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Abstract This chapter introduces weighted bilexical grammars, enédism in which in-
dividual lexical items, such as verbs and their argumeras have idiosyncratic
selectional influences on each other. Such ‘bilexicalisas heen a theme of
much current work in parsing. The new formalism can be usetksaribe bilex-
ical approaches to both dependency and phrase-structumegars, and a slight
modification yields link grammars. Its scoring approachampatible with a
wide variety of probability models.

The obvious parsing algorithm for bilexical grammars (ulsgdhost previous
authors) takes timé&(n®). A more efficientO(n®) method is exhibited. The
new algorithm has been implemented and used in a large gaegiperiment
(Eisner, 1996b). We also give a useful extension to the césenthe parser
must undo a stochastic transduction that has altered thi. inp

1. INTRODUCTION
11 THE BILEXICAL IDEA

Lexicalized Grammars. Computational linguistics has a long traditiorie-
icalizedgrammars, in which each grammatical rule is specializeddane indi-
vidualword. The earliestlexicalized rules were word-sfiesubcategorization
frames. Itisnow common to find fully lexicalized versionsmdny grammatical
formalisms, such as context-free and tree-adjoining grarar{Schabes et al.,
1988). Other formalisms, such as dependency grammar ¢Mel’1988) and

*This material is based on work supported by an NSF Graduasedeh Fellowship and ARPA Grant
N6600194-C-6043 ‘Human Language Technology’ to the Usitgiof Pennsylvania.
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head-driven phrase-structure grammar (Pollard and S&t)18re explicitly
lexical from the start.

Lexicalized grammars have two well-known advantages. \Wdyertactic
acceptability is sensitive to the quirks of individual werdexicalized rules are
necessary for linguistic description. Lexicalized rules also computationally
cheap for parsing written text: a parser may ignore thosesrtiat do not
mention any input words.

Probabilities and the New Bilexicalism. More recently, a third advantage of
lexicalized grammars has emerged. Even when syntactieptabilityis not
sensitive to the particular words chosen, syntadigtribution may be (Resnik,
1993). Certain words may be able but highly unlikely to mpdiértain other
words. Of course, only some such collocational facts areigety lexical the
storm gathered/*convengdothers are presumably a weak reflex of semantics
or world knowledge golve puzzles/??goatsBut both kinds can be captured
by a probabilistic lexicalized grammar, where they may be used to resolve
ambiguity in favor of the most probable analysis, and alsspgeed parsing
by avoiding (‘pruning’) unlikely search paths. Accuracydaefficiency can
therefore both benefit.

Work along these lines includes (Charniak, 1995; Collin89@l, Eisner,
1996a; Charniak, 1997; Collins, 1997; Goodman, 1997), vepmrted state-
of-the-art parsing accuracy. Related models are propogedut evaluation in
(Lafferty et al., 1992; Alshawi, 1996).

This flurry of probabilistic lexicalized parsers has foadisa what one might
call bilexical grammars, in which each grammatical rule is specialized for
not one buttwo individual words! The central insight is that specific words
subcategorize to some degree for other specific wdalsis a good object for
the verbraise These parsers accordingly estimate, for example, theapitity
that wordw is maodified by (a phrase headed by) werdor each pair of words
w, v in the vocabulary.

1.2 AVOIDING THE COST OF BILEXICALISM

Past Work. At first blush, bilexical grammars (whether probabilisticrut)
appear to carry a substantial computational penalty. Wese# that parsers
derived directly from CKY or Earley’s algorithm take tini®n? min(n, |V])?)
for a sentence of lengthand a vocabulary di| terminal symbols. In practice
n < |V, so this amounts t®(n?®). Such algorithms implicitly or explicitly
regard the grammar as a context-free grammar in which a nbrasp headed
by tiger bears the special nonterminal lyR TheseO(n°) algorithms are used
by (Charniak, 1995; Alshawi, 1996; Charniak, 1997; Collit996; Collins,
1997) and subsequent authors.
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Speeding Things Up. The present chapter formalizes a particular notion of
bilexical grammars, and shows that a lengtksentence can be parsed in time
only O(n3g3t), whereg andt are bounded by the grammar and are typically
small. (g isthe maximum number of senses perinput word, whiheasures the
degree of interdependence that the grammar allamvengthe several lexical
modifiers of a word.) The new algorithm also reduces spacein@gents to
O(n?g¢?t), from the cubic space required by CKY-style approachesléxical
grammar. The parsing algorithm finds the highest-scorirayais or analyses
generated by the grammar, under a probabilistic or othesorea

The newO(n?)-time algorithm has been implemented, and was used in the
experimental work of (Eisner, 1996b; Eisner, 1996a), witicmpared various
bilexical probability models. The algorithm also appliestie Treebank Gram-
mars of (Charniak, 1995). Furthermore, it applies to thelkmaomaton gram-
mars (HAGSs) of (Alshawi, 1996) and the phrase-structure efgdf (Collins,
1996; Collins, 1997), allowing)(n?)-time rather thanD(n?)-time parsing,
granted the (linguistically sensible) restrictions tha humber of distinct X-
bar levels is bounded and that left and right adjuncts arepgeddent of each
other.

1.3 ORGANIZATION OF THE CHAPTER

This chapter is organized as follows:

First we will develop the ideas discussed aboy2.presents a simple formal-
ization of bilexical grammar, and thej3. explains why the naive recognition
algorithm isO(n°) and how to reduce it t®(n?3).

Next, §4. offers some extensions to the basic formaligih.1l extends it to
weighted (probabilistic) grammars, and shows how to findotb&t parse of the
input. §4.2 explains how to handle and disambiguate polysemousswvgdd3
shows how to exclude or penalize string-local configuratiéd.4 handles the
more general case where the input is an arbitrary ratiomaalsttuction of the
“underlying” string to be parsed.

5. carefully connects the bilexical grammar formalism dftbhapter to
other bilexical formalisms such as dependency, conted;fhead-automaton,
and link grammars. In particular, we apply the fast parsotggito these for-
malisms.

The conclusions ir36. summarize the result and place it in the context of
other work by the author, including a recent asymptotic iovpment.

2. A SIMPLE BILEXICAL FORMALISM

The bilexical formalism developed in this chapter is modala dependency
grammar (Gaifman, 1965; Mel'€uk, 1988). It is equivalemthe class oplit
bilexical grammars (including split bilexical CFGs and split HAGs) defined
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in (Eisner and Satta, 1999). More powerful bilexical forrsis also exist, and
improved parsing algorithms for these are cited%6 andg5.8.

Form of the Grammar. We begin with a simple version of the formalism,
to be modified later in the chapter. A [split] unweighted bitel grammar
consists of the following elements:

s A setV of words, called the (terminalocabulary, which contains a
distinguished symbatoor.

m For each wordw € V, a pair of deterministic finite-state automata
andr,,. Each automaton accepts some regular subsgt of

t is defined to be an upper bound on the number of states in agiesin
automaton. ¢ will be defined in§4.2 as an upper bound on lexical ambiguity.)

The dependentsof word w are the headwords of its arguments and ad-
juncts. Speaking intuitively, automatdp specifies the possible sequences of
left dependents fow. So these allowable sequences, which are word strings in
V*, form a regular set. Similarly,, specifies the possible sequences of right
dependents fow.

By convention, the first element in such a sequence is clasastin the
surface string. Thus, the possible dependent sequences Igft to right) are
specified byL(¢,,)" and L(r,,) respectively. For example, if the tree shown
in Figure 1.1a is grammatical, then we know tiigt,, acceptshe, andrpjan
acceptof raise

To get fast parsing, it is reasonable to ask that the autoimditadually have
few states (i.e., that be small). However, we wish to avoid any penalty for
having

= many (distinct) automata—two per word ¥

= many arcs leaving an automaton state—one per possible diepEnl’ .

That is, the vocabulary siZ&| should not affect performance at all.

We will useQ(¢,,) andQ(r,,) to denote the state sets&f andr,, respec-
tively; 1(¢,,) andI(r,,) to denote their initial states; and predicétgy) to mean
thatgq is a final state of its automaton. The transition functiony lm&anotated
as a single pair of functionsandr, where/(w, ¢, w’) returns the state reached
by ¢, when it leaves state on an arc labeled’, and similarlyr(w, ¢, w’).

Notice that as an implementation matter, if the automatalafimed in any
systematic way, it is not necessary to actually store theorder to represent
the grammar. One only needs to choose an appropriate repaédoa for states
g and define thd, F, ¢, andr functions.
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Meaning of the Grammar. We now formally define the language generated
by such a grammar, and the structures that the grammar agsigentences of
this language.

Let a dependency treebe a rooted tree whose nodes (both internal and
external) are labeled with words froin, as illustrated in Figure 1.1a; the root
is labeled with the special symbrboT € V. The children (‘dependents’) of
a node are ordered with respect to each other and the nodfe sis¢hat the
node has botkeft children that precede it andght children that follow it.

A dependency tree is grammatical iff for every word tokerithat appears
in the tree (., accepts the (possibly empty) sequence/sfleft children (from
right to left), andr,, accepts the sequence ©fs right children (from left to
right).

A stringw € V* is generated by the grammar, with analy$isif 7' is a
grammatical dependency tree and listing the node labelB iof infix order
yields the stringw followed byrooT. w is called theyield of T

Bilexicalism. The termbilexical refers to the fact that (i) eaclr € V may
specify a wholly different choice of automatg andr,,, and furthermore (ii)
these automat4g, andr,, may make distinctions among individual words that
are appropriate to serve ahildren (dependents) ofv. Thus the grammar is
sensitive to specifipairs of lexical items.

For example, it is possible for one lexical verb to selectdarompletely
idiosyncratic set of nouns as subject, and another lexiedd to select for an
entirely different set of nouns. Since it never requires enthran a two-state
automaton (though with many arcs!) to specify the set of iptssubjects
for a verb, there is no penalty for such behavior in the parsilgorithm to be
described here.

3. O(n®) AND O(n?®) RECOGNITION

This section develops a bagi{n?) recognition method for simple bilexical
grammars as defined above. We begin with a néiye®) method drawn from
context-free ‘dotted-rule’ methods such as (Earley, 19i@ham et al., 1980).
Second, we will see why this method is inefficient. Finallynare efficient
O(n?) algorithm is presented.

Both methods are essentially chart parsers, in that theydysamic pro-
gramming to build up an analysis of the whole sentence froatyass of its
substrings. However, the slow method combines traditicoastituentswhose
lexical heads may be in the middle, while the fast method ¢oesbwhat we
will call spanswhose heads are guaranteed to be at the edge.
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Figure 1.1 [Shading in this figure has no meaning.] (a) A dependencyepaeg. (b) The same

tree shown flattened out. (c) A span of the tree is any sulgssich that no interior word of

the span links to any word outside the span. One non-spanvandgans are shown. (d) A

span may be decomposed into smaller spans as repeatedly;shevefore, a span can be built
from smaller spans by following the arrows upward. The paysilgorithm (Fig. 1.3-1.4) builds

successively larger spans in a dynamic programming tabker)c The minimal spans, used to
seed the chart, are linked or unlinked word bigrams, suchhas-plan or tax ROOT, as shown.
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3.1 NOTATION AND PRELIMINARIES

The input to the recognizer is a string of words,= wyws ... w, € V*.
We putw,,+1; = ROOT, a special symbol that does not appeawinFori < j,
we write w; ; to denote the input substring;w; o . . . w;.

Generic Chart Parsing. There may be many ways to analyzg ;. Each
grammaticabnalysishas as itsignature anitem, or tuple, that concisely and
completely describes its ability to combine with analyseseighboring input
substrings. Many analyses may have the same item as signdatiis chapter
will add some syntactic sugar and draw items as schematigrpgof analyses.

C (thechart) isan(n + 1) x (n+ 1) array. The chartell C; ; accumulates
the set of signatures of all analyses®f;. It must be possible to enumerate the
set—or more generally, certain subsets defined by partifinkzd properties—
in time O(1) per element. In addition, it must be possible to perform &x1)
duplicate check when adding a new item to a cell. A standaple@mentation
is to maintain linked lists for enumerating the relevantsaib, together with a
hash table (or array) for the duplicate check.

Analysis. If S bounds the number of items per chart cell, then the space
required by arecognizer is cleady(n2S). The time required by the algorithms
we consider i9D(n?5?), because for each of th@(n?) values ofi, j, k such
thatl <i: < j <k < n+1, they will test each of thet S itemsinC; ; against
each of the< S items inC} 1, to see whether analyses with those items as
signatures could be grammatically combined into an analysi; ;.

Efficiency therefore requires keepirfgsmall. The key difference between
the O(n®) method and thé (n?) method will be thatS is O(n) versusO(1).

3.2 NAIVE BILEXICAL RECOGNITION

An Algorithm. The obvious approach for bilexical grammars is for each-anal
ysis to represent a subtree, just as for an ordinary CFG. Maaeisely, each
analysis ofw; ; is a kind ofdotted subtreethat may not yet have acquired all
its children? The signature of such a dotted subtree is an itemy;, ¢2). This
may be depicted more visually as

q1 g2

AN
T w )
wherew € w; ; is thehead word at the root of the subtreg; € Q(¢,), and
g2 € Q(ry). If both ¢; andg, are final states, then the analysis is a complete
constituent.
The resulting algorithm is specified declaratively usingusnts in Fig-
ure 1.2a-b, which shows how the items combine.
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Analysis. Itis easy to see from Figure 1.2a that each chartCgllcan contain
S = O(min(n, |V|)t?) possible items: there a@(min(n, |V])) choices for
w, andO(t) choices for each af; andgs oncew is known. It follows that the
runtime isO(n35?%) = O(n3 min(n, |[V])?t4).

More simply and generally, one can find the runtime by exangriig-
ure 1.2b and seeing that there a&én> min(n, |V|)%t*) ways to instantiate
the four rule templates. Each is instantiated at most ondeira(1) time.
(McAllester, 1999) proves that with appropriate indexirfgtems, this kind
of runtime analysis is correct for a very general class obatgms specified
declaratively by inference rules.

An Improvement. It is possible to reduce the! factor to justt, since each
attachment decision really depends only on one state (giarent), not four
states. This improved method is shown in Figure 1.2c. It gsocomplete
constituents together under a single item even if they fedsh different final
states—a trick we will be using again.

Note that the revised method always attaches right childefare left chil-
dren, implying that a given dependency tree is only derivedrie way. This
property is important if one wishes to enhance the algoritbroompute the
total number of distinct trees for a sentence, or their tptabability, or related
quantities needed for the Inside-Outside estimation élguar

Discussion. Even with the improvement, parsing is stid(n®) (for n < |V]).
Why so inefficient? Because there are too many distinct plessignatures.
WhetherLiNk-L can make one tree a new child of another tree depends on the
head words of both trees. Hence signatures must mentiorwazdd. Since the
head word of atree that analyzes; could be any of the words; , w;1, . .. wj,
and there may be distinct such words in the worst case (assuming |V]),
the numbelS of possible signatures for a tree is at least

In more concrete terms, the problem is that each chart cejl Inaae to
maintain many differently-headed analyses of the samagstriChomsky’s
noun phraseisiting relativeshas two analyses: a kind of relatives vs. a kind
of visiting. A bilexical grammar knows that only the first ipf@opriate in the
contexthug visiting relativesand only the second is appropriate in the context
advocate visiting relativesSo the two analyses must be kept separate in the
chart: they will combine with context differently and théyee have different
signatures.

3.3 EFFICIENT BILEXICAL RECOGNITION

Constituents vs. Spans. To eliminate these two additional factorsof we
must reduce the number of possible sighatures for an asalykie solution is
for analyses to represent some kind of contiguous stringrattan constituents.
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Figure 1.2 Declarative specification of a@(n®) algorithm. (a) Form of items in the parse
chart. (b) Inference rules. The algorithm can derive anyamiswith the signature below ——

by combining analyses with the sighatures above ——, pealithat the input and grammar
satisfy any properties listed to the right of ——. (c) A vatighat reduces the grammar factor
from ¢* to t. F is a literal that means ‘an unspecified final state.’
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Each analysis id; ; will be a new kind of object called span, which consists
of one or two ‘half-constituents’ in a sense to be describBde headword(s)
of a span inC; ; areguaranteedo be at positionsg and/or; in the sentence.
This guarantee means that whérg; in the previous section had up tefold
uncertainty about the location of the headwordugf;, here it will have only
3-fold uncertainty. The three possibilities are thatis a headword, that; is,
or that both are.

Given a dependency tree, we know what its constituents acenstituent
is any substring consisting of a word and all its descendante inefficient
parsing algorithm o%3.2 assembled the correct tree by finding and gluing
together analyses of the tree’s (dotted) constituents iapgmoved way. For
something similar to be possible with spans, we must defire thie spans of
a given dependency tree are, and how to glue analyses of gmgether into
analyses of larger spans. Not every substring of the semisracconstituent of
this (or any) sentence’s correct parse, and in the same wagvery substring
is a span of this (or any) sentence’s correct parse.

Definition of Spans. Figure 1.1a—c illustrates what spans are. A span of the
dependency tree in (a) and (b) is any substiing of the input such that none
of the interior words of the span communicate with any wondatside the span.
Formally: ifi < k < 7, andwy, is a child or parent ofvy/, theni < k&’ < j.

Thus, just as a constituent links to the rest of the sentenbyetbrough its
head word, which may be located anywhere in the constitaesgany; ; links
to the rest of the sentence only through etsdwords w; andw;, which are
located at the edges of the span. We @all; ;_; the span’snterior .

Assembling Spans. Since we will build the parse by assembling possible
spans, and the interiors of adjacent spans are insulated dach other, we
crucially are allowed to forget the internal analysis of arspnce we have built
it. When we combine two adjacent such spans, we never ad# &dim or to
the interior of either. For, by the definition of span, if suclnk were necessary,
then the spans being combined could not be spans of the tree payway.
There is always some other way of decomposing the true passdf @ span)
into smaller spans so that no such links from or to interioesreecessary.

Figure 1.1d shows such adecomposition. Any span analysisidthan two
words, sayw; j, can be decomposed uniquely by the following deterministic
procedure. Choosg such thatw; is the rightmost word in the interior of
the span{ < j < k) that links to or fromw;; if there is no such word, put
j = i+ 1. Because crossing links are not allowed in a dependency-tree
a property known agrojectivity —the substringsv; ; andw; ; must also be
spans. We can therefore assemble the origingl analysis by concatenating
the w; ; andw; ;, spans, and optionally adding a link between the endwords,
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w; andwy. By construction, there is never any need to add a link batveey
other pair of words. Notice that when the two narrower spaesancatenated,
w; gets its left children from one span and its right childresnirthe other, and
will never be able to acquire additional children since m@v span-internal.

By our choice ofj, the left span in the concatenatian, ;, is alwayssimple
in the following sense: it has a direct link betweenandw;, or else has only
two words. (v;  is decomposed at the maxinyasuch that < j < k£ andw; ;
is simple.) Requiring the left span to be simple assures@ueriecomposition
(see§3.2 for motivation); the right span need not be simple.

Signatures of Spans. A span’s signature needs to record only a few pertinent
facts about its internal analysis. It has the form shown guFe 1.3a. i, j
indicate that the span is an analysiswaf;. ¢ is the state of-,,, after it has
read the sequence of’s right children that appear im; 1 j, andg, is the state

of £,,; after it has read the sequencewfs left children that appear iw; ;1.

by andb, are bits that indicate whether; andw;, respectively, have parents
within w; ;. Finally, s is a bit indicating whether the span is simple in the sense
described above.

The signature must record andg, so that the parser knows what additional
dependentsy; or w; can acquire. It must recortd andb; so that it can detect
whether such a link would jeopardize the tree form of the déepacy parse
(by creating multiple parents, cycles, or a disconnecteglgy. Finally, it must
records to ensure that each distinct analysis is derived in at mostay.

It is useful to note the following four possible types of span

m b = by = 0. Example: of the government to raisa Figure 1.1c. In
this case, the endwords; andw; are not yet connected to each other:
that is, the path between them in the final parse tree willluigvavords
outside the span. The span consists of two ‘half-constifiten; with
all its right descendants, followed hy; with all its left descendants.

m b =0,by = 1. Example:plan of the government to raiseFigure 1.1c.
In this casew; is a descendant af; via a chain of one or more leftward
links within the span itself. The span consistswaf and all its right
descendants withim; 1 ;. (w; orw; or both may later acquire additional
right children to the right ofv;.)

m b =1,by = 0. Example: the whole sentence in Figure 1.1b. This is the
mirror image of the previous case.

m b = 1,bpb = 1. This case is impossible, for then some word interior
to the span would need a parent outside it. We will never deginry
analyses with this signature.
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Figure 1.3 Declarative specification of a@(n®) algorithm. (a) Form of items in the parse
chart. (b) Inference rules. As in Fig. 1.2B,is a literal that means ‘an unspecified final state.’
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fori:=1ton
s := the item forw; ;41 produced bySEED
Discove(i, i + 1, s)
Discove(i, ¢ + 1, OPT-LINK-L(s))
Discove(i, ¢ + 1, OPT-LINK-R(s))
for width :=2ton
for i :=1to (n+ 1) — width
k =i+ width
forj:=i+1tok—1
foreach simple items; in C/;
foreachitem s, in C, such thatCOMBINE(s1, s2) is defined
s := COMBINE(s1, $2)
Discove(i, k, s)
if OPT-LINK-L(s) andOpT-LINK-R(s) are defined
Discove(i, k, OPT-LINK-L(s))
Discove(i, k, OPT-LINK-R(s))
foreachitemsin CT,,
if AcCEPT(s) is defined
return accept
return reject

© ® N o o~ w N R

R~ S S ~ S S S
© ® N o 0 > 0 b O

N
=]

Figure 1.4 Pseudocode for ad(n?) recognizer. The functions in small caps refer to the
(deterministic) inference rules of Figure 1.3. Discdvey, s) addsSEAL-L(s) (if defined) to
CF; andSEAL-R(s) (if defined) toCY:;.

The Span-Based Algorithm. A declarative specification of the algorithm is
given in Figure 1.3, which shows how the items combine. Tlzelee may
choose to ignores for simplicity, since the unique-derivation property may
speed up recognition but does not affect its correctness. céiacreteness,
pseudocode is given in Figure 1.4.

TheSEED rule seeds the chart with the minimal spans, which are twalgvor
wide. CoMBINE is willing to combine two spans if they overlap in a warg
that gets all its left children from the left span (henEéappears in the rule), all
its right children from the right span (agaifl”), and its parent in exactly one
of the spans (henceés, —b>’). Whenever a new span is created by seeding or
combining, theOpT-LINK rules can add an optional link between its endwords,
provided that neither endword already has a parent.

TheSEAL rules check that an endword’s automaton has reached a fmal (a
cepting) state. This is a precondition fGOMBINE to trap the endword in the
interior of a larger span, since the endword will then be Umad link to any
more children. While&CoMBINE could check this itself, usin§EAL is asymp-
totically more efficient because it conflates different figttes into a single
item—exactly ag'inisH did in Figure 1.2c.
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Analysis. The time requirements ar®(n3t?), since that is the number of
ways to instantiate the free variables in the rules of FiduBb (McAllester,
1999). Ast is typically small, this compares favorably with(n5t) for the
naive algorithm o§3.2. Even bette;3.4 will obtain a speedup 0 (n3t).

The space requirements are naivélyn?t?), since that is the number of
ways to instantiate the free variables in Figure 1.3a,the.maximum number
of items in the chart. The pseudocode in Figure 1.4 showsttiigtcan be
reduced toO(n?t) by storing only items for whichy; = F or ¢go = F (in
separate chart§® andC” respectively). The other items need not be added to
any chart, but can be fed to tligpT-LiNnk andSEAL rules immediately upon
creation, and then destroyed.

3.4 AN ADDITIONAL O(t) SPEEDUP

The above algorithm can optionally be sped up froim3t?) to O(n3t), at
the cost of making it perhaps slightly harder to understand.

Every item in Figure 1.3 has either 0 or 1 of the statgg), instantiated as
the special symbdl'. We will now modify the algorithm so that either 1 or 2 of
those states are always instantiated’gexcept in items produced ByEED).
This is possible becaugg does not really matter i©pT-LINK-L, nor does
¢1 in OpT-LINK-R. The payoff is that these rules, as well@sMBINE, will
only need to consider one state at a time.

Allthat is necessary is to modify the applicability condits of the inference
rules. COMBINE gets the additional condition = FV g3 = F. OpT-LINK-L
andSEeAL-L drop the condition thaj, # F, while OpT-LINK-R andSEAL-R
drop the condition thaj; # F.

To preserve the property that derivations are unique, twihtiatial modi-
fications are now necessary. To eliminate the freedom toyapphL either
before or aftelCoMBINE, the SEAL rules should be restricted to apply only to
simple spans (i.es, = 1). And to eliminate the freedom to apply bdtRAL-L
and SEAL-R in either order to the output JEED, the SEAL-L rule should
require thaiy, # F V by = 1.

4, VARIATIONS

In this section, we describe useful modifications that mayniagle to the
formalism and/or the algorithm above.
4.1 WEIGHTED GRAMMARS

The ability of a verb to subcategorize for an idiosyncragt af nouns, as
above, can be used to implement black-and-white (‘hard§csienal restric-
tions. Where bilexical grammars are really useful, howgisin capturing
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gradient(‘soft’) selectional restrictions. Awveighted bilexical grammar can

equip each verb with an idiosyncracobability distributionover possible ob-
ject nouns, or indeed possible dependents of any sort. Weforomalize this

notion.

Weighted Automata. A weighted DFA, A, is a deterministic finite-state au-
tomaton that associates a real-valugglght with each arc and each final state
(Mohri et al., 1996). Following heavily-weighted arcs iguitively ‘good,
‘probable,’ or ‘common’; so is stopping in a heavily-weightfinal state. Each
accepting path througH is automatically assigned a weight, namely, the sum
of all arc weights on the path and the final-state weight ofldisestate on the
path. Each stringx accepted by is assigned the weight of its accepting path.

Weighted Grammars. Now, we may define a weighted bilexical grammar as
a bilexical grammar in which all the automata andr,, are weighted DFAs.
We define the weight of a dependency tree under the grammbe asiin, over
all word tokensaw in the tree, of the weight with which, acceptsv’s sequence
of left children plus the weight with which,, acceptsw’s sequence of right
children.

Given an input string, theweighted parsing problemis to find the highest-
weighted grammatical dependency tree whose yield is

From Recognition to Weighted Parsing. One may turn the recognizer of
§3.3 into a parser in the usual way. Together with each itemedtm a chart
cell C; j, one must also maintain the highest-weighted known arsayish that
item as signature, or a parse forest of all known analysdstht signature. In
the implementation, items may be mapped to analyses vidhetalle or array.

When we apply a rule from Figure 1.3b to derive a new item frddhomes,
we must also derive an associated analysis (or forest ofses)l, and the weight
of this analysis if the grammar is weighted.

When parsing, how should wepresentan analysis of a span? (For com-
parison, an analysis of a constituent can be representedras.p A general
method is simply to store the span’s derivation: we may rsgmeany analysis
as a copy of the rule that produced it together with pointeth¢ analyses that
serve as inputs (i.e., antecedents) to that rule. Or silpilane may follow
the decomposition df3.3 and Figure 1.1d. Then an analysisugf; is a triple
(o, B, linktype), wherea points to an analysis of a simple spap;, 3 points
to an analysis of a span,; ;,, andlinktype € {—, —,NONE} specifies the di-
rection of the link (if any) betweew; andwy. Inthe base case whete=i+1,
thena andg instead storev; andwy, respectively.

We must also know how to compute the weight of an analysis. damye-
nient definition will do, so long as the weight of a full pargees out correctly.
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In all cases, we will define the weight of an analysis produmgd rule to be
the total weight of the input(s) to that rule, plus anothemtelerived from the
conditions on the rule. F&8EED and COMBINE, the additional term is O; for
Opt-LINK-L or OpT-LINK-R, it is the weight of the transition tg] or ¢}
respectively; folSEAL-L, SEAL-R, or ACCEPT, it is the final-state weight of
q1, g2, OF g5 respectively.

As usual, the strategy of maintaining only the highest-wid analysis of
each signature works because context-free parsing hasgptheal substruc-
ture property. That is, anyoptimal analysis of a long string can be found by
gluing together jusbptimal analyses of shorter substrings. For suppose that
a andad’ are analyses of the same substring, and have the same sigriatt
a has less weight tham’. Then suboptimak cannot be part of any optimal
analysisb in the chart—for if it were, the definition of signature enssithat
we could substitute’ for a in b to get an analysi&' of greater total weight than
b and the same signature @svhich contradict®’s optimality.

4.2 POLYSEMY

We now extend the formalism to deal with lexical selectioregFettably, the
input to a parser is typically not a string In*. Rather, it contains ambiguous
tokens such abank whereas the ‘words’ iV are word senses such ank,
bank, andbank;, or part-of-speech-tagged words suctbaskN andbankV.

If the input is produced by speech recognition or OCR, everersenses are
possible.

One would like a parser to resolve these ambiguities simatiasly with the
structural ambiguities. This is particularly true of a Bileal parser, where a
word’s dependents and parent provide clues to its senseiegdersa.

Confusion Sets. We may modify the formalism as follows. Consider the
unweighted case first. L&l be the real input—a string not iri* but rather in
P(V)*, whereP denotes powerset. Thus thi& symbol of(2 is aconfusion
set of possibilities for theith word of the input, e.g.{bank, bank,, bank;}.

Q) is generated by the grammar, with analysisif some stringo € V* is so
generated, whereis formed by replacing each set{inwith one of its elements.
Note that the yield of" is w, not2.

For the weighted case, each confusion set in the input sfirgsigns a
weight to each of its members. Again, intuitively, the hgaweighted mem-
bers are the ones that are commonly correct, so the hamnkN would be
weighted more highly than the veldankV. We score parses as before, except
that now we also add to a dependency tree’s score the weifjalistioe words
that label its nodes, as selected from their respectiveusoori sets. Formally,
we say that) = W1 W, ... W,, € P(V)* is generated by the grammar, with
analysisI” and weighturpy + - - - + py, If SOMe stringo = wyws ... w, € V*



Bilexical Grammars and(n3) Parsing 17

is generated with analysig of weight 7, and for eachl < i < n, w; appears
in the setlV; with weight 1;.

Modifying the Algorithm. Throughout the algorithm of Figure 1.3, we must
replace each integer (similarly j, k) with a pair of the form(i, w;), where
w; € W;. That ensures that the signature of an analysig’of will record the
sensesy; andw; of its endwords. Th&prT-LINK rules refer to these senses
when determining whethep; can be a child ofv; or vice-versa. Moreover,
COMBINE nhow requires its two input spans to agree not onlyjdiut also on
the sensew; of their overlapping word/¥;, so that this word’s left children,
right children, and parent are all appropriate to the sanmsese TheSEED
rule nondeterministically chooses senags W; andw;; € W;,1; to avoid
double-counting, the weight of the resulting analysis lietato be the weight
with which w; appears ifi¥; only.

If g is an upper bound on the size of a confusion set, then thes#ications
multiply the algorithm’s space requirements®yy?) and its time requirements

by O(g?).

4.3 STRING-LOCAL CONSTRAINTS

When the parser is resolving polysemy ag4n2, it can be useful to imple-
ment string-local constraints. TH&EED rule may be modified to disallow an
arbitrary list of word-sense bigrams;w;,1. More usefully, it may be made
to favor some bigrams over others by giving them higher wisigii hen the
sense of one word will affect the preferred sense of adjasends. (This is in
addition to affecting the preferred sense of the words kdito).

For example, suppose each word is polysemous over sevetalfpgpeech
tags, which the parser must disambiguate. A useful hackdsfiae the weight
of a parse as the log-probability of the parse, as uslasthe log-probability
of its tagged yield under the trigram tagging model of (Chut988). Then a
highly-weighted parse will tend to be one whose tagged didgrery structure
and string-local structure are simultaneously plausiflbis has been shown
useful for probabilistic systems that simultaneously mpte tagging and pars-
ing (Eisner, 1996a). (See (Lafferty et al., 1992) for a ddfe approach.)

To add in the trigram log-probability in this way, regard kacput word as
a confusion setV; whose elements have the form = (v;,t;,t;+1). Here
eachw; is an ordinary word (or sense) armd ¢, are hypothesized part-of-
speech tags far;, v;11 respectively. NovSEED should be restricted to produce
only word-sense bigram®;, t;, t;1+1)(vit+1, ti+1, tir2) that agree om; 1. The
score of such a bigram isg Pr(v; | t;) + log Pr(t; | tiv1,tiv2). (If i =1,
it is also necessary to addg Pr(sToP | t1,t2).) Notice that (for notational
convenience) we are treating the word sequence as gené@tedght to left,
not vice-versa.
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4.4 RATIONAL TRANSDUCTIONS

Polysemy §4.2) and string-local constraint§4.3) are both simple, local
string phenomena that are inconvenient to model within tlexioal grammar.
Many other such phenomena exist in language: they tend toopghmlogical
in nature and easily modeled by finite-state techniquesapplly to the yield
of the dependency tree. This section conveniently extémel$armalism and
algorithm to accommodate such techniques. The previoussegtions are
special cases.

Underlying and Surface Strings. We distinguish the “underlying” string =
wiws ... w, € V* from the “surface” string? = W W, ... Wy € X*.
ThusV is a collection of morphemes (word senses), whergas typically a
collection of graphemes (orthographic words). It is notessary that = N.

It is the underlying stringv that is described by the bilexical grammar. In
general,w is related to our inpuf) by a possibly nondeterministic, possibly
weighted finite-state transductidd (Mohri et al., 1996), as defined below.

We say that the surface strifgis grammatical, with analysi€l’, P), if T
is a dependency parse tree whose fring&ooT, is transduced t6 along an
accepting patl® in R. Notice thatthe analysis describesthe tree, the underlyin
string, and the alignment between the underlying and sarféings.

The weighted parsing problem is now to reconstruct the besyais(7’, P)
of Q. The weight of an analysis is the weightBfplus the weight ofP. For
example, if weights are defined to be log-probabilities wadgenerative model,
then the weight of" is the log-probability of stochastically generating thesea
treeT and then stochastically transducing its fringe to the olekmput.

Linguistic Uses. The transduce? may be used for many purposes. It can
map different senses onto the same grapheme (polysemyoversa (spelling
variation, contextual allomorphy). If the output alphabétonsists of letters
rather than words, the transducer can apply morphologidaky such as the
affixation and spelling rule itry -ed— tried (Koskenniemi, 1983; Kaplan and
Kay, 1994). It can also perform more interesting kinds olanorphosyntactic
processesHAST TRY- try -ed(affix hopping),NOT CAN— {can't, cannot,
PRO— ¢ " —.").

In another vein R may be an interestingly weighted version of the identity
transducer. This can be used to favor or disfavor local patte the underlying
stringw. A classic exampleisthe “that-trace”filter. Similarlyettigram model
of §4.3 can be implemented easily with a transducer that meeshoves the
tags from tagged words, and whose weights are given by lobatnilities under
a trigram model.

Finally, if R is used to describe a stochastic noisy channel that hagxtedu
or translated the input in some way, then the parser will mattcally correct
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for the noise. Most ambitioush® could be a generative acoustic model, and
X an an alphabet of acoustic observations. In this case, ldnadail grammar
would essentially be serving as the language model for acbpeeognizer.

Itis often convenient to defink as a composition of several simpler weighted
transducers (Mohri et al., 1996), each of which handlesqust of the above
phenomena. For example, in order to map a sequence of ahsibgghemes
and punctuation tokeng (V' x) to a sequence of ASCII characters X x), one
could use the following transducer cascade: affix hoppitttpt“trace” penal-
ization, followed by deletion of phonological nulls, thesnwentional processes
such as capitalization marking and comma absorption, tbalization of ab-
stract morphemes as lemmas or null strings, then varioupmodwgical rules,
and finally a stochastic model of typographical errors. Gigeme text2 that
is supposed to have emerged from this pipeline, the parg#r’ss to find a
plausible way of renormalizing it that leads to a good parse.

Transducer Notation. Thefinite-state transducer R has the same form as
a (nondeterministic) finite-state automaton. However,dios are labeled not
by symbolsw € V but rather by pairg : T', wherey € V* andI” € X*.

The transduceR is said totransduce~ to I" along pathP if the arcs ofP
are consecutively labeled : 'y, v2 : T, ... % : ['y, @andyyya - - -y, = v and
' Ty---T'y =T'. We call this transductioterminal if v, = ~ (or k = 0).

One says simply thaR transducesv to €2 if it does so along aaccepting
path, i.e., a path from the initial state @ to a final state. The path’s weight
can be defined as #§¥%.1, in terms of weights on the arcs and final stateR of

We may assume without loss of generality that the strinlgave length< 1.
That is, all arc labels have the form: I" wherew € V U {e} andl" € X*.

We reuse the notation ¢f2. as follows. Q(R) and I(R) denote the set
of states and the initial state @, and the predicaté’(r) means that state
r € Q(R) is final. The transition predicat®(r,r’,w : I') is true if there is an
arc fromr to »/ with labelw : T'. Its e-left-closureR*(r, ', w : T') is true iff R
terminally transduce® to I" along some path fromto r’.

Modifying the Inference Rules. Recall that when modifying the algorithm
to handle polysemy, we replaced each integarFigure 1.3 with a paifi, w).
For the more general case of transductions, we similarljacep with a triple
(i,w,r), wherew € V,r € Q(R). An item of the form

ol <i<i<n ww Vi € Q(R);--)

/L7 w7 r j7 w b r
represents the following hypothesis about the correceseial analysig?’, P):
that the trel” has a spamwSw’ (for some string3) such that3w’ is terminally
transduced to the surface substring, ; ; along a subpath aP from stater to
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(@) SEED: R*(r,r",w' : Wit1,5)

0 0
Q1Q2

q1 = I(Twi)?q2 = I(Ewi+1)

i7w7r j7w/77ﬂ,
ACCEPT: 1 0
R@rwiw) LR W)
1, W, T 7, Roor,r
oot F(g2), F(r")
(b) FINAL-w: FINAL-€:

R(r,r ,w: Wiy,
R*(T, r',w : Wi+1’j) ( +1’J)

EXT-LEFT: R*(r',r" W : Wit1,k)
R*(r,r",w: Wit1x)

R* (7“, T, € Wi+1,i)

R(r, r', € Wi+1_’j)

(©
START-PREFIX: R ([(R)', row: Wiy) EXT-PREFIX: Zw R*(r, e, w' s Wisry)
ﬂ) T jyw’ ’
. * / E S . - .
START-SUFFIX: R*(r,7’, ¢ ;' Wit1,n) F ) XT-SUFFIX! p (! o - Wign;) 1 =
r— ¢

(d) SEED: I R*(r,r',w' : Wig15) ' —

0 0
qllp

/L‘7/1'U7'rl j7w,77ﬂ,

(e) 1. Agenda = {} (* priority queue of items by weight of their associated deitves *)
2. Done :={} (* set of items indexed as discusseg3nl, §3.2 *)
3. foreachx that can be produced by a rule with no inputs

4. AddAgenddz, Agenda)  (* if duplicate, then also removes copy with the lighter detfara*)
s.  while Agenda # {}
6.

7

8

9.

x := Pop(Agenda) (* highest-weighted item *)

if x = accept then return accept (* also return associated derivation *)

if x € Done

AddDonef, Done) (* updates indices appropriately *)

10. foreachrule r
11, if r(z) is definedthen AddAgendat(x), Agenda) (* as above *)
12 foreachz € (U, p,,..{(2,), (y,2)} with r(2) defined (- use indices *)
13. AddAgendaf(z), Agenda) (* as above *)

14, return reject

Figure 1.5 All non-trivial changes to Figure 1.3 needed for handlirapsductions of the input.
(a) The minimal modification to ensure correctness. Theipae R*(r, 7', w’ : Wiy1 ;) is
used here as syntactic sugar for an itemr’, w’,i + 1, 5] (wherei < j5) that will be derived
iff the predicate is true. (b) Rules for deriving those itedwsing preprocessing of the input.
(c) Deriving “forward-backward” items during preprocessi (d) Adding “forward-backward”

antecedents to parsing to rule out items that are impossibttext. (e) Generic pseudocode for

agenda-based parsing from inference rules. Line 12 useegdny to enumerate efficiently.
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stater’.* Notice that ifi = j thenW;, ; = € by definition. Also notice that
no claim is made about the relation®fto IV ; (but see below).

CoMBINE must be modified along the same lines as for polysemy: it must
require its two input spans to agree not onlyjdsut on the entire tripl¢j, w’, r’).

As before OpT-LINK should be defined in terms of the underlying woudsy’ .

It is only the SEED and AccEPT rules that actually need to examine the
transducerR. Modified versions are shown in Figure 1.5a. These rules make
reference to the-left-closed transition relatiol?*(- - -), which Figure 1.5b
shows how to precompute on substrings of the irfput

From Recognition to Parsing. This modified recognition algorithm yields
a parsing algorithm just as if4.1. An analysis with the signature shown
above has two parts: an analysis of the spghy’, and ther-to-r’ subpath
that terminally transducesw’ to W;; ;. Its weight is the sum of the weights
of these two parts. To compute this weight, each rule in Eiguba—b should
define the weight of its output to be the total weight of itsLitgy plus the arc
or final-state weight associated with aRyr,r’,...) or F(---) that it tests.

Cyclic Derivations. If R can transduce non-empty underlying substrings to
€, we must now use chart celis; ;, for spans that correspond to the surface
substringW;1; = €. In the general case where can do so along cyclic
paths, so that such spans may be unbounded, items can no lbengembined

in a fixed order as in Figure 1.4 (lines 10-P6Xhis is because combining
items fromC; ; andC; ; (¢ < j) may result in adding new items back in@g ;,
which must be allowed to combine with their progenitorsCiyy; again. The
usual duplicate check ensures that we will terminate wigtstiime time bounds
as before, but managing this incestuous computation regj@rmore general
agenda-based control mechanism (Kay, 1986), whose welighie is shown
in Figure 1.5¢€.

Analysis. The analysis is essentially the same as for polysegdy?y, i.e.,
O(n3g3t?) time, orO(n3g>t) if we use the speedup 68.4. The priority queue
in Figure 1.5e introduces an extra factorlog | Agenda| = O(log ngt). An
ordinary FIFO or LIFO queue can be substituted in the unweilcase or if
there are no cycles of the form discusged.

However,g now bounds the number of possiliteles (i, w, r) compatible
with a position: in the input(2. Notice that as witl?,, andr,, there is no
penalty for the number of arcs iR, i.e. the sizes of the vocabulari&s X .

Is g small? The intuition is that most transductions of integige a small
boundg, since they are locally “almost” invertible: they are caasied by the
surface string2 to only consider a few possible underlying words and states
at each positior. For example, a transducer to handle polysemy (map senses
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onto words) allows only a few underlying senseper surface wordV;, and
it needs only one state

But alas, the algorithm so far does not respect these camstraConsider
the SEED rule in Figure 1.5aw (though notw’) is allowed to take any value in
V regardless of the input, andr’ are barely more constrained. So the parser
would allow many unnecessary triples and run very slowly. M fix it to
reclaim the intuition above.

Restoring Efficiency. We wish to constrain théi, w, r) triples actually con-
sidered by the parser, by consideriig and more generally the broader context
provided by the entire inpuR. A triple (i, w,r) should never be considered
unless it is consistent with some transduction that coule fpgoduced?.

We introduce two new kinds of items that let us check this =bescy.

The rules in Figure 1.5 derive the “forward iterd? 7 iff R can terminally
transducexw (for somec) to W ; on a subpath frond(R) to r. They derive

the “backward item’» — iff R can transduce somgto Wit1., On asubpath
from r to a final state. Figure 1.5d modifies thee rule to require such items
as antecedents, which is all we need.

Remark. The new antecedents are used only as a filter. In parsing, they
contribute no weight or detail to the analyses produced leyrévised rule
SEED. However, their weights might be used to improve parsingiefficy.
Work by (Caraballo and Charniak, 1998) on best-first parsinggests that the
total weight of the three items

KL [ ] L
nL,w,r  Jw,r
may be a good heuristic measure of the viability of the midtdla (representing
a type of span) in the context of the rest of the sentence.i¢dltitat the middle
item cannot be derived at all unless the other two also can.)

5. RELATION TO OTHER FORMALISMS

The bilexical grammar formalism presented here is flexiblaugh to capture
a variety of grammar formalisms and probability models. @& other hand,
as discussed if5.6, it does not achieve the (possibly unwarranted) power of
certain other bilexical formalisms.

5.1 MONOLEXICAL DEPENDENCY GRAMMAR

Lexicalized Dependency Grammar. It is straightforward to encode depen-
dency grammars such as those of (Gaifman, 1965). We focesonethe case
that (Milward, 1994) calls Lexicalized Dependency Gramm®G). Milward
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demonstrates a parser for this case that requies g>¢®) time andO (n?g?t?)
space, using a left-to-right algorithm that maintains tegtes as an acyclic di-
rected graph. Hereis taken to be the maximum number of dependents on a
word.

LDG is defined to be onlyjnonolexical Each word sense entry in the lexicon
is for a word tagged with the type of phrase it projects. Amefudr helpeds,
which appears as head of the senteNceses helped John wasimay specify
that it wants a left dependent sequence of the feffiN and a right dependent
sequence of the forma,/N, ws/V. However, under LDG it cannot constrain the
lexical content ofw;, wo, or ws, either discretely or probabilisticalfy.

By encoding a monolexical LDG as a bilexical grammar, andyapg the
algorithm of this chapter, we can reduce parsing time andespy factors of?
andt, respectively. The encoding is straightforward. To capthe preferences
for helpedS as above, we defing,,.q s to be a two-state automaton that
accepts exactly the set of nouns, angd,.q/s to be a three-state automaton
that accepts exactly those word sequences of the form (veuln).

Obviously,cpeq/ 5 includes a great many arcs—one arc for every noun in
V. This does not however affect parsing performance, whigledds only on
the number obtatesin the automaton.

Optional and Iterated Dependents. The use of automata to specify depen-
dents is similar to the idea of allowing regular expressimn€FG rules, e.g.,
NP — (Det) Adj* N (Woods, 1969). It makes the bilexical grammaoab
considerably more flexible than the LDG that it encodes. éngtkample above,
Thelped/s €N be trivially modified so that the dependent verb is otidurses
helped Johh LDG can accomplish this only by adding a new lexical serise o
helped/Sincreasing the polysemy term

Similarly, under a bilexical grammat,,,,,...,/y can be specified to accept
dependent sequences of the form (adj, adj,.adpdj, (det)). Themursesmay
be expanded inteveary Belgian nursedJnbounded iteration of this sort is not
possible in LDG, where each word sense has a fixed number ehdepts.
In LDG, as in categorial grammargjeary Belgian nursewould have to be
headed by the adjunateary. Thus, even if LDG were sensitive to bilexicalized
dependencies, it would not recognizerses—helpedas such a dependency in
weary Belgian nurses helped Johit would seeweary—helpedinstead.)

5.2 BILEXICAL DEPENDENCY GRAMMAR

In the example 0%5.1, we may arbitrarily weight the individual noun arcs of
the /),y @automaton, according to how appropriate those nouns arégEsss
of helped (In the unweighted case, we might choose to rule out inai@ma
subjects altogether, by removing their arcs or assigniegitthe weight-co.)
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This turns the grammar from monolexical to bilexical, witth@ffecting the
cubic-time cost of the parsing algorithm 8.3.

5.3 TEMPLATE MATCHING

(Becker, 1975) argues that much naturally-occurring lagguis generated
by stringing together fixed phrases and templates. To tegibdl construction
of §5.2, one may add handling for special phrases. Considedibms (a)run
scared (b) run circles [aroundNP], and (c)run NP [into the ground] (a), like
most idioms, is only bilexical, so it may be captured ‘fordresimply increase
the weight of thescarecarcinr,.,,, 1, . Butbecause (b) and (c) are trilexical, they
require augmentation to the grammar, possibly increasarglg. (b) requires
a special state to be addedrtg,, v/, so that the dependent sequenciecles
around may be recognized and weighted heavily. (c) requires aizizsx
lexical entry forinto; this sense is a preferred dependenturfand haground
as a preferred dependent.

5.4 PROBABILISTIC BILEXICAL MODELS

(Eisner, 1996a) compares several distinct probability etetbr dependency
grammar. Each model simultaneously evaluates the papedéch tags and
the dependencies in a given dependency parse tree. Givemagged input
sentence, the goal is to find the tagged dependency parsavittedighest
probability under the model.

Each of these models can be accomodated to the bilexicahgérmsmework,
allowing a cubic-time solution. In each ca$gis a set of part-of-speech-tagged
words. Each weighted automatdp or r,, is defined so that it accepts any
dependent sequence Wi*—but the automaton has 8 states, arranged so that
the weight of a given dependent (or the probability of halting) depends on
the major part-of-speech category of the previous deperid&hus, any arc
that reads a noun (say) terminates in the Noun state zjl4neading ardeaving
the Noun state may be weighted differently from thfereading arcs from other
states; so the word’ may be more or less likely as a child afaccording to
whether its preceding sister was a noun.

As sketched in (Eisner, 1996b), each of Eisner’s probghifibdels is im-
plemented as a particular scheme for weighting these atitom&or example,
model C regardg,, andr,, as Markov processes, where each state specifies a
probability distribution over its exit options, namelys ibutgoing arcs and the
option of halting. The weight of an arc or a final state is thies lbg of its
probability. Thus ifry,,.q/y includes an arc labeled withuthe/V and this
arc is leaving the Noun state, then the arc weight is (an estimof)

log Pr(next right dependent isthe/V | parent ishelped/V and previous
right dependent was a noun )
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The weight of a dependency parse tree under this probahildgiel is a sum
of such factors, which means that it estimaliesPr(dependency links & in-
put wordg according to a generative model. By contrast, model D eséisna
log Pr(dependency linksinput words, using arc weights that are roughly of
the form

log Pr(bathe/V is aright dep. ofielped/V | both words appear in sentence
and prev. rightdep. wasanoun)

which is similar to the probability model of (Collins, 1996Yhus, different
probability models are simply different weighting schemeéthin our frame-
work. Some of the models use the trigram weighting approdé¢d @.

5.5 BILEXICAL PHRASE-STRUCTURE GRAMMAR

Nonterminal Categories as Sense DistinctionsIn some situations, conven-
tional phrase-structure trees appear preferable to demegdrees. (Collins,
1997) observes that since VP and S are both verb-headed etfendency
grammars of5.4 would falsely expect them to appear in the same environ-
ments. (The expectation is false becacsetinuesubcategorizes for VP only.)
Phrase-structure trees address the problem by subcatiegoior phrases that
are labeled with nonterminals like VP and S.

Within the present formalism, the solution is to distindguisultiple senses
(84.2) for each word, one for each of its possible maximal mtipas. Then
help/VR,.s andhelp/Sare separate senses: they take different dependents (yield
ing to help Johrvs. nurses help John and only the former is an appropriate
dependent ofontinue

Unflattening the Dependency Structure. A second potential advantage of
phrase-structure trees is that they are more articulateddbpendency trees. In
a (headed) phrase-structure tree, aword’s dependentstaealy to it at different
levels (with different nonterminal labels), providing anligueness order on the
dependents. Obliqueness is of semantic interest; it isedptoited by (Wu,
1995), whose statistical translation model preservesdpelogy (ID but not
LP) of binary-branching parses.

For the most part, it is possible to recover this kind of ste under the
present formalism. A scheme can be defined for convertingmidgncy parse
trees to labeled, binary-branching phrase-structurestréEhen one can use
the fast bilexical parsing algorithm @f.3 to generate the highest-weighted
dependency tree, and then convert that tree to a phrasgtsturee, as shown
in Figure 1.6.

For concreteness, we sketch how such a scheme might be defingtdabel
the states of all automata,, r,, with appropriate nonterminals. For example,
Thelp/s Might start in state V; it transitions to state VP after readits object,
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help/S = S
Nursés/NP John/NP  readily/AdvP Np/\\/p
|
Nurses — vp AdvP

/\ |
\% NP readily

| |
help John

Figure 1.6 Unflattening a dependency tree when the word senses and aotorstates bear
nonterminal labels.

John/NB and itloops back to VP when reading an adjunct suchadily/AdvP
Now, given a dependency tree fdurses help John readilyve can reconstruct
the sequence V, VP, VP of states encountered,by, s as it read$elps right
children, and thereby associate a nonterminal attachreeel\ith each child.

To produce the full phrase-structure tree, we must alsalgemn an oblique-
ness order for the children. Since this amounts to an ordeth® nodes at
which the children attach, one approach is to derive it fropreferred total
ordering on node types, according to which, say, right-bhémg VP nodes
should always be lower than left-branching S nodes. We lattae children
one at a time, referring to the ordering whenever we have @&ehmetween
attaching the next left child and the next right child.

This kind of scheme is adequate for most linguistic purpoéesr example,
together with polysemys@.2) it can be used to encode the Treebank gram-
mars of (Charniak, 1995).) It is interesting to compare i{@wllins, 1996),
who maps phrase-structure trees to dependency trees wtigss are labeled
with triples of nonterminals. In that paper Collins definke probability of a
phrase-structure tree to be the probability of its corresiirag dependency tree.
However, since his map is neither ‘into’ nor ‘onto,’ this daeot quite yield a
probability distribution over phrase-structure treest can he simply find the
best dependency tree and convert it to a phrase-structeeeas we do here,
since the best dependency tree may correspond to O or 2 pétraseure trees.

Neither the present scheme nor that of (Collins, 1996) cadyme arbitrary
phrase-structure trees. In particular, they cannot predses in which several
adverbs alternately left-adjoin and right-adjoin to a gi%P. We now consider
the more powerful class of head-automaton grammars anddaleontext-free
grammars, whicltandescribe such trees.
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5.6 HEAD AUTOMATA

Weighted bilexical grammars are essentially a specialaids=ad-automaton
grammars (Alshawi, 1996). As noted in the introduction, Hd®e bilexical in
spirit. However, the left and right dependents of a werdre accepted not sep-
arately, by automaté, andr,,, but in interleaved fashion by a single weighted
automatond,,. d,, assigns weight to strings over the alphabek {—, —};
each such string is an interleaving of lists of left and ridépendents froni’.

Head automata, as well as (Collins, 1997), can model the tba$§5.5
cannot: where left and right dependents are arbitrarilgrieived. (Alshawi,
1996) points out that this makes head automata fairly paweffhead automa-
ton corresponding to the regular expressiom <) (b, —))* requires its word
to have an equal number of left and right dependents, ¢’&pb™. (Bilexical
or dependency grammars are context-free in power, so thewlsa generate
{a"wb"™ : n > 0}—nbut only with a structure where thés andb's depend
bilexically on each other, not om. Thus, they allow only the usual linguistic
analysis of the doubly-center-embedded sent&wats cats children frequently
mistreat chase squegk

For syntactic description, the added generative power afl fmitomata is
probably unnecessary. (Linguistically plausible intéits among left and
right subcat frames, such as fronting, can be captured @xibdl grammars
simply via multiple word senses.)

Head automaton grammars and an equivalent bilexical Cl@{fsrmalism
are discussed further in (Eisner and Satta, 1999), whegestiown that they
can be parsed in tim@ (ng*t?).

5.7 LINK GRAMMARS

There is a strong connection between the algorithm of thigotgr and the
O(n?) link grammar parser of (Sleator and Temperley, 1993). Aslavie
(p.c.) has pointed out, both algorithms use essentiallpdimee decomposition
into what are here called spans. Sleator and Temperleyéeptation (as a top-
down memoizing algorithm) is rather different, as is thespascoring model
introduced by (Lafferty et al., 1992). (Link grammars wergkoown to this
author when he developed and implemented the presenttaigoin 1994.)

This section makes the connection explicit. It gives a K@efd attractive)
definition of link grammars and shows how a minimal variantle# present
algorithm suffices to parse them. As before, our algorithioved an arbitrary
weighting model §4.1) and can be extended to parse the composition of a link
grammar and a finite-state transducgt.4).

Formalism. A link grammar may be specified exactly as the bilexical gram-
mars of§2. are. A link grammar parse 6f = W1 W5 ... W, called dinkage,
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is a connected undirected graph whose vertice2,...n + 1} are respec-
tively labeled withw; € Wi, we € Wy, ... w, € Wy, w,41 = ROOT, and
whose edges do not ‘cross,’ i.e., edges and j—¢ do not both exist for any
i < j <k < (. The linkage is grammatical iff for each vertéx’,,, accepts
the sequence of wordsv; : j < 4,i—j is an edgg (ordered by decreasing,
andr,,, accepts the sequence of wokds; : j > i,i—j is an edgg (ordered by
increasingy).

Traditionally, the edges of a linkage are labeled with namgeammatical
relations. In this casé,,, should accept the sequence of pdis;, R) : j <
i,i—j is an edge labeled biz), and similarly forr,,, .

Discussion. The above formalism improves slightly on (Sleator and Tempe
ley, 1993) by allowing arbitrary DFAs rather than just sjfat-line automata
(cf. §5.1). This makes the formalism more expressive, so thattitpgeally
possible to write grammars with a lower polysemy fagjorin addition, any
weights or probabilities are sensitive to the underlyingdveensesy; (known

in link grammar aglisjuncts), not merely the surface graphemniés.

Allowing finite-state post-processing as §A.4 also makes the formalism
more expressive. It allows a modular approach to writingrgraars: the link
grammar handles dependencies (topology-local phenenvaniég the trans-
ducer handles string-local phenomena.

Modifying the Algorithm. Linkages have a less restricted form than depen-
dency trees. Both are connected graphs without crossirngsetgt only depen-
dency trees disallow cycles or distinguish parents frortdebin. The algorithm
of Figure 1.3 therefore had to take extra pains to ensureeihiett word has a
unique directed path trooT. It can be simplified for the link grammar case,
where we only need to ensure connectedness. In place oftitg bBindbs, the
signature of an analysis af; ; should include a single bit indicating whether
the analysis is a connected graph; if not, it has two condectenponents.
The input toAccepT and at least one input 18OMBINE must be connected.
(As for output, obvioushSEED'’S output is not connected)pT-LINK'S iS, and
COMBINE Or SEAL’S output is connected iff all its inputs are.) To prevent
linkages from becoming multigraphs, each item needs am dxtrindicating
whether it is the output oD pPT-LINK; if SO, it may not be input t@pT-LINK
again.

Figure 1.3 (or Figure 1.5) needs one more change to becomkgaittam
for link grammars. There should be only ofepT-LINK rule, which should
advance the statg of r,,, to some state; by readingw; (like OpT-LINK-L),
andsimultaneoushadvance the staig of /,,, to some states by readingw;
(like OpT-LINK-R). (Or if edges are labeled, there must be a named relation
R such thatr,,, reads(w;, R) and/,,, reads(w;, R).) This is because link
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grammar’s links are not directional: the linked words andw; stand in a
symmetric relation wherein they must accept each other.

Analysis. The resulting link grammar parser runs in tirén3¢3t2); so does
the obvious generalization of (Sleator and Temperley, 1898ur automaton-
based formalism. A minor point is thatis measured differently in the two
algorithms, since the automatg, r,, used in the Sleator-Temperley-style top-
down algorithm must be the reverse of those used in the abottenr-up
algorithm. (The minimal DFAs accepting a languafend its reversal
may have exponentially different size$

The improvement 0£3.4 to O(n?g?t) is not available for link grammars.
Nor is the improvement of (Eisner and Satta, 1999pta>¢?t), which uses a
different decomposition that relies on acyclicity of theopdedency graph.

5.8 LEXICALIZED TREE-ADJOINING GRAMMARS

The formalisms discussed in this chapter have been edbentatext-free.
The kind ofO(n?) or O(n*) algorithms we have seen here cannot be expected
for the more powerful class of mildly context-sensitive graars (Joshi et al.,
1991), where the best known parsing algorithms @@°) even for non
lexicalized cases. However, it is worth remarking that Emproblems and
solutions apply when bilexical preferences are added. ttiqodar, Lexical-
ized Tree-Adjoining Grammar (Schabes et al., 1988) is #igtbdexical, since
each tree contains a lexical item and may select for othesttieat substitute
or adjoin into it. (Eisner and Satta, 2000) show that stashda&G parsing
essentially take® (n®) in this case, but can be sped upd¢n”).

6. CONCLUSIONS

Following recent trends in probabilistic parsing, this ptea has introduced
a new grammar formalism, weighted bilexical grammars, incilindividual
lexical items can have idiosyncratic selectional influenge each other.

The new formalism is derived from dependency grammar. Itasao be
used to model other bilexical approaches, including a tsapgphrase-structure
grammars and (with minor modifications) all link grammarss dcoring ap-
proach is compatible with a wide variety of probability mixde

The obvious parsing algorithm for bilexical grammars (Usgchost authors)
takes timeD (n°g?t). A new method is exhibited that takes titén3g3t). An
extension parses sentences that have been “corruptedabigaal transduction.

The simplifiedO (n3g3t?) variant of§3.3 was originally sketched in (Eisner,
1996b) and presented (though without benefit of Figure h.8isner, 1997).
It has been used successfully in a large parsing experirisidr, 1996a).
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The reader may wish to know that more recently, (Eisner anth SE999)
found an alternative algorithm that combines half-counstits rather than spans.
It has the same space requirements, and the asymptotiealigr fruntime of
O(n?g?t)—achieving the same cubic time on the input length but witheang
mar factor as low as that of the naiué algorithm.

While the algorithm presented in this chapter is not as faytrgtotically as
that one, there are nonetheless a few reasons to consideritsi

= |t is perhaps simpler to implement, as the chart containdamattypes
of subparse but only orné.

= With minor modifications 45.7), the same implementation can be used
for link grammar parsing. This does not seem to be true of aséef
algorithm.

= In some circumstances, it may run faster despite the inecegeammar
constant. This depends on the grammar (i.e., the valugsanti¢) and
other constants in the implementation.

= Using probabilities or a hard grammar to prune the chart égnifs
cantly affect average-case behavior. For example, in opehlished
experiment on Penn Treebakdll Street Journatext (reported by the
author at ACL '99), probabilistic pruning closed the gapvibetn the
O(n3g3t?) and O(n3¢?t) algorithms. (Both still substantially outper-
formed the pruned (n®) algorithm.)

= With the improvement presented §8.4, the asymptotic penalty of the
span-based approach presented here is reduced t6)dn)y

Thus, while (Eisner and Satta, 1999) is the safer choiceatiyéhe relative
performance of the two algorithms in practice may dependasious factors.

One might also speculate on algorithms for related probldros example,
theg? factor in the present algorithm (compared to Eisner anciSatt) reflects
the fact thatthe parser sometimes considers three wordsat @n principle this
could be exploited. The probability of a dependency linklddae conditioned
onallthree words ortheir senses, yielding a ‘trilexicaimjmar. (Lafferty etal.,
1992) use precisely such a probability model in their relaign?) algorithm
for parsing link grammars, although it is not clear how ralevtheir third word
is to the probability of the link (Eisner, 1996b).
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Notes

1. Actually, (Lafferty et al., 1992) is formulated adréexical model, though the influence of the third
word could be ignored: s&b..

2. Having unified an item with the left input of an inferencéerisuch asoMBINE in Figure 1.3, the
parser must enumerate all items that can then be unified éthight input.

3. Inthe sense of the dotted rules of (Earley, 1970).

4. Notice that our assumption about the form of arc labelsyapguarantees that any sparZofvill
be transduced to some substringbby an an exact subpath &f. Without that assumption, the span might
begin in the middle of some arc &f.

5. Cycles that transduceto ¢ would create a similar problem for the rules of Figure 1.5, B can
always be transformed so as to eliminate such cycles.

6. We assume that the output of a rule is no heavier than arty iofduts, so that additional trips around
a derivational cycle cannot increase weight unboundedtyg.( all rule weights are log-probabilities and
hence< 0.) In this case the code can be shown correct: it pops itenms free agenda only after their
highest-weighted (Viterbi) derivations are found, andergwuts them back on the agenda.

The algorithm is actually a generalization to hypergraphthe single-source shortest-paths algorithm
of (Dijkstra, 1959). In a hypergraph such as the parse foessth parent of a vertex (item) iss&t of
vertices (antecedents). Our single source is taken to bertipty antecendent set. Note that finding the
total weight of all derivations would be much harder than finding thaximum, in the presence of cycles
(Stolcke, 1995; Goodman, 1998).

7. The time required for the agenda-based algorithm is ptigmal to the number of rule instances
used in the derivation forest. The space is proportionahéonumber of items derived.

8. What would happen if we tried to represent bilexical dejgemies in such a grammar? In order to
restrictws to appropriate objects bielpedS, the grammar would need a new nonterminal sym¥gl pab1e -

All nouns in this class would then need additional lexicaties to indicate that they are possible heads of
Nhelpable- The proliferation of such entries would driyeup to |V| in Milward’s algorithm, resulting in
O(n§|V|3t3) time (or by ignoring rules that do not refer to lexical itemstie input sentenc&) (n6t3)).

9. The eight states asrarT, Noun, Verb, Noun Modifier, Adverb, Prep, Wh-word, and Puadon.

10. On the other hand, for indexing purposes it is helpfuladifion this type into at least two subtypes:
see the two charts of Figure 1.4.
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