
1

Simpler & More General Minimization
for Weighted Finite-State Automata

Jason EisnerJason Eisner
Johns Hopkins University

May 28, 2003 — HLT-NAACL

First half of talk is setup - reviews past work.
Second half gives outline of the new results.

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

b

Represents the language {aab, abb, bab, bbb}

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

b

Represents the language {aab, abb, bab, bbb}

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

b

Represents the language {aab, abb, bab, bbb}

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

Represents the language {aab, abb, bab, bbb}

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

Represents the language {aab, abb, bab, bbb}

2

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b

a b

a
b

Can’t always work backward from final state like this.
A bit more complicated because of cycles.
Don’t worry about it for this talk.

Mergeable because they
have the same suffix
language: {ab,bb}

Mergeable because they
have the same suffix

language: {b}

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

b
ab

a b

a
b

b

Here’s what you should worry about:

An equivalence relation on states … merge the equivalence classes

The Minimization Problem

Input: A DFA (deterministic finite-state automaton)

Output: An equiv. DFA with as few states as possible
Complexity: O(|arcs| log |states|) (Hopcroft 1971)

Q: Why minimize # states, rather than # arcs?
A: Minimizing # states also minimizes # arcs!

Q: What if the input is an NDFA (nondeterministic)?
A: Determinize it first. (could yield exponential blowup �)

Q: How about minimizing an NDFA to an NDFA?
A: Yes, could be exponentially smaller ☺,

but problem is PSPACE-complete so we don’t try. �

Real-World NLP:
Automata With Weights or Outputs

� Finite-state computation of functions
� Concatenate strings

� Add scores

� Multiply probabilities

c:0.7

a:0.2 d:1
b:0.3

c:7

a:2 d:0
b:3

abd → wwx
acd → wwz

c:wz

a:w d:ε
b:wx

abd → 0.06
acd → 0.14

abd → 5
acd → 9

Real-World NLP:
Automata With Weights or Outputs

� Want to compute functions on strings: Σ* → K
� After all, we’re doing language and speech!

� Finite-state machines can often do the job
� Easy to build, easy to combine, run fast

� Build them with weighted regular expressions
� To clean up the resulting DFA,

minimize it to merge redundant portions
� This smaller machine is faster to intersect/compose
� More likely to fit on a hand-held device
� More likely to fit into cache memory

Real-World NLP:
Automata With Weights or Outputs

How do we minimize such DFAs?How do we minimize such DFAs?

� Want to compute functions on strings: Σ* → K
� After all, we’re doing language and speech!

� Finite-state machines can often do the job

� Didn’t Mohri already answer this question?
� Only for special cases of the output set K!
� Is there a general recipe?
� What new algorithms can we cook with it?

3

Weight Algebras

c:0.7

a:0.2 d:1
b:0.3

� Finite-state computation of fu
� Concatenate strings

� Add scores

� Multiply probabilities

c:7

a:2 d:0
b:3

c:wz

a:w d:ε
b:wx

conditional random fields, rational kernels

training the parameters of a model

membership in multiple languages at once

OT phonology

� Specify a weight algebra (K,⊗⊗⊗⊗)
� Define DFAs over (K,⊗⊗⊗⊗)
� Arcs have weights in set K
� A path’s weight is also in K:

multiply its arc weights with ⊗⊗⊗⊗
� Examples:

� (strings, concatenation)
� (scores, addition)
� (probabilities, multiplication)
� (score vectors, addition)
� (real weights, multiplication)
� (objective func & gradient,

product-rule multiplication)
� (bit vectors, conjunction)

� Finite-state computation of fu
� Concatenate strings

� Add scores

� Multiply probabilities

Weight Algebras

� Specify a weight algebra (K,⊗⊗⊗⊗)
� Define DFAs over (K,⊗⊗⊗⊗)
� Arcs have weights in set K
� A path’s weight is also in K:

multiply its arc weights with ⊗⊗⊗⊗

� Q: Semiring is (K,⊕ ,⊗⊗⊗⊗). Why
aren’t you talking about ⊕ too?

� A: Minimization is about DFAs.
� At most one path per input.
� So no need to ⊕ the weights of

multiple accepting paths.

c:0.7

a:0.2 d:1
b:0.3

c:7

a:2 d:0
b:3

c:wz

a:w d:ε
b:wx

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

� Doesn’t change the function computed:

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:ww d:ε
x

� Doesn’t change the function computed:

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

� Doesn’t change the function computed:

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wwz

a:ε d:ε
wwx

� Doesn’t change the function computed:

4

� Doesn’t change the function computed:

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

� Doesn’t change the function computed:

Shifting Outputs Along Paths

c:7

b:3
abd → 5
acd → 9

a:2 d:0

� Doesn’t change the function computed:

Shifting Outputs Along Paths

c:7-1

b:3-1
abd → 5
acd → 9

a:2+1 d:0
3

2

6

� Doesn’t change the function computed:

Shifting Outputs Along Paths

c:7-2

b:3-2
abd → 5
acd → 9

a:2+2 d:0
4

1

5

� Doesn’t change the function computed:

Shifting Outputs Along Paths

c:7-3

b:3-3
abd → 5
acd → 9

a:2+3 d:0
5

0

4

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

e:u
…ebd → uwx
…ecd → uwz

5

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:w d:ε
x

� State sucks back a prefix from its out-arcs

e:u

w

…ebd → uwx
…ecd → uwz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:ww d:ε
x

� State sucks back a prefix from its out-arcs
and deposits it at end of its in-arcs.

e:uw
…ebd → uwx
…ecd → uwz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:w d:ε
x

e:u

w

…ebd → uwx
…ecd → uwz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

e:u
…ebd → uwx
…ecd → uwz

b:wx

…abnbd → u(wx)nwx
…abncd → u(wx)nwz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:w d:ε
x

e:u

w

b: x

…abnbd → u(wx)nwx
…abncd → u(wx)nwz

…ebd → uwx
…ecd → uwz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:ww d:ε
x

e:uw

b: xw

…abnbd → u(wx)nwx
…abncd → u(wx)nwz

…ebd → uwx
…ecd → uwz

…abnbd → uw(xw)nx
…abncd → uw(xw)nz

6

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

z

a:w d:ε
x

e:u

w

b: x

…abnbd → u(wx)nwx
…abncd → u(wx)nwz

…ebd → uwx
…ecd → uwz

…abnbd → uw(xw)nx
…abncd → uw(xw)nz

c:

b:

Shifting Outputs Along Paths

abd → wwx
acd → wwz

wz

a:w d:ε
wx

e:u
…ebd → uwx
…ecd → uwz

b:wx

…abnbd → u(wx)nwx
…abncd → u(wx)nwz

…abnbd → uw(xw)nx
…abncd → uw(xw)nz

c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:w d:ε

wx

� Here, not all the out-arcs start with w
� But all the out-paths start with w
� Do pushback at later states first:

e:u

b:wz

ε:ε d:w

c:

b:

Shifting Outputs Along Paths (Mohri)

w
a:w d:ε

wx

� Here, not all the out-arcs start with w
� But all the out-paths start with w
� Do pushback at later states first: now we’re ok!

e:u

b: zw

ε:ε d:ε

c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:w d:ε

x

� Here, not all the out-arcs start with w
� But all the out-paths start with w
� Do pushback at later states first: now we’re ok!

e:u

b: zw

ε:ε d:ε

w
c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:ww d:ε

x

� Here, not all the out-arcs start with w
� But all the out-paths start with w
� Do pushback at later states first: now we’re ok!

e:uw

b: zw

ε:ε d:ε

7

c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:w d:ε

wx

� Actually, push back at all states at once

e:u

b:wz

ε:ε d:w

c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:w d:ε

wx

� Actually, push back at all states at once
� At every state q, compute some λ(q)

e:u

b:wz

ε:ε d:w

ε

w

w

w

c:

b:

Shifting Outputs Along Paths (Mohri)

d:ε
wxε

� Actually, push back at all states at once
� Add λ(q) to end of q’s in-arcs

a:ww

e:uw

b:

εw

wzw

ε:εw d:w

ε

w

w

w
ε

a:w
wx

e:u

wz

ε

c:

b:

Shifting Outputs Along Paths (Mohri)

εw
a:ww d:ε

wxε

� Actually, push back at all states at once
� Add λ(q) to end of q’s in-arcs
� Remove λ(q) from start of q’s out-arcs

e:uw

b:wzw

ε:εw d:w

ε

w

w

w

c:

b:

Shifting Outputs Along Paths (Mohri)

ε
a:ww d:ε

x

� Actually, push back at all states at once
� Add λ(q) to end of q’s in-arcs
� Remove λ(q) from start of q’s out-arcs

e:uw

b: zw

ε:ε d:ε

a:k
q r

a: λ(q)-1 ⊗⊗⊗⊗ k ⊗⊗⊗⊗ λ (r)
q r

becomes

Mergeable because they
accept the same suffix

language: {ab,bb}

Minimizing Weighted DFAs (Mohri)

b
ab

a b

a
b

b

8

Still accept same suffix language,
but produce different outputs on it

Minimizing Weighted DFAs (Mohri)

b:wwzzz
a:wwy

b:ε

a:x b:zz

a:y
b:z

b:ε

Minimizing Weighted DFAs (Mohri)

Still accept same suffix language,
but produce different outputs on it

b:wwzzz
a:wwy

b:ε

a:x b:zz

a:y
b:z

b:ε
Not mergeable - compute

different suffix functions:
ab → yz or wwy
acd → zzz or wwzzz

b:

Minimizing Weighted DFAs (Mohri)

Fix by shifting outputs leftward …

wwzzz
b:ε

a:x b:zz

a:y
b:z

b:ε
wwy

a:
b:

Minimizing Weighted DFAs (Mohri)

Fix by shifting outputs leftward …

zzz
b:ε

a:x b:zz

a:y
b:z

b:εww
y

a:

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

Fix by shifting outputs leftward …

zzz
b:ww

a:x b:zz

a:y
b:z

b:ε
y

a:

But still no easy way to detect mergeability.

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

If we do this at all states as before …

zzz
b:ww

a:x b:zz

a:y
b:z

b:ε
y

a:

9

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

If we do this at all states as before …

zzz
b:ww

a:x b:zz

a:y
b:ε

b:ε
y

a:

z

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

Now these have the same
sufffix function too:

b → ε

b:

Minimizing Weighted DFAs (Mohri)

If we do this at all states as before …

zzz
b:ww

a:x b:zzz

a:yz
b:ε

b:ε
yz

a:

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

Now we can discover & perform the merges:

zzz
b:ww

a:x b:zzz

a:yz
b:ε

b:ε
yz

a:

now these
have same
arc labels

so do
these

because we arranged for
a canonical placement of

outputs along paths

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

zzz
b:ww

a:x b:zzz

a:yz
b:ε

b:ε
yz

a:

now these
have same
arc labels

so do
these

because we arranged for
a canonical placement of

outputs along paths

Treat each label “a:yz” as a single atomic symbol

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:

Minimizing Weighted DFAs (Mohri)

Treat each label “a:yz” as a single atomic symbol

zzz
b:ww

a:x b:zzz

a:yz
b:ε

b:ε
yz

a:

now these
have same
arc labels

so do
these

because we arranged for
a canonical placement of

outputs along paths

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

Minimizing Weighted DFAs (Mohri)

Treat each label “a:yz” as a single atomic symbol

b:ww

a:x b:zzz

a:yz
b:ε

b:ε

now these
have same
arc labels

so do
these

because we arranged for
a canonical placement of

outputs along paths

b:zzz
a:yz

10

Now mergeable - they have
the same suffix function:

ab → yz
acd → zzz

b:zzz

Minimizing Weighted DFAs (Mohri)

Treat each label “a:yz” as a single atomic symbol
Use unweighted minimization algorithm!

b:ww

a:x b:zzz

a:yz
b:ε

b:εa:yz

Now mergeable - they have
the same suffix language:

{a:yz b:ε,
b:zzz b:ε}

b:zzz

Minimizing Weighted DFAs (Mohri)

b:ww

a:x b:zzz

a:yz
b:ε

b:εa:yz

Treat each label “a:yz” as a single atomic symbol
Use unweighted minimization algorithm!

b:zzz

Minimizing Weighted DFAs (Mohri)

b:ww

a:x b:zzz

a:yz
b:ε

b:εa:yz

Treat each label “a:yz” as a single atomic symbol
Use unweighted minimization algorithm!

Minimizing Weighted DFAs (Mohri)

Summary of weighted minimization algorithm:
1. Compute λ(q) at each state q
2. Push each λ(q) back through state q;

this changes arc weights
3. Merge states via unweighted minimization

Step 3 merges states
Step 2 allows more states to merge at step 3
Step 1 controls what step 2 does – preferably, to give
states the same suffix function whenever possible
So define λ(q) carefully at step 1!

Mohri’s Algorithms (1997, 2000)

� Mohri treated two versions of (K,⊗⊗⊗⊗)
� (K,⊗⊗⊗⊗) = (strings, concatenation)

� λ(q) = longest common prefix of all paths from q
� Rather tricky to find

c:

b:wx

ε
a:w d:ε

e:u

b:wz

ε:ε d:w

λ = w

Mohri’s Algorithms (1997, 2000)

� Mohri treated two versions of (K,⊗⊗⊗⊗)
� (K,⊗⊗⊗⊗) = (strings, concatenation)

� λ(q) = longest common prefix of all paths from q
� Rather tricky to find

� (K,⊗⊗⊗⊗) = (nonnegative reals, addition)
� λ(q) = minimum weight of any path from q
� Find it by Dijkstra’s shortest-path algorithm

c:2

b:7
a:2 d:2

e:3
b:13 ε:2

d:99
λ = 8

d:2

11

Mohri’s Algorithms (1997, 2000)

� Mohri treated two versions of (K,⊗⊗⊗⊗)
� (K,⊗⊗⊗⊗) = (strings, concatenation)

� λ(q) = longest common prefix of all paths from q
� Rather tricky to find

� (K,⊗⊗⊗⊗) = (nonnegative reals, addition)
� λ(q) = minimum weight of any path from q
� Find it by Dijkstra’s shortest-path algorithm

c:0

b:1
a:2 d:0

e:3
b:13 ε:0

d:95
d:0

8

λ = 8

Mohri’s Algorithms (1997, 2000)

� Mohri treated two versions of (K,⊗⊗⊗⊗)
� (K,⊗⊗⊗⊗) = (strings, concatenation)

� λ(q) = longest common prefix of all paths from q
� Rather tricky to find

� (K,⊗⊗⊗⊗) = (nonnegative reals, addition)
� λ(q) = minimum weight of any path from q
� Find it by Dijkstra’s shortest-path algorithm

c:0

b:1
a:10 d:0

e:11
b:13 ε:0

d:95
d:0

λ = 8

Mohri’s Algorithms (1997, 2000)

� Mohri treated two versions of (K,⊗⊗⊗⊗)
� (K,⊗⊗⊗⊗) = (strings, concatenation)

� λ(q) = longest common prefix of all paths from q
� Rather tricky to find

� (K,⊗⊗⊗⊗) = (nonnegative reals, addition)
� λ(q) = minimum weight of any path from q
� Find it by Dijkstra’s shortest-path algorithm

� In both cases:
� λ(q) = a “sum” over infinite set of path weights
� must define this “sum” and an algorithm to compute it
� doesn’t generalize automatically to other (K,⊗⊗⊗⊗) ...

Mohri’s Algorithms (1997, 2000)

� (K,⊗⊗⊗⊗) = (nonnegative reals, addition)
� λ(q) = minimum weight of any path from q
� Find it by Dijkstra’s algorithm

� In both cases:
� λ(q) = a “sum” over infinite set of path weights
� must define this “sum” and an algorithm to compute it
� doesn’t generalize automatically to other (K,⊗⊗⊗⊗) ...

e.g., what if we allowed negative reals?
Then minimum might not exist!

-3

2

(real weights, multiplication)?
(score vectors, addition)?
(objective func & gradient,

product-rule multiplication)?

End of background material.
Now we can sketch the new results!

Want to minimize DFAs in any (K,⊗⊗⊗⊗)

Generalizing the Strategy

� Given (K,⊗⊗⊗⊗)
� Just need a definition of λ ... then use general alg.
� λ should extract an appropriate “left factor”

from state q’s suffix function Fq: Σ* → K

Remember, Fq is the function that the automaton
would compute if state q were the start state

� What properties must λ have to guarantee that we
get the minimum equivalent machine?

12

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)
� Quotient: λ(F) is a left factor of λ(a-1F)
� Final-quotient: λ(F) is a left factor of F(ε)

� Then pushing + merging is guaranteed to
minimize the machine.

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)

Suffix functions can be written as xx ⊗⊗⊗⊗ F and yy ⊗⊗⊗⊗ F:
a:xxza

b:xxzb

a:yyza

b:yyzb

Shifting property says:
When we remove the prefixes λ(xx ⊗ F) and λ(yy ⊗ F)
we will remove xx and yy respectively

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)

Suffix functions can be written as xx ⊗⊗⊗⊗ F and yy ⊗⊗⊗⊗ F:
a: za

b: zb

a: za

b: zb

Shifting property says:
When we remove the prefixes λ(xx ⊗ F) and λ(yy ⊗ F)
we will remove xx and yy respectively

xx yy

leaving behind a common residue.

Actually, remove xx ⊗ λ (F) and yy ⊗ λ (F).

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)

Suffix functions can be written as xx ⊗⊗⊗⊗ F and yy ⊗⊗⊗⊗ F:
a: a

b: b

a: a

b: b

Shifting property says:
When we remove the prefixes λ(xx ⊗ F) and λ(yy ⊗ F)
we will remove xx and yy respectively

xxz yyz

leaving behind a common residue.

Actually, remove xx ⊗ λ (F) and yy ⊗ λ (F).

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)
� Quotient: λ(F) is a left factor of λ(a-1F)

a:k
q r

a: λ(Fq)-1 ⊗⊗⊗⊗ k ⊗⊗⊗⊗ λ (Fr)

q r
becomes

= λ(Fq)-1 ⊗⊗⊗⊗ λ (k ⊗⊗⊗⊗ Fr)
= λ(Fq)-1 ⊗⊗⊗⊗ λ (a-1Fq)

Quotient property says that this quotient exists
even if λ(Fq) doesn’t have a multiplicative inverse.

Generalizing the Strategy

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)
� Quotient: λ(F) is a left factor of λ(a-1F)
� Final-quotient: λ(F) is a left factor of F(ε)

Guarantees we can find final-state stopping weights.
If we didn’t have this base case, we couldn’t prove:

λ(F) is a left factor of every output in range(F).

Then pushing + merging is guaranteed to minimize.

13

A New Specific Algorithm

� Mohri’s algorithms instantiate this strategy.
� They use particular definitions of λ.

� λ(q) = longest common string prefix of all paths from q
� λ(q) = minimum numeric weight of all paths from q

� Now for a new definition of λ !
� λ(q) = weight of the shortest path from q,

breaking ties lexicographically by input string

� interpreted as infinite sums over path weights; ignore input symbols

� choose just one path, based only on its input symbols;
computation is simple, well-defined, independent of (K, ⊗)

� dividing by λ makes suffix func canonical: path weights sum to 1

� dividing by λ makes suffix func canonical: shortest path has weight 1

A New Specific Algorithm

� New definition of λ :
� λ(q) = weight of the shortest path from q,

breaking ties lexicographically by input string
� Computation is simple, well-defined, independent of (K, ⊗)
� Breadth-first search back from final states:

d

b

cba
a

b

c
final states

A New Specific Algorithm

� New definition of λ :
� λ(q) = weight of the shortest path from q,

breaking ties lexicographically by input string
� Computation is simple, well-defined, independent of (K, ⊗)
� Breadth-first search back from final states:

d

b

cba
a

b

c
distance 1

Compute λ(q)
in O(1) time

as soon as we visit q.
Whole alg. is linear.

A New Specific Algorithm

� New definition of λ :
� λ(q) = weight of the shortest path from q,

breaking ties alphabetically on input symbols
� Computation is simple, well-defined, independent of (K, ⊗)
� Breadth-first search back from final states:

d

b

cba
a

b

c
distance 2

Faster than finding
min-weight path

à la Mohri.
λ(q) = k ⊗ λ (r)

q

r

:k

Requires Multiplicative Inverses

� Does this definition of λ have the necessary properties?
� λ(q) = weight of the shortest path from q,

breaking ties alphabetically on input symbols
� If we regard λ as applying to suffix functions:

� λ(F) = F(min domain(F)) with appropriate defn of “min”

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ (F)
� Trivially true

� Quotient:λ(F) is a left factor of λ(a-1F)
� Final-quotient: λ(F) is a left factor of F(ε)

� These are true provided that (K,⊗⊗⊗⊗) contains multiplicative inverses.
� i.e., okay if (K,⊗⊗⊗⊗) is a semigroup; (K,⊕ ,⊗⊗⊗⊗) is a division semiring.

Requires Multiplicative Inverses

� So (K,⊗⊗⊗⊗) must contain multiplicative inverses (under ⊗⊗⊗⊗).
� Consider (K,⊗⊗⊗⊗) = (nonnegative reals, addition):

b:5

c:2

a:1

λ = 5

14

Requires Multiplicative Inverses

� So (K,⊗⊗⊗⊗) must contain multiplicative inverses (under ⊗⊗⊗⊗).
� Consider (K,⊗⊗⊗⊗) = (nonnegative reals, addition):

b:0

c:-3

a:1 5

λ = 5

Requires Multiplicative Inverses

� So (K,⊗⊗⊗⊗) must contain multiplicative inverses (under ⊗⊗⊗⊗).
� Consider (K,⊗⊗⊗⊗) = (nonnegative reals, addition):

b:0

c:-3

a:6

Need to say (K,⊗⊗⊗⊗) = (reals, addition).
Then subtraction always gives an answer.
Unlike Mohri, we might get negative weights in the output DFA ...
But unlike Mohri, we can handle negative weights in the input DFA

(including negative weight cycles!).

Oops! -3 isn’t a legal weight.λ = 5

Requires Multiplicative Inverses

� How about transducers?
� (K,⊗⊗⊗⊗) = (strings, concatenation)
� Must add multiplicative inverses, via inverse letters.

b:xy

c:xz

a:w ab → wxy

ac → wxz
λ = xy

Requires Multiplicative Inverses

� How about transducers?
� (K,⊗⊗⊗⊗) = (strings, concatenation)
� Must add multiplicative inverses, via inverse letters.

b:ε

c:y-1z

a:w xy ab → wxy

ac → wxz
λ = xy

Requires Multiplicative Inverses

� How about transducers?
� (K,⊗⊗⊗⊗) = (strings, concatenation)
� Must add multiplicative inverses, via inverse letters.

b:ε

c:y-1z

a:wxy ab → wxy

ac → wxz

� Can actually make this work, though ⊗ no longer O(1)
� Still arguably simpler than Mohri
� But this time we’re a bit slower in worst case, not faster as before

� Can eliminate inverse letters after we minimize

λ = xy

Real Benefit – Other Semirings!

� Other (K,⊗⊗⊗⊗) of current interest do have mult inverses ...
� So we now have an easy minimization algorithm for them.
� No algorithm existed before.

(real weights, multiplication)?

(score vectors, addition)?

(objective func & gradient,
product-rule multiplication)?

conditional random fields, rational kernels
(Lafferty/McCallum/Pereira; Cortes/Haffner/Mohri)

training the parameters of a model
(Eisner – expectation semirings)

OT phonology (Ellison)

15

� What properties must the λ function have?
� For all F: Σ* → K, k ∈ K, a ∈ Σ :

� Shifting: λ(k ⊗⊗⊗⊗ F) = k ⊗⊗⊗⊗ λ(F)
� Quotient: λ(F) is a left factor of λ(a-1F)
� Final-quotient: λ(F) is a left factor of F(ε)

� New algorithm and Mohri’s algs are special cases

Back to the General Strategy

� What if we don’t have mult. inverses?
� Does this strategy work in every (K,⊗⊗⊗⊗)?
� Does an appropriate λ always exist?
� No! No strategy always works.
� Minimization isn’t always well-defined!

?

Minimization Not Unique
� In previously studied cases, all minimum-state machines

equivalent to a given DFA were essentially the same.
� But the paper gives several (K,⊗) where this is not true!

� In previously studied cases, all minimum-state machines
equivalent to a given DFA were essentially the same.

� But the paper gives several (K,⊗) where this is not true!

?

Minimization Not Unique Minimization Not Unique
� In previously studied cases, all minimum-state machines

equivalent to a given DFA were essentially the same.
� But the paper gives several (K,⊗) where this is not true!

� Mergeability may not be an equivalence relation on states.
� “Having a common residue” may not be an equivalence relation on

suffix functions.
� Has to do with the uniqueness of prime factorization in (K,⊗).

� (But had to generalize notion so didn’t assume ⊗ was commutative.)
� Paper gives necessary and sufficient conditions ...

Non-Unique Minimization Is Hard

� Minimum-state automaton isn’t always unique.
� But can we find one that has min # of states?
� No: unfortunately NP-complete.

� (reduction from Minimum Clique Partition)

� Can we get close to the minimum?
� No: Min Clique Partition is inapproximable in polytime

to within any constant factor (unless P=NP).
� So we can’t even be sure of getting within a factor of

100 of the smallest possible.

Summary of Results

� Some weight semirings are “bad”:
� Don’t let us minimize uniquely, efficiently, or

approximately [even in (bit vectors, conjunction)]
� Characterization of “good” weight semirings
� General minimization strategy for “good” semirings

� Find a λ ... Mohri’s algorithms are special cases
� Easy minimization algorithm for division semirings

� For additive weights, simpler & faster than Mohri’s
� Can apply to transducers, with “inverse letters” trick
� Applies in the other semirings of present interest

� fancy machine learning; parameter training; optimality theory

16

FIN Ranking of accepting paths by input string:

εεεε < b < bb < aab < aba < abb

“geneaological order on strings”

we pick the minimum string accepted from state q

� New definition of λ :
� λ(q) = weight of the shortest path from q,

breaking ties alphabetically on input symbols

