
1

Transformational Priors
Over Grammars

Jason EisnerJason Eisner
Johns Hopkins University

July 6, 2002 — EMNLP

This talk is called “Transformational Priors Over Grammars.”
It should become clear what I mean by a prior over grammars, and
where the transformations come in.
But here’s the big concept:

2

The Big Concept

� Want to parse (or build a syntactic language model).

� Must estimate rule probabilities.
� Problem: Too many possible rules!

� Especially with lexicalization and flattening (which help).
� So it’s hard to estimate probabilities.

Suppose we want to estimate probabilities of parse trees, either to pick the
best one or to do language modeling.
Then we have to estimate the probabilities of context free rules.
But the problem, as usual, is sparse data – since there are too many rules, too
many probabilities to estimate.
This is especially true if we use lexicalized rules, especially “flat” ones
where all the dependents attach at one go.
It does help to use such rules, as we’ll see, but it also increases the number
of parameters.

3

The Big Concept

� Problem: Too many rules!
� Especially with lexicalization and flattening (which help).
� So it’s hard to estimate probabilities.

� Solution: Related rules tend to have related probs
� POSSIBLE relationships are given a priori
� LEARN which relationships are strong in this language

(just like feature selection)

� Method has connections to:
� Parameterized finite-state machines (Monday’s talk)
� Bayesian networks (inference, abduction, explaining away)
� Linguistic theory (transformations, metarules, etc.)

Solution, I think, is to realize that related rules tend to have related
probabilities.
Then if you don’t have enough data to observe a rule’s probability directly,
you can estimate it by looking at other, related rules.
It’s a form of smoothing. Sort of like reducing the number of parameters,
although actually I’m going to keep all the parameters in case the data aren’t
sparse, and use a prior to bias their values in case the data are sparse.

OLD: This is like reducing the number of parameters, since it lets you
predict a rule’s probability instead of learning it.

OLD: (More precisely, you have a prior expectation of that rule
probability, which can be overridden by data, but which you can fall back on
in the absence of data.)
What do I mean by “related rules”? I mean something like active and
passive, but it varies from language to language. So you give the model a
grab bag of possible relationships, which is language independent, and it
learns which ones are predictive.
That’s akin to feature selection, in TBL or maxent modeling. You have
maybe 70000 features generated by filling in templates, but only a few
hundred or a few thousand of them turn out to be useful.

The statistical method I’ll use is a new one, but it has connections to other
things.
First of all, I’m giving a very general talk first thing Monday morning about
PFSMs, and these models are a special case.
I l h l i i h B i h li i i

4

Problem: Too Many Rules
26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

...

fund NPTO
to
TO

projects SBAR

S

that
SBAR

...

Here’s a parse, or a fragment of one; the whole sentence might be “I want
to fund projects that are worthy.” To see whether it’s a likely parse, we
see whether its individual CF rules are likely. For instance, the rule we
need here for “fund” was used 5 times in training data.

5

[Want To Multiply Rule Probabilities]

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

fundTO NP
to
TO NP

projects SBAR

S

that ...
SBAR

...

p(tree) = ... p(| S) × p(| TO) × p(| NP) × p(| SBAR) × ...
(oversimplified)

The other rules in the parse have their own counts. And to get the probability
of the parse, basically you convert the counts to probabilities and multiply
them.
I’m oversimplifying, but you already know how PCFGs work and it doesn’t
matter to this talk. What matters is how to convert the counts to probabilities.

6

Too Many Rules …
But Luckily …

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

...

fund NPTO
to
TO

projects SBAR

S

that
SBAR

...

All these rules for fund –
& other, still unobserved rules –
are connected by the deep
structure of English.

Notice that I’m using lexicalized rules. Every rule I pull out of training
data contains a word, so words can be idiosyncratic: the list of rules for
“fund” might be different than the list of rules for another noun, or at least
have different counts.
That’s important for parsing.
Now, I didn’t pick “fund” for any reason– in fact, this is an old slide. But
it’s instructive to look at this list of rules for fund, which is from the Penn
Treebank.
It’s a long list, is the first thing to notice, and we haven’t seen them all –
there’s a long tail of singletons.
But there’s order here. All of these rules are connected in ways that are
common in English.

7

Rules Are Related

� fund behaves like a
typical singular noun …

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

one fact!
though PCFG represents it as many apparently unrelated rules.

We could summarize them by saying that fund behaves like a typical singular noun.
That’s just one fact to learn – we don’t have to learn the rules individually. So in a
sense there’s only one parameter here.
.

8

Rules Are Related

� fund behaves like a
typical singular noun …

� … or transitive verb …

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund

1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

one more fact!
even if several more rules.
Verb rules are RELATED.

...

fund NPTO
to
TO

projects SBAR

S

that
SBAR

...Should be able to PREDICT the ones we haven’t seen.

Of course, it’s not quite right, because we just saw it used as a transitive verb, to
fund projects that are worthy.
There are a few verb rules in the list.
But that’s just a second fact.
These verb rules are related. We’ve only seen a few, but that should be enough to
predict the rest of the transitive verb paradigm.

9

Rules Are Related

� fund behaves like a
typical singular noun …

� … or transitive verb …

� … but as noun, has an
idiosyncratic fondness
for purpose clauses …

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund

1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP

1 NP-PRD→DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP

1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund

one more fact!
predicts dozens of unseen rules

the old ACL fund for students to attend ACL

the ACL fund to put proceedings online

I said it could act as a typical noun or verb, but that’s still not quite right, because as
a noun it’s not quite typical.
Look at these rules in orange – for noun phrases like … They describe what the
fund does.
Typical nouns can take these purpose clauses, but fund takes them more often than
typical, probably for semantic reasons.
Well, that’s fact #3 about fund. It explains these 5 rules and predicts dozens more.

10

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

Rules Are Related

� fund behaves like a
typical singular noun …

� … or transitive verb …

� … but as noun, has an
idiosyncratic fondness
for purpose clauses …

� … and maybe other
idiosyncrasies to be
discovered, like
unaccusativity …

NSF issued the grant
The grant issued today

unlikely sentence, but if we do see it,
is unaccusativity plausible? (vs. other parse)

NSF funded the grant
The grant funded today

???

And I’ll mention one more potential fact.
There’s no rule in training data suggesting that fund might be unaccusative.
What’s unaccusative? It’s kind of a sneak passive, like this …
We’d like to say that since some verbs like issue can do this, maybe fund can too:
NSF funded the grant, the grant funded today.
Based on the evidence we’ve seen so far, that’s low-probability. But we don’t want
it to be too low, since if the system were to see this sentence,
it would have to decide between the unaccusative parse and treating today as a
direct object: today was funded by the grant.
We’d want it to admit that the unaccusative parse is syntactically reasonable.
That’s how it can learn new constructions – it does EM. “Oh, that’s the best parse
of this weird sentence, I guess I’ll count it as new training data.”

11

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

and how
does that
tell us
p(rule)?

All This Is Quantitative!

� fund behaves like a
typical singular noun …

� … or transitive verb …

� … but as noun, has an
idiosyncratic fondness
for purpose clauses …

� … and maybe other
idiosyncrasies to be
discovered, like
unaccusativity …

how often?

So we have 4 “facts” about fund – there might be more. And really, they’re all
quantitative.
How OFTEN is it a noun, and how often a verb?
How MUCH more frequent are purpose clauses than for the typical noun?
How OFTEN is fund used unaccusatively?

12

Format of the Rules

S → NP put NP PP

S

NP

Jim in the oven

PPNP

pizza

put

S

NP

Jim

in the oven

PP

NP

pizzaput

V

VP

VP

S → NP VP
VP → VP PP
VP → V NP
V → put

(put)
(put)
(put)
(put)

Here’s a traditional structure for “Jim put pizza in the oven.”
Going from the top down, it expands S by a sequence of 4 rules.
Nowadays we condition those expansions on the head word, put – note that put is
the head of all these projections.
But I’m going to argue in favor of this structure on the right, which collapses the
spine of put into a single level. Put takes all its dependents at once.

13

Format of the Rules

Why use flat rules?
� Avoids silly independence

assumptions: a win
� Johnson 1998 �
� New experiments

� Our method likes them
� Traditional rules aren’t

systematically related
� But relationships exist

among wide, flat rules
that express different
ways of filling same roles

S → NP put NP PP

S

NP

Jim in the oven

PPNP

pizza

put

It’s a way of avoiding independence assumptions. Adjuncts are not really
independent of one another.
And even traditional methods do better when estimating the whole flat rule at one
go. Mark Johnson showed that for some special cases, and my experiments bear it
out in spades.
But the new method especially wants to work with wide, flat rules, because it looks
at relationships among rules.

14

Format of the Rules

Why use flat rules?
� Avoids silly independence

assumptions: a win
� Johnson 1998 �
� New experiments

� Our method likes them
� Traditional rules aren’t

systematically related
� But relationships exist

among wide, flat rules
that express different
ways of filling same roles

S → NP put PP NP

S

NP

Jim in the oven

PPNP

a very
heavy
pizza

put

15

Format of the Rules

Why use flat rules?
� Avoids silly independence

assumptions: a win
� Johnson 1998 �
� New experiments

� Our method likes them
� Traditional rules aren’t

systematically related
� But relationships exist

among wide, flat rules
that express different
ways of filling same roles

S → NP , NP put PP

S

NP

Jim in the oven

PPNP

a pizza

put,

A pepperoni pizza he put in the oven. What’s next, shrimp fricassee?

Jim put a pizza in the oven last week
A pizza was put in the oven last week

16

Format of the Rules

Why use flat rules?
� Avoids silly independence

assumptions: a win
� Johnson 1998 �
� New experiments

� Our method likes them
� Traditional rules aren’t

systematically related
� But relationships exist

among wide, flat rules
that express different
ways of filling same roles

S

NP

Jim in the oven

PPNP

a pizza

put,

in short, flat rules are the
locus of transformations

What a transformation does is to take a flat rule – a word together with all its roles –
and rearrange the way those roles are expressed syntactically.

17

Format of the Rules

Why use flat rules?
� Avoids silly indep.

assumptions: a win
� Johnson 1998 �
� New experiments

� Our method likes them
� Traditional rules aren’t

systematically related
� But relationships exist

among wide, flat rules
that express different
ways of filling same roles

flat rules are the
locus of exceptions
(e.g., put is exceptionally likely
to take a PP, but not a second PP)

in short, flat rules are the
locus of transformations

And some ways of expressing those roles may be particularly favored.

18

Hey – Just Like Linguistics!

� Explain “coincidental” patterns
of lexical entries: metarules/
transformations/lexical
redundancy rules

flat rules are the
locus of exceptions
(e.g., put is exceptionally likely
to take a PP, but not a second PP)

in short, flat rules are the
locus of transformations

� Grammar = set of “lexical
entries” very like flat rules

� Exceptional entries OK

Lexicalized syntactic formalisms: CG, LFG, TAG, HPSG, LCFG …

listed entries

derived entries

Intuition: Listing is costly and hard to learn.
Most rules are derived.

Hey, just like ling. Think about the lexicon …
What these formalisms have in common is that they all end in “G” – no, just
kidding.
In all of them, the grammar is just a set of lexical entries that can be combined in
various ways. And a lexical entry is always basically like one of our flat rule.
It’s ok to have some weird entries in the lexicon, but there’s also a lot of
redundancy, as we saw for FUND. And linguists have mechanisms for deriving the
redundant entries.
So you could also see this talk as being about “how to stochasticize these
approaches to syntax – including the lexical redundancy rules.”

19

The Rule Smoothing Task

� Input: Rule counts (from parses or putative parses)

� Output: Probability distribution over rules
� Evaluation: Perplexity of held-out rule counts

� That is, did we assign high probability to the rules
needed to correctly parse test data?

Now that we know what a rule is, let’s talk about rule smoothing.
We look at some parses and count up the rules. In EM, they’d be fractional counts.
Then we have to figure out the real probabilities of the rules.
To evaluate, we look at some more parses and see whether they perplex our model.
Our model is good if it assigns high probability to the rules needed to parse test
sentences correctly.

20

The Rule Smoothing Task

� Input: Rule counts (from parses or putative parses)

� Output: Probability distribution over rules
� Evaluation: Perplexity of held-out rule counts

Rule probabilities: p(S→ NP put NP PP | S,put)

Infinite set of possible rules; so we will estimate

p(S→ NP Adv PP put PP PP NP AdjP S | S, put)
= a very tiny number > 0

Now that we know what a rule is, let’s talk about rule smoothing.
We look at some parses and count up the rules. In EM, they’d be fractional counts.
Then we have to figure out the real probabilities of the rules.
To evaluate, we look at some more parses and see whether they perplex our model.
Our model is good if it assigns high probability to the rules needed to parse test
sentences correctly.

21

To —— NP
To —— NP PP
To AdvP —— NP
To AdvP —— NP PP
To —— PP
To —— S
NP —— NP .
NP —— NP PP .
NP Md —— NP
NP Md —— NP PPTmp
NP Md —— PP PP
NP —— SBar .

(etc.)

Grid of Lexicalized Rules
S →→→→ ... encourage question fund merge repay remove

S →→→→ To merge NP PP
(“to merge projects with ease”)

S →→→→ To fund NP PP
(“to fund projects with ease”)

We saw this rule before ...

I've pulled out the head word, fund, and used it as a column
label. The rest of the rule w/o the word is the row label, and
I'll call it a frame.

Here’s a similar atom - only the word is different, the frame is
the same - so it goes in a different column of the same row.

22

Training Counts

To —— NP 1 1 5 1 3 2
To —— NP PP 1 1 2 2 1 1
To AdvP —— NP 1
To AdvP —— NP PP 1
NP —— NP . 2
NP —— NP PP . 1
NP Md —— NP 1
NP Md —— NP PPTmp 1
NP Md —— PP PP 1
To —— PP 1
To —— S 1
NP —— SBar . 2

(other)

S →→→→ ... encourage question fund merge repay remove

Count of (word, frame)

And in training data, we saw each of those frames twice.
These are real counts, by the way.
So this is our training data ...

23

Naive prob. estimates (MLE model)

To —— NP 200 167 714 250 600 333
To —— NP PP 200 167 286 500 200 167
To AdvP —— NP 0 0 0 0 0 167
To AdvP —— NP PP 0 0 0 0 0 167
NP —— NP . 0 333 0 0 0 0
NP —— NP PP . 200 0 0 0 0 0
NP Md —— NP 200 0 0 0 0 0
NP Md —— NP PPTmp 0 0 0 0 200 0
NP Md —— PP PP 0 0 0 0 0 167
To —— PP 0 0 0 250 0 0
To —— S 200 0 0 0 0 0
NP —— SBar . 0 333 0 0 0 0

(other) 0 0 0 0 0 0

S →→→→ ... encourage question fund merge repay remove

Estimate of p(frame | word) * 1000

First column, “encourage” - we have seen “encourage” once
with each of these frames, for a total of 5 - so we give each
frame the probability “1 out of 5” or 0.2. And every other

But there are more things in language and speech, MLE
model, than are dreamt of in your philosophy! In other
words, all these zeroes are a problem. There are new things
under the sun, and they will show up in test data. In fact,
they’ll show up quite often!
When the parser needs a particular atom, chances are 21% it
never saw that atom during training - so it’s got prob=0 in this
table. You might point out, well, that’s because your atoms are
so specific - they’re specified down to the level of the
particular word. But chances are 5% it never even saw the
frame before - so the whole row is all 0’s. We have to
generalize from the other rows.

24

TASK: counts → probs (“smoothing”)

To —— NP 142 117 397 210 329 222
To —— NP PP 77 64 120 181 88 80
To AdvP —— NP 0.55 0.47 1.1 0.82 0.91 79
To AdvP —— NP PP 0.18 0.15 0.33 0.37 0.26 50
NP —— NP . 22 161 7.8 7.5 7.9 7.5
NP —— NP PP . 79 8.5 2.6 2.7 2.6 2.6
NP Md —— NP 90 2.1 2.4 2.0 24 2.6
NP Md —— NP PPTmp 1.8 0.16 0.17 0.16 69 0.19
NP Md —— PP PP 0.1 0.027 0.027 0.038 0.078 59
To —— PP 9.2 6.5 12 126 10 9.1
To —— S 98 1.6 4.3 3.9 3.6 2.7
NP —— SBar . 3.4 190 3.2 3.2 3.2 3.2

(other) 478 449 449 461 461 482

S →→→→ ... encourage question fund merge repay remove

Estimate of p(frame | word) * 1000

... but for parsing what we really need is the true probabilities of the atoms, not
the counts.
(These are probs * 1000, to 2 signif. figures, so the ones that jut left are big, the
ones that jut right are small.)
[flip back and forth to counts] So that’s our task - to turn counts into
probabilities. This is traditionally called smoothing: we’ve sort of smeared the
black counts down the column so that we get some positive probability on each
row.
In fact, as the legend at the bottom says, these are p(frame | word), so each
column is a distribution over possible frames for a word. It ranges over ALL
possible frames, and it sums to 1. A possible frame is anything of the form
“blah blah blah --- blah blah,” so there are infinitely many of them.
You’ll note that the counts involved are very small. These are real data, and
they’re 0’s and 1’s and 2’s. The difference between seeing something 0 times
and 1 time may just be a matter of luck - or it may be significant. That’ swhy
this problem is hard, and why I’m using a Bayesian approach, which weighs
evidence carefully against expectations.

25

Smooth Matrix via LSA / SVD, or SBS?

To —— NP 1 1 5 1 3 2
To —— NP PP 1 1 2 2 1 1
To AdvP —— NP 1
To AdvP —— NP PP 1
NP —— NP . 2
NP —— NP PP . 1
NP Md —— NP 1
NP Md —— NP PPTmp 1
NP Md —— PP PP 1
To —— PP 1
To —— S 1
NP —— SBar . 2

(other)

S →→→→ ... encourage question fund merge repay remove

Count of (word, frame)

No – then each column would be approximated by a linear
combination of standard columns.

Also true for similarity-based smoothing (Lee et al.)
That’s not a bad idea, since the column for fund would be a
mixture of noun behavior and verb behavior.
But lots of rows of the training matrix are all zeros. That is,
lots of frames in test data never showed up in training data at
all.
SVD can’t handle that.
And SVD doesn’t know anything about the internal structure
of frames – it sees each column as a vector over
interchangeable dimensions.
But it’s clear from looking at this table that the internal
structure is really predictive.
If a frame appears, then it generally appears with PP added at
the right edge.
These frames for remove are just split-infinitive versions of
these: to completely remove, to surgically remove.

26

Smoothing via
a Bayesian Prior

� Choose grammar to maximize
p(observed rule counts | grammar)*p(grammar)

� grammar = probability distribution over rules

� Our job: Define p(grammar)
� Question: What makes a grammar likely,

a priori?
� This paper’s answer: Systematicity.

Rules are mainly derivable from other rules.
Relatively few stipulations (“deep facts”).

We’d like a grammar that explains the observed data, and is also a priori a good
grammar.
So we use Bayes’ Rule and maximize this product.
By a grammar I mean a probability distribution over rules.

27

26 NP → DT fund
24 NN → fund
8 NP → DT NN fund
7 NNP → fund
5 S → TO fund NP
2 NP → NNP fund
2 NP → DT NPR NN fund
2 S → TO fund NP PP
1 NP → DT JJ NN fund
1 NP → DT NPR JJ fund
1 NP → DT ADJP NNP fund
1 NP → DT JJ JJ NN fund
1 NP → DT NN fund SBAR
1 NPR → fund
1 NP-PRD → DT NN fund VP
1 NP → DT NN fund PP
1 NP → DT ADJP NN fund ADJP
1 NP → DT ADJP fund PP
1 NP → DT JJ fund PP-TMP
1 NP-PRD → DT ADJP NN fund VP
1 NP → NNP fund , VP ,
1 NP → PRP$ fund
1 S-ADV → DT JJ fund
1 NP → DT NNP NNP fund
1 SBAR → NP MD fund NP PP
1 NP → DT JJ JJ fund SBAR
1 NP → DT JJ NN fund SBAR
1 NP → DT NNP fund
1 NP → NP$ JJ NN fund
1 NP → DT JJ fund

� fund behaves like a
transitive verb 10% of
time …

� and noun 90% of time …

� … takes purpose clauses
5 times as often as
typical noun.

Only a Few Deep Facts

These are the key facts.
If fund has other little idiosyncrasies, we can add those facts, but small
idiosyncrasies don’t hurt the prior probability much – the prior cares more about big
ones.
.

28

Smoothing via
a Bayesian Prior

� Previous work (several papers in past decade):
� Rules should be few, short, and approx. equiprobable
� These priors try to keep rules out of grammar
� Bad idea for lexicalized grammars …

� This work:
� Prior tries to get related rules into grammar
� transitive � passive

� NSF spraggles the project � The project is spraggled by NSF
� Would be weird for the passive to be missing, and prior knows it!
� In fact, weird if p(passive) is too far from 1/20 * p(active)

at ≈1/20 the probability

� Few facts, not few rules!

If you can say NSF funds the project,
it would be really weird if you couldn’t say The project is funded by NSF.
This prior is going to be much happier if the passive rule for fund is in there.
Or really, all rules are “in there,” the question is what the probability is.

29

for now, stick to
Simple Edit Transformations

Delete NP S→ NP see
I see

S→ NP see NP
I see you

Insert PP S→ NP see NP PP
I see you with my own eyes

S→ NP see SBAR
I see that it’s love

SubstNP→SBAR

S→ NP see SBAR PP
I see that it’s love
with my own eyes

S→ NP see PP SBAR
I see with my own eyes
that it’s love

Swap
SBAR,PP

Inser
t P

P
do fancier things by
a sequence of edits

See paper for various evidence
that these should be predictive.

We won’t do passives in these experiments, though. Stick to simple edit
transformations.
Start with a simple transitive verb rule.
What are the related rules?
We could suppress the direct object – let the hearer infer it.
We could make the instrument explicit, in case the hearer can’t infer it. - I see you
in the park with a telescope
We could change the type of the direct object and see not an object, you, but a
proposition, that it’s love.
And we could do heavy-shift.
These have different probabilities. Remember, we’re treating this as feature
selection. We’ll tell the statistical model about all kinds of transformations,
including insertion of weird constituents in weird places, and let it figure out which
ones are good. But I did some preliminary
experiments to verify that in general, edit transformations do tend to be predictive.
You can read about those in the paper.

30

Halt

Delete NP S→ NP see
I see

S→ NP see NP
I see you

Insert PP S→ NP see NP PP
I see you with my own eyes

S→ NP see SBAR
I see that it’s love

SubstNP→SBAR

S→ NP see PP SBAR
I see with my own eyes
that it’s love

H
alt

Halt

0.2

0.6

0.1

0.1

HaltInser
t P

P
Halt

0.1

0.9

SBAR,PP
Swap

Halt

Halt

0.6

0.4

S→ NP see SBAR PP
I see that it’s love
with my own eyes

p(S→ NP see SBAR PP)
= 0.5*0.1*0.1*0.4 + …

START

0.5

0.3
0.1

0.1

0.1*0.4+…

These transformations have probabilities.
We can use the transformation probabilities to calculate the rule probabilities,
basically in the obvious way.

31

S→ NP see
I see

S→ NP see NP
I see you

S→ NP see SBAR PP
I see that it’s love
with my own eyes

START

0.5

0.3
0.1

0.1

� Could get mixture behavior
by adjusting start probs.

� But not quite right - can’t
handle negative exceptions
within a paradigm.

� And what of the language’s
transformation probs?

whole transitive
verb paradigm
(with probs)

S→ DT JJ see
the holy see

noun
paradigm

intransitive
verb paradigm

S→ NP Adv PP see PP PP NP AdjP S
graph goes on forever …

So if we increase this from 0.5, then all the transitive verb rules increase.
If we increase this from 0.3, then all the intransitive verb rules increase.
And there’s some crosstalk between them, so if we suddenly learn that see is a
transitive verb, we also raise the probability that it could be used intransitively.
Just as fund can be used as a verb or noun, so can see: …
So one way to get a simple mixture behavior would be to adjust the start weights.
That would be sort of like SVD, where a word is approximated as a linear
combination of basis vectors. But here the “basis vectors” or paradigms are infinite
– they’re distributions over an infinite set of possible rules. And we’re doing
something else that SVD can’t do, which is to use information about the dimensions
– some of these rules are related to each other in the sense of having low edit
distance.

If every word’s distribution over frames is a mixture of standard distributions
(which is not quite what we’ll end up doing),
then maybe we should use LSA or SVD to find those standard distributions and the
mixture coefficients.
But that would just model the observed distribution vector as a sum of standard
vectors. It wouldn’t constrain what those standard vectors looked like,
for example by paying attention to edit distance. And those standard vectors would
have finite support, so

32

Infinitely Many Arc Probabilities:
Derive From Finite Parameter Set

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP see Insert PP S→ NP see PP

Why not just give any two PP-insertion arcs the same
probability?

PP
more places to insert
so probability is split among more options

In second one, we are inserting PP into a slightly different context.
In second one, more places to insert PP, so each has lower probability.

33

Arc Probabilities:
A Conditional Log-Linear Model

S→ NP see NP Insert PP S→ NP see NP PP
1
Z exp θ3+θ5+θ6

Halt

In
se

rt
PP

1
Z exp …

1
Z
ex

p …
To make sure outgoing
arcs sum to 1, introduce a
normalizing factor Z
(at each vertex).

Models p(arc | vertex)

34

inserted into slightly
different context

Arc Probabilities:
A Conditional Log-Linear Model

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP see Insert PP S→ NP see PP

Both are PP-adjunction arcs. Same probability?
Almost but not quite …

PP
more places to insert

35

Arc Probabilities:
A Conditional Log-Linear Model

S→ NP see NP Insert PP S→ NP see NP PP
1
Z exp θ3+θ6+θ7

Not enough just to say “Insert PP.”
Each arc bears several features, whose weights
determine its probability.

feature weights

a feature of weight 0 has no effect
raising a feature’s weight strengthens all arcs with that feature

Every arc bears several features describing what it does, which together determine
its probability.

… It’s like turning a knob that adjusts a whole class of arcs. There are as many
knobs as there are features. But only finitely many.

36

Arc Probabilities:
A Conditional Log-Linear Model

1
Z exp θ3+θ6+θ7

θ3 : appears on arcs that insert PP into S
θ5 : appears on arcs that insert PP just after head
θ6 : appears on arcs that insert PP just after NP
θ7 : appears on arcs that insert PP just before edge

S→ NP see NP Insert PP S→ NP see NP PP

1
Z’ exp θ3+θ5+θ7

S→ NP see Insert PP S→ NP see PP

37

Arc Probabilities:
A Conditional Log-Linear Model

1
Z exp θ3 +θ6 +θ7

θ3 : appears on arcs that insert PP into S
θ5 : appears on arcs that insert PP just after head
θ6 : appears on arcs that insert PP just after NP
θ7 : appears on arcs that insert PP just before edge

1
Z’ exp θ3 +θ5 +θ7

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP see Insert PP S→ NP see PP

38

1
Z exp θ3 +θ6 +θ7

Arc Probabilities:
A Conditional Log-Linear Model

These arcs share most features.
So their probabilities tend to rise and fall together.
To fit data, could manipulate them independently (via θ5,θ6).

1
Z’ exp θ3 +θ5 +θ7

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP see Insert PP S→ NP see PP

39

Prior Distribution

� PCFG grammar is determined by θθθθ0000 ,,,, θθθθ1111,,,, θθθθ2222,,,, …

40

Universal Grammar

41

Instantiated Grammar

42

Prior Distribution

� Grammar is determined by θθθθ0000 ,,,, θθθθ1111,,,, θθθθ2222,,,, …
� Our prior: θθθθi ~ N(0, σ2), IID
� Thus: -log p(grammar) = c+ (θθθθ0000

2222++++θθθθ1111
2222++++θθθθ2222

2222++++…)/σ2

� So good grammars have few large weights.
� Prior prefers one generalization to many

exceptions.

43

1
Z exp θ3 +θ6 +θ7

Arc Probabilities:
A Conditional Log-Linear Model

To raise both rules’ probs, cheaper to use θ3 than both θ5 & θ6.
This generalizes – also raises other cases of PP-insertion!

1
Z’ exp θ3 +θ5 +θ7

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP see Insert PP S→ NP see PP

44

1
Z exp θ3 +θ84 +θ6 +θ7

Arc Probabilities:
A Conditional Log-Linear Model

1
Z’’ exp θ3 +θ82 +θ6 +θ7

S→ NP see NP Insert PP S→ NP see NP PP

S→ NP fund NP Insert PP S→ NP fund NP PP

To raise both probs, cheaper to use θ3 than both θ82 & θ84.
This generalizes – also raises other cases of PP-insertion!

45

Reparameterization

� Grammar is determined by θθθθ0000,,,, θθθθ1111,,,, θθθθ2222,,,, …
� A priori, the θθθθi are normally distributed

� We’ve reparameterized!
� The parameters are feature weights θθθθi, not rule

probabilities
� Important tendencies captured in big weights

� Similarly: Fourier transform – find the formants
� Similarly: SVD – find the principal components
� It’s on this deep level that we want to compare events,

impose priors, etc.

46

47

48

Other models of this string:
max-likelihood
n-gram
Collins arg/adj
hybrids

49

Simple Bigram Model (Eisner 1996)

� Markov process, 1 symbol of memory; conditioned on L, w, side of ——

� One-count backoff to handle sparse data (Chen & Goodman 1996)

p(L →→→→ A B C —— D | w) = p(L | w)• p(A B C —— D | L,w)

A B C —— D

� Try assuming rule is probable if its component bigrams are:

� A parser assumes tree is probable if its component rules are:

p(A | start) × p(B | A)
× p(C | B) × p(—— | C)
× p(D | ——) × p(stop | D)

Ok, here’s a simple model that does assign non-zero
probability to every atom. Remember we’ve assumed a tree is
probable if its component atoms are. We might make the same
independence assumption at a finer grain, and assume that an
atom is probable if its subatomic particles are.
I’ve taken a subatomic particle to be a sequence of 2
consecutive nonterminals in the frame, known as a bigram.
The bigrams here are start A, A B, etc. To get the prob of the
frame, we do like before - multiply together the bigrams’
probabilities and divide by the overlap. And that’s just saying
that the frame is generated by a Markov process with one
symbol of memory. With some other tricks of the trade, this
does respectably at parsing if you have $250K worth of data.

50

Use “non-flat” frames?
Extra training info.
For test, sum over

all bracketings.

51

Perplexity: Predicting test frames

from previous lit.
20% further

reduction
Can get big perplexity reduction
just by flattening.

52

Perplexity: Predicting test frames

best model
with transformations

best model
without transformations

from previous lit

53

test rules with 0 training observations

best model without transformations

best
model with

transformations

p(rule | head, S)

54

test rules with 1 training observation

best model without transformations

best
model with

transformations

p(rule | head, S)

55

test rules with 2 training observations

best model without transformations

best
model with

transformations

p(rule | head, S)

56

Forced matching task

i.e., does frame A look more like word 1’s known frames or word 2’s?

� 20% fewer errors than bigram model

� Test model’s ability to extrapolate novel frames for a word
� Randomly select two (word, frame) pairs from test data

� ... ensuring that neither frame was ever seen in training

� Ask model to choose a matching:

word 1 frame A
word 2 frame B

word 1 frame A
word 2 frame B

57

Twice as much data
But no transformations

Graceful degradation

Even when you take away half of the transformation model’s data, it still wins.
Or in the case of hybrid models, it’s about a tie.
So these kinds of perplexity reductions were comparable to a twofold increase in the
amount of training data.

58

Summary: Reparameterize PCFG in
terms of deep transformation weights,
to be learned under a simple prior.

� Problem: Too many rules!
� Especially with lexicalization and flattening (which help).
� So it’s hard to estimate probabilities.

� Solution: Related rules tend to have related probs
� POSSIBLE relationships are given a priori
� LEARN which relationships are strong in this language

(just like feature selection)

� Method has connections to:
� Parameterized finite-state machines (Monday’s talk)
� Bayesian networks (inference, abduction, explaining away)
� Linguistic theory (transformations, metarules, etc.)

59

FIN

