
the same for every time step. For example, when processing ti, we might

20In fact, the learning algorithmwill still work with large values of �t, so long as they are
consistent from one run of the trajectory to the next. However, using large values makes

36



choose �ti so that �L, the distance the network travels on the following
time step, is a constant. Later we will also see discontinuous error measures
that require irregularly spaced time steps.

3.3 Summary of the general model

The above learning algorithm is more powerful than any in the literature to
date. The strongest previous algorithmwas only able to prescribe a target ac-
tivation at every point in time (Williams & Zipser, 1988). The error measure
of this algorithm, by contrast, can consider any or all of three quantities:
the network's position A(t) in activation space, its instantaneous velocity
vector D(t), and the current time t. This permits it to explicitly prescribe
certain kinds of behaviors that have previously been neglected; in particular,
time-dependent and position-dependent dynamics. In light of the discussion
in section 2, these capabilities could be quite useful.

The learning algorithm performs gradient descent on an error surface
by changing the network weights. For each weight w, the algorithm must
determine the e�ect on the whole trajectory of a small change to w. It does
so by gradually accumulating the small e�ects of such a change. As it �gures
out how a small change to w would change the trajectory, the algorithm
also calculates the error for the changed trajectory. This tells it whether
increasing w would increase or decrease error, and thus which way it should
change w.

It is important that the formulation given above does not commit itself
to any particular error measure. Any real-valued continuous function on
T � A � A

0 will do. Together with the new ability to control dynamics, this
gives one an enormous amount of exibility in the kinds of behavior one can
require of a network.

the network a di�erent kind of computational device. For example, recurrent networks
with large time steps are less likely to settle (mutually inhibitory units will oscillate,
etc.). Section 2.1.1 outlines some other reasons to be interested in networks with small or
in�nitesimal time steps.

37



4 Particular Models

The general model described above permits us to de�ne our network's error
virtually any way we care to. Now we discuss some actual error measures
that both demonstrate this exibility and are useful for particular learning
problems.

4.1 Some models of potential interest

Let us begin by outlining a number of interesting error measures. Only a
few will be developed in full in this paper; but the discussion below should
illustrate the generality of the overall approach. With appropriate error mea-
sures, it seems, this architecture can train a number of important behaviors,
some of which have already been studied individually.

1. Williams and Zipser problems. The net's activation is prescribed at
every time t. If �A(t) is the desired trajectory through A, the error at
t can be de�ned as the square of the Euclidean distance between A(t)
and �A(t).21 When input to the system is provided by clamping nodes,
this error measure yields the model derived in Williams and Zipser
(1988).22

2. Generalized Jordan problems. The net's activation is prescribed only at
certain moments t1; t2; : : :. In between, it is free to take whatever path
is easiest for it. E here is discontinuous. At the ti it is computed as in
number 1; it is 0 the rest of the time. The system's actual trajectory
will be continuous, of course.

Note that when simulating a network for this problem, we must be
careful to include the important moments t1; t2; : : : among our time

21For simplicity, we will often refer to �A(t) and other prescribed activations as points in
A. In actuality they usually happen to be hyperplanes; i.e., they do not prescribe individual
activations for every unit of the system. Thus we are really talking at the moment about
the distance from a point to a hyperplane. Later we will talk about training the trajectory
to pass through points, which really means training it to pass through hyperplanes.

22The two models are almost identical. Williams and Zipser's is slightly di�erent in
that it always has evenly spaced time steps and integrates error by time, not by length.
Also, their model uses dedicated input lines (which our model's clamped nodes can easily
simulate, in the style of the IA model discussed earlier).

38



samples. For the similar problems considered by Jordan (1986), the
ti were evenly spaced and constituted the only time samples for his
(discrete-time) network.

3. Mapping problems. For a large class of problems, we may want the
network's activation to settle in the long run to some target activation
�A. We only care that the network reaches this target; we are indi�erent
as to the path it takes.

There are several ways to ensure that the network reaches the target.
We may simply take the approach of number 2 and require that the
network be at or near the target after some reasonable period of time.
(We also need to require that the network is not moving from the
target.) Alternatively, we may ask that each target node be constantly
moving toward the target, or that the network as a whole moves closer
in activation space to the target.

4. Repeated mapping problems. Another important class of tasks may be
described as repeated mapping problems. If we ask a network to do
many mapping problems in succession, it may be able to exploit regu-
larities in the order of the problems it is given. Consider a network that
is to transcribe disconnected speech. Each word is a separate mapping
problem: from the phonemes, the network must derive a written rep-
resentation. However, the previous words in the network's input can
help it decode the current word.

We can take this situation to extremes. The cumulative XOR problem,
mentioned earlier (1.1.2), simply cannot be solved as a sequence of
individual mappings. It requires that the network pay attention to the
previous mappings.

5. Constraint satisfaction. A constraint satisfaction or pattern completion
network just solves a special kind of mapping problem. The desired
mappings have a special consistency. For example, if pattern A [ P
maps to pattern Q, then A [ Q can legitimately map to P , insofar as
the network is capable of implementing both mappings.

We can reuse the error measures of number 3, which are suited for
general mapping problems. We might also arrange error measures that

39



take advantage of the redundancy in the mappings. For example, per-
haps the network will learn faster if while we train it to bring free nodes
to their correct activations, we simultaneously train it to deliver sub-
sistence inputs to the clamped nodes. This will make it a little easier
to train the clamped nodes when they are the free nodes of some other
pattern. Essentially we are training on two patterns at once.

We can make this technique even more useful by releasing the clamped
nodes. After a short period of time, when the free nodes have had a
chance to approach their targets, we can release the clamped nodes.
If we continue to train the network, asking all the nodes to move to
their targets, we are extending the basin around the target point in
activation space.

6. Released mappings. In general, it is possible to do mapping problems
without clamped nodes (using the same error measures). We can re-
quire that a system, when released at a particular point A of activation
space, moves to its associated point A0 and stays there.

Such a scheme is especially well-suited to perform transformations on
input. Consider the case where A represents ring + PAST phoneti-
cally, and A0 represents rang + �. A released activation network can
learn to automatically transform one to the other. Like the past-tense
network of Rumelhart and McClelland (1986), such a network might be
able to generalize from ring/rang to sing/sang and other similar pairs.
Moreover, it has at least one major advantage over the direct mapping
approach of that network. It manages to explain why the mapping
sing/sang, which preserves most of the phonetic information, is easier
to learn than one like sing/ka. This is a point on which Pinker and
Prince (1988) severely criticize the Rumelhart and McClelland model.

7. Position-independent dynamics. The ip side of number 1 is to pre-
scribe, not the network's activation at each time t, but its direction
�D(t). The error measure at time t is then the square of the distance
between D(t) and �D(t). This is not very di�erent from number 1.
Telling the network what path to follow is the same problem, after all,
regardless of whether the path is speci�ed in terms of its position over
time or its direction over time.

40



However, the present error measure successfully abstracts the idea of a
trajectory's shape. If we want the network to generate a local pulse in A
regardless of whether it is released fromA0, A1, or some other (possibly
unanticipated) characteristic starting activation, this error measure is
the natural one to use. Moreover, it forgives di�erent kinds of error
than the measure of number 1 does. If it is easiest for the network
to move a bit to the right as it begins to generate its pulse, this error
measure doesn't mind much, whereas the other considers all the points
along the shifted pulse to be \wrong," and may try hard to correct it
at the expense of other desirable trajectories elsewhere in the space.

8. Time-independent dynamics. We may wish to induce certain dynami-
cal properties in the network, such as limit cycles. The error measure
in this case depends on A and D only. It is given at time t by the
Euclidean distance of D(A(t)) from its desired value, �D(A(t)). Alter-
natively, we can work up error measures that put less exact constraints
on D(t). We might just require that the D(t) fall in some particular
hyperquadrant of A0. This means that all the activations are moving in
particular directions, at whatever speeds.

9. Gradient descent. A special case of number 8 is gradient descent. The
learning rule already performs gradient descent in activation space on
E. But we can actually train the network to perform gradient descent
in activation space on some other measure G. That is, let G be a
di�erentiable function from A to R. At any point A 2 A, we want
to make the net's direction of movement D(A) proportional to that
prescribed by the gradient of �G at A.

A system that has learned these dynamics correctly will have attractors
at the local minima of G (and nowhere else). We will see later that
this technique can be used to implement a content-addressable memory,
which is a particular kind of constraint-satisfaction device.

4.2 Some topologies of potential interest

For a given task, a learning rule's success may depend on the topology of the
network that is trying to learn the task. Section 2.1.3 has already explored

41



in detail the potential of small recurrent clusters. Here we mention two other
topological properties.

Symmetric weights are useful for constraint satisfaction problems. In
fact, Boltzmann machines (Hinton & Sejnowski, 1986) use them exclusively.
They are well suited to such problems, because they capture the idea of a
correlation or anticorrelation between two units.

Symmetric weights are very easy to implement. To implement the weight
w connecting i and j, we can simply regard it as two separate but equal
weights, wij and wji. Each has its own e�ect on the error, so that @E=@w =
@E=@wij + @E=@wji: In order to make a weight change to w, we change it
along the error gradient for wij, and then along the error gradient for wji.

Sigma-pi (multiplicative) connections are also useful for constraint satis-
faction. Sigma-pi connections make it possible to solve the symmetric XOR
problem with no hidden units at all. The solution is very simple: each unit,
when active, changes the connection between the other two units from mu-
tually excitatory to mutually inhibitory. This exactly captures the meaning
of symmetric XOR.

In general, the use of both symmetric and sigma-pi connections may be
very helpful. When a gated symmetric connection links units i and j, the
rest of the network is determining the degree of correlation between the two.
This is a sensible paradigm for constraint satisfaction.

The derivation of a learning rule for sigma-pi units is relatively straight-
forward. The only changes are to the expressions for net i, D(t), and the
partials of D(t). The formulas are mildly messy, however, and not really
worth including here.

4.3 Detailed derivation of particular error measures

4.3.1 Mapping model I: Nodes toward targets

Section 2.2.5 observed that tasks requiring a network to settle to particular
values are really requiring certain dynamics of the network. The network
will settle to a point A 2 A if and only if it has established A as an attractor
whose basin includes the network's starting point.

There are several types of error measure that might encourage the network
to establish such attractors. Since we are interested in exploring the general
model's ability to consider network dynamics, however, we will choose one

42



that con�nes itself to prescribing dynamics. Speci�cally, we will require that
each node move toward its current target at all times.

This is a strong condition, in that it requires good behavior from every
target node. However, it has the advantage of being local, and therefore
easy to compute.23 It is also quite lenient with respect to the nodes' exact
behavior. Each node must be moving toward its target with some minimum
speed, but otherwise is free to travel as quickly or slowly as is convenient.

Let � > 0 be the required minimum speed of a node i toward its target.
Then we want the node's local error ei to be 0 when its actual speed di or
�di exceeds �, and otherwise the amount by which it falls short of �. (This
could be substantial if it is moving in the wrong direction.) We set the overall
error, E, to

P
i e

2
i .

This is the ideal measure, but it is not continuous at 0, or di�erentiable
when the node is moving at exactly the minimum speed. We can �x it up
as follows. Instead of using a constant �, let � = ��jai� tijn, where n > 1 and
�� is a constant. This move makes E continuous and di�erentiable at 0. It
means that error gets more serious when the node is far from the target (and
substantially more serious for large n).

Now in the case where ai is less than or equal to its target value ti, we
determine ei as

ei =

8><>:
�di + � if di < 0,
0 if di > �, or
(di � �)3=�2 + 2(di � �)2=� if di 2 [0; �].

(33)

The derivatives are straightforward to �nd. If ai > ti, the only di�erence
is that instead of wanting di > �, we want �di > �; so we simply substitute
�di for di. (It is unnecessary to also reverse the sign of ei, since it will be
squared anyway.)

When integrating this measure over time, one should realize that it may
be impossible for all units to move toward their targets from the very begin-
ning. The hidden units may have to \charge up" before the system starts
moving in the right direction. One way to take this into account is to multi-
ply E at every step by a factor like (1 � e�t=�), where � is a constant. This
is called a soft start.

23There is certainly no philosophical advantage to a local error measure in this very
nonlocal algorithm. However, if a local method for training dynamic behavior is discovered
in future, such a measure might indeed be desirable.

43



4.3.2 Mapping model II: System toward target

We can de�ne a similar but nonlocal error measure that makes fewer demands
on the individual units. We simply ask the system to continually reduce its
Euclidean distance toward the target.

In actual fact, it is easiest to have it reduce the square of that distance.
Let zi = ai � ti for all units i with target values. Then the square of the
distance to the target is Z =

P
i z

2
i (summing over these units). That value

is changing with respect to time at a rate of

dZ

dt
= 2

X
i

zi
dzi
dt

= 2
X
i

zi
dai
dt

= 2
X
i

zidi: (34)

Let us require this value to be negative, and less than some quantity �2�.
Then we can de�ne our error as

E = max(0; x) (35)

where
x = �+

X
i

zidi (36)

To make this continuous, we actually use E = xh(x), where x is a sharp
logistic function.

The partial derivatives of this error measure are given by

dE = dxh(x) + xh0(x)dx (37)

= dx(h(x) + xh0(x)) (38)

@E

@ai
=

@x

@ai
(h(x) + xh0(x)) (39)

= di(h(x) + xh0(x)) (40)

@E

@di
=

@x

@di
(h(x) + xh0(x)) (41)

= zi(h(x) + xh0(x)) (42)

This measure has the apparent advantage that it will permit some units
to move slightly away from their targets in order for the system as a whole to
get closer to its target in A. In other words, the system's possible trajectories
are somewhat less constrained. There is a geometrical interpretation of this

44



fact. Instead of having to approach the target by penetrating the corners of
successively smaller cubes centered at the target, as with the previous error
measure, the system only has to move inside successively smaller spheres.

4.3.3 General gradient-descent model

The general gradient-descent model is very simple. Let G be an energy
function on A. The system's dynamics are to ensure that the system will
follow the gradient of G to a local minimum. In other words, we want
D(A) = ��GradientAG, for some � > 0.

Component-wise, for a given A we require that di = �di, where

�di = ��@G(A)
@ai

: (43)

For this or any case where the learning rule prescribes a particular dy-
namical system over activation space, we can de�ne E and �nd its derivatives
as follows.

E(A;D) =
1

2

X
i

(ei(A;D))
2 (44)

where ei(A;D) = di(A)� �di(A) (45)

@E(A;D) =
X
i

ei(A;D)@ei(A;D) (46)

@ei( bA;D)
@aj

= ��ij @
�di(A)

@aj
(47)

@ei(A;cD)

@dj
= �ij: (48)

Hence

@E( bA;D)
@aj

= ej(A;D) �
 
�@ �dj(A)

@aj

!
(49)

@E(A;cD)

@dj
= ej(A;D): (50)

To teach a network to do gradient descent on G, then, we only need
to specify expressions for �di = ��@G(A)=@ai (equation 43) and @ �di(A)=@ai
(equation 49).

45



4.3.4 Content-addressable memory model

With an appropriate de�nition of G, training the network to do gradient
descent can get it to act as a content-addressable memory. This is a form
of constraint satisfaction. The network is to have a number of \memories,"
represented by particular points in A. If the network is released anywhere in
activation space, it should end up settling at one of these memories.

The network should tend to converge to memories with activations similar
to its starting point. However, a relatively \strong" memory should be able
to attract it from farther away.

For each pattern p 2 A that serves as a memory, we de�ne

gp(A) =
1

2

X
i

(ai � pi)
2: (51)

This de�nes a large bowl centered on p with gp(p) = 0 as the only minimum.
Now let

G(A) =
Y
p

gp(A)
sp; (52)

where sp > 0 measures the strength of pattern p, and where
P

p sp = 1:
The surface G has its minima at the patterns p. G(p) = 0 for each p,

and G(p) > 0 in the immediate neighborhood of p. sp shapes the surface
depressions surrounding each pattern. If sp is very small, then the function
gp

sp is close to 1 everywhere, at except for a deep pockmark immediately
surrounding p, where its value decreases to 0. If sp is comparatively large,
on the other hand, gpsp describes a wide bowl the way that gp does.

Multiplying all the terms together yields a continuous surface, with zeroes
at all the memories, sides sloping down towards the strong memories, and
pockmarks at the weak ones. Gradient descent on G will settle at memories
according to the conditions described earlier in this section.24

This measure G rolls all the patterns together in a complex way. We want
to train the network to follow the gradient of G. The surprising result of this
section is that there is a seemingly practical algorithm to do this. It turns

24One minor exception. It may happen that, as the network is descending toward a
strong memory, it passes through the attractor basin of some weak memory. In this case,
the network will end up settling at a weak memory that wasn't close to its starting point.
This case will rarely occur in practice, however, since weak memories have small attractor
basins.

46



out that the network can learn the correct behavior by separate study of the
individual patterns, two at a time. Speci�cally, the network needs to move
in weight space so as to better follow G at some point A|and its required
direction of movement in W can be given as the sum of many small direction
vectors, each term determined by an individual pair of patterns.

For the network to learn to follow the gradient, the learning rule of section
4.3.3 needs to know what the gradient actually is. So we must compute
@G(A)=@ai:

First of all, we note that

@gp(A)

@ai
=

@

@ai

1

2
(ai � pi)

2 = ai � pi: (53)

If G(A) = 0, then there is some pattern q for which gq(A) = 0. It follows
that ai = qi, and that @gq(A)=@ai = 0 (from (53)). Moreover, @gq(A)sq=@ai =
sqgq(A)sq�1(@gq(A)=@ai) = 0: Then we see that

@G(A)

@ai
=

@

@ai

0@gq(A)sq Y
p6=q

gp(A)
sp

1A (54)

=

 
@

@ai
gq(A)

sq

! Y
p6=q

gp(A)
sp + gq(A)

sq

0@ @

@ai

Y
p6=q

gp(A)
sp

1A (55)

= 0 + 0 = 0: (56)

If G(A) 6= 0, on the other hand, we are permitted to factor out a G(A)
term and write

@G(A)

@ai
= G(A)

 X
p

@(gp(A)sp)=@ai
gp(A)sp

!
(57)

= G(A)
X
p

spgp(A)sp�1(@gp(A)=@ai)

gp(A)sp
(58)

= G(A)
X
p

sp(@gp(A)=@ai)

gp(A)
(59)

= G(A)
X
p

sp
ai � pi
gp(A)

: (60)

Now we can de�ne the quantities required by section 4.3.3. We want �di to
be proportional to @G(A)=@ai. We are actually going to set it proportional to

47



(@G(A)=@ai)=G(A). This amounts to the same thing, since G(A) is positive
and constant at A. �D =< �d1; �d2; : : : > will still point in the same direction
as the negative gradient, although it will be scaled by a factor of �G(A).

�di = ��X
p

sp
ai � pi
gp(A)

, or 0 if some gp(A) = 0 (61)

@ �di
@ai

= ��X
p

sp
(ai � pi)2 � gp(A)

gp(A)2
, or 0 if some gp(A) = 0: (62)

Now we go ahead and derive the expression for the error gradient of the
network. From equations (49{50), and taking advantage of the fact thatP

p sp = 1, we deduce that

@E

@di
= ei = di � �di (63)

= di + �
X
p

sp
ai � pi
gp(A)

(64)

=
X
p

sp�(
di
�
+
ai � pi
gp(A)

) (65)

@E

@ai
= ei

 
�@ �di
@ai

!
(66)

= (
X
p

sp�(
di
�
+
ai � pi
gp(A)

))(
X
q

sq�
(ai � qi)

2 � gq(A)

gq(A)2
) (67)

=
X
p

X
q

"
spsq�

2(
di
�
+
ai � pi
gp(A)

)(
(ai � qi)2 � gq(A)

gq(A)2
)

#
(68)

Our weight changes are prescribed in terms of (63{68) by the usual rule,

�wij = �� @E

@wij
= ��X

i

(
@E

@ai

@ai
@wij

+
@E

@di

@di
@wij

):

In practice, we need not compute the full summations of equations (63{
68) above. The following approach su�ces. When training the network on

48



a given trial, we simply pick two patterns, p and q. We make our weight
changes under the pretense that

@E

@di
= �(

di
�
+
ai � pi
gp(A)

) (69)

@E

@ai
= �2(

di
�
+
ai � pi
gp(A)

)(
(ai � qi)2 � gq(A)

gq(A)2
) (70)

If the choices of p and q are independent, and each pattern p0 is chosen sp0 of
the time, then the average per-trial weight changes match those prescribed
by (63) and (66).

This is a nice result. It means that the network will be trained to follow
the gradient of G(A) =

Q
p gp(A)

fp; where fp represents the frequency with
which the network sees pattern p. In other words, the frequency with which
the pattern is presented will exactly equal the strength of the pattern.

Note that � controls the speed at which the trained network is expected
to trace the gradient of G. If we are willing to use a small value of �, the term
@E=@ai becomes insigni�cant. This is the only term that involves the pattern
q. For small �, we can safely ignore that term and still make approximately
the correct weight changes.

That is, suppose there are n training patterns. A su�ciently small � can
free us from having to show the network all n2 possible pattern pairs (p; q)
on each training epoch. In e�ect, by thus ignoring the @E=@ai factor, we
are asking the system to simply achieve a better gradient in the region of its
trajectory, and not worry about whether its trajectory also shifts in such a
way as to decrease error.

5 Simulation Results

The error measures developed above were subsequently tested on various
forms of the XOR problem. XOR problems were deliberately chosen so as to
make things di�cult for the learning rules. The traditional sum-of-squares
expression (i.e., sum of distances squared) is a very straightforward error
measure. If we are to replace it with any of the less obvious measures devel-
oped above, we ought to make sure that the replacements are able to achieve
good performance on di�cult problems.

49



XOR is a good test for two reasons. First, it cannot be solved unless the
network develops specialized hidden units. Second, gradient descent solutions
to XOR usually spend a tremendous amount of time in a saddle point of the
error surface before they solve the problem. They move quickly into a highly
stable state where they output 0.5 in response to all inputs, and develop
the necessary hidden units only with great di�culty. Using a di�erent error
surface is unlikely to remove this saddle point, since its existence seems to
result from the lack of any zero-order or �rst-order structure in the XOR test
patterns. However, a di�erent error measure might have di�erent curvature
there, making it easier or harder for the system to escape.

There is one important detail about the simulator that needs to be de-
scribed. Di�erent error measures have di�erent optimal learning rates. In
order that the measures could be compared without having to �nd optimal
learning rates for each, and simply to increase performance, the weights were
updated after each epoch according to the delta-bar-delta rule of Jacobs
(1989). This is an improved version of the momentum heuristic (Rumelhart,
Hinton & Williams, 1986). In momentum, the weight change vector is av-
eraged with other, recent weight change vectors, so that oscillation on any
dimension will cancel itself out. Like momentum, delta-bar-delta does not
follow the gradient exactly. Each weight has its own, variable learning rate,
empirically determined from the local curvature of the error surface in that
dimension. The rule attempts to �nd optimal learning rates for all weights; it
is applicable not only to back propagation, but to gradient descent techniques
in general.25

Note also that the error measures above all require the network to achieve
correct activations for their target nodes, not merely correct outputs. Outputs
are given by logistic functions, and hence would always be very close to 0 or 1.
One advantage of our gradual-response networks over a Boltzmannmachine is
that its inputs and outputs need not have this binary distinction. Continuous
I/O variables can be implemented through setting and examining activations.
This is a particular advantage for a net that is to make distinctions among

25The delta-bar-delta rule seemed to normalize learning in these experiments, although
not as much as one would hope. In particular, scaling the error measure by a constant
factor did result in changes in the learning rate. Why would this be? One possibility is
that the network was at the bottom of a longitudinally curving ravine. In such a case,
the learning rates will be presumably be forced to change on most time steps, so that the
parameters that control how much they change per step become signi�cant.

50



real-world inputs, or act as a memory.
The network was deemed to have solved a problem if its actual activations

were within 0.1 of their targets. For binary targets, this is a stricter criterion
than having output within 0.1 of target. There is no logistic function to force
outputs toward 0 or 1, or to restrict them to the range (0; 1). Indeed, a key
property of continuous readout is that the value can err by being either too
large or too small. If network output were restricted to (0; 1), however, the
network could be fairly sloppy, because it would be impossible for the output
to overshoot a target of 1, or fall below a target of 0.

5.1 Results for feedforward XOR

As a basic test of the error measures, the system was asked to solve the
ordinary XOR problem (almost two dozen times, using di�erent parameters).
The network used a feedforward 2-2-1 topology.

To check the model, it was �rst run using the standard back propagation
de�nition of error, measured only at the very end of the trajectory. (That
is, E was integrated only over the last time step. A Williams and Zipser
network would also be capable of doing this, with minimal modi�cation.)
The two runs required 1660 and 1876 epochs to converge.

As a further check on these runs, the system was asked to continually
compare its weight changes with the weight changes prescribed by back
propagation.26 The two prescriptions were always identical to within a few
percent.

Next, the network was given the \nodes toward targets" (NTT) error
measure of section 4.3.1, using �� = 1:0 and n = 1:005. The results were
excellent. On one run, the network took 1687 epochs to converge on the
solution. On the other, it managed to satisfy the 10% criterion in only 942
epochs, and when allowed to continue running, passed the 1% criterion at
epoch 1175. This was easily the best performance that any network achieved
on the problem.

Hence, at least under these limited conditions, NTT was able to solve the
problem in fewer epochs than back propagation (or Williams and Zipser).

26When decay(ai) = ai, as it did here, the asymptotic activations of the gradual-response
net are identical to the activations of an ordinary feedforward net that uses the same
weights. Since both nets compute the same mappings, and use the same error measure in
this case, then they should compute the same gradient.

51



Of course, each epoch is computationally very demanding|but only because
the algorithm can work equally well in recurrent networks. The point is that
the NTT error surface has at least as clear a path to the zero-error minima as
does sum-of-squares. Since the network's convergence is actually evaluated
on sum-of-squares, the high performance of NTT is not a trivial result.

The Euclidean measure, at least for the tested values of �, actually con-
verged far more slowly. Its short-term error reductions were only in the
fourth decimal place; at 2000 epochs it was usually still trying to edge out
of the saddle point. When there is only one target node, the Euclidean
measure is similar to the NTT measure. The di�erence is that where NTT
requires nodes that are far from their targets to approach faster, the Eu-
clidean measure|since it asks the square of the distance to decrease at a
constant rate|actually makes a lesser demand on faraway nodes.

This problem was �rst addressed by replacing � in the error measure with
�
p
Z. In other words, distance squared was required to decrease at a constant

proportion of the distance, i.e., distance had to decrease at a constant rate.
This revised Euclidean measure still took almost 3500 epochs to converge.
Finally, � was simply replaced with �Z, to get the same e�ect as NTT. In this
case, the Euclidean measure was able to solve the problem in a (still slow)
2300 epochs.

It turns out that the NTT and Euclidean measures are sensitive to their
parameters. If a network using one of these measures is required to move too
quickly toward its targets, it will arrive very quickly at an unfortunate (but
innovative) local minimum. Ignoring its input, it will simply dart far below
0 (or far above 1), incurring some error, and then begin to return at the
required speeds. In this situation, it is moving toward its target regardless
of whether that target happens to be 0 or 1!

Although the network's weights in this case do not solve the XOR prob-
lem, they demonstrate dramatically that the error measure is training dy-
namics: the model is learning how to move rather than how to be somewhere.
Indeed, it has learned how to use its hidden units to generate a pulse. This
is one of the behaviors noted for clusters in section 2.1.3. Unexpectedly, the
network has achieved it without any recurrent connections, relying only on
hidden units that pass threshold at di�erent times.

The network also adopted this dodge on the two occasions it was given
a \soft start" (see 4.3.1). It took advantage of the error measure's early
leniency to quickly get below 0, then returned as required. One possible

52



�x for such aberrations is to use a hybrid measure, averaging together an
ordinary sum-of-squares measure and one of the dynamic measures. This
would require units to be both near the target and moving toward it. On
two trials, the NTT measure was combined in this way with sum-of-squares.
The hybrid measure did solve the XOR problem successfully in 1689 epochs.
However, increasing � only brought back the original di�culties.

5.2 Other tasks

The feedforward XOR tasks showed quite clearly that the model worked,
and that the network was capable of learning particular dynamics at all.
Furthermore, they showed that error measures based on network dynamics
work even for problems whose solutions are static.

The other tests were less satisfying. Learning in recurrent networks ap-
peared to work, but proved too slow to test fully. In addition, the content-
addressable memory model turned out to have a serious aw.

Recurrent-network learning was tested using a symmetric XOR problem.
Since the general algorithm of section 3 is essentially a generalization of
Williams and Zipser's (1988) algorithm, it must share that algorithm's ability
to teach complex tasks to recurrent networks. The question is whether it can
teach them e�ectively using something other than a sum-of-squares error
measure.

The network was asked to solve symmetric XOR six times, using each
of three error measures on both a two-hidden-unit and a three-hidden-unit
topology (both fully recurrent). On one occasion, NTT was permitted to
run for a long time, and found a solution at epoch 8336. For the other
tests, which were terminated after 4000 epochs, no solution was found. In
each case, error was reduced steadily|indeed, more steadily than in the
feedforward task|but at an excruciatingly slow rate. When applying NTT
to either network, for example, 4000 epochs were only enough to bring error
down from a per-pattern average of 0.25 (the saddle point) to slightly over
0.24.

As for content-addressable memory, the �rst test revealed an unfortunate
aw in the approach of section 4.3.4.27 The learning rule tries to make the

27The test involved a single visible unit that was supposed to learn three real-number
\memories," of varying strengths, with the help of three hidden units and fully recurrent

53



network descend along the gradient of G in activation space. It does indeed
get the direction of the gradient correct at every point: it tries to achieve a
velocity vector at each point A that is exactly ��=G(A) times the gradient at
A. The di�culty is that G(A) may be very small. A trajectory that comes too
near a training pattern will thus have enormous weight changes prescribed
for it in that region. As the simulated network approaches a solution, it is
driven away again, often with enough force that it ends up oscillating across
weight space.

There seems to be no way to avoid this behavior, except to have the
network somehow compute G(A) or a function thereof. (Indeed, it follows
from the derivation at 4.3.4 that the net must know to make no weight
changes on any pattern when G(A) = 0.) In order to compute G(A), the
model must take all the patterns into account at once. It cannot simply add
up weight changes prescribed by the individual patterns.28

The model could be salvaged, of course, by having it explicitly compute
G(A) from all the patterns, at each A. But this �x makes it a far less
attractive design for a content-addressable memory.

6 Conclusions

This research has attempted to understand the relationship between connec-
tionist networks, especially recurrent networks, and dynamical systems. It
has been instructive on several counts.

First of all, the dynamical systems perspective has proved to be fruitful.
A key property of gradual-response networks is that their states can change
gradually over time. We have seen the practical results of this even in tiny
recurrent clusters and gradual-response feedforward nets. Apparently it does
not take a very complex network to produce non-trivial kinds of movement
through activation space.

It is important to stress this perspective because, until very recently, it
has been ignored. Traditionally, the object of training a network has been to
have the network produce certain static behaviors|constant output vectors.
Networks are capable of much more than this, however. Their dynamics may

connections. In the terms of section 2.1.3, it was supposed to learn how to be a quantum
unit.

28Logarithmic manipulations do not help.

54



have signi�cant qualitative characteristics. The di�erences between a single
attractor, a double attractor, and a limit cycle are far more pronounced than
the di�erence between outputs of 0 and 1.

Second, it is possible to explicitly train networks to have particular dy-
namical behaviors. This was not known before. Even Jordan (1986), who
described his model as a dynamical system, simply trained it to pass through
particular points on particular time steps; Williams and Zipser (1988) did the
same. In the experiments reported here, however, networks were not taught
to be anywhere in activation space at any particular time, but only to move in
a general direction toward their targets. The networks nonetheless succeeded
in getting to their targets under these rather lenient conditions, establishing
attractor basins around the targets. Moreover, they occasionally managed
to ful�ll the dynamical conditions in unexpected ways that they would not
have found under the \equivalent" static conditions.

There are really two new results here. The theoretical result is that an
algorithm exists to train dynamics. The experimental result is that even
simple networks are actually capable of performing the behaviors they are
being asked to learn.

Third, training a network's dynamic characteristicsmay not be any harder
than training its static characteristics. On a mildly di�cult mapping task, a
network was discovered to learn equally well regardless of whether its position
or its direction was prescribed.

Fourth, while the training techniques involved are di�cult, they are not
prohibitively di�cult. A single general approach is su�cient to train net-
works to perform any of a wide class of behaviors. The approach is no more
computationally intensive than its predecessor, the Williams and Zipser gra-
dient descent algorithm for arbitrarily recurrent networks. Yet it extends the
power of that algorithm well into dynamical systems territory.

There is more work left to be done. It is not yet clear what kinds of
dynamics are easy for a network to learn and what kinds are hard; nor has the
appropriateness of di�erent error measures been systematically studied. Just
as important, no one knows how topology a�ects the learning of dynamics|
for instance, whether the cluster architectures explored in section 2.1.3 are
as promising as they seem to be.

Be that as it may, the work here may very well keep its promises. Through-
out the research, the dynamic properties of connectionist nets have proved
to be continually interesting, sometimes surprising, and often encouraging

55



with respect to their overall signi�cance for connectionism. With luck, these
initial �ndings will have a chance at further development.

References

[1] Elman, J. L. (1988). Finding structure in time (CRL Technical Re-
port 8801). La Jolla: University of California, San Diego, Center for
Research in Language.

[2] Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in
Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.),
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, 1 (pp. 282-317). Cambridge, MA: MIT Press.

[3] Hop�eld, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the Na-
tional Academy of Sciences, USA, 81, 6871-6874.

[4] Jacobs, R. A. (1987). Increased rates of convergence through learn-
ing rate adaptation (COINS Technical Report 87-117). Amherst, MA:
University of Massachusetts, Department of Computer & Information
Science.

[5] Jordan, M. I. (1986). Serial order: A parallel distributed processing
approach (ICS Report 8604). La Jolla: University of California, San
Diego, Institute for Cognitive Science.

[6] McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activa-
tion model of context e�ects in letter perception: Part 1. An account
of basic �ndings. Psychological Review, 88, 375-407.

[7] Pinker, S., & Prince, A. (1988). On language and connectionism: Anal-
ysis of a parallel distributed processing model of language acquisition.
Cognition 28, 73-193.

[8] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart &
J. L. McClelland (Eds.), Parallel Distributed Processing: Explorations

56



in the Microstructure of Cognition, 1 (pp. 318-364). Cambridge, MA:
MIT Press.

[9] Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past
tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.),
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, 2 (pp. 216-271). Cambridge, MA: MIT Press.

[10] Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that
learn to pronounce English text. Complex Systems, 1, 145-168.

[11] Williams, R. J., & Zipser, D. (1988). A learning algorithm for con-
tinually running fully recurrent neural networks (ICS Report 8805).
Boston: Northwestern University, Dept. of Computer Science.

57


