
1

� Relation: like a function, but multiple outputs ok
� Regular: finite-state
� Transducer: automaton w/ outputs

� b → ? a → ?
� aaaaa → ?

� Invertible?
� Closed under composition?

Regular Relation (of strings)

b:b

a:a

a:εεεε

a:c

b:εεεε

b:b

?:c

?:a

?:b

a little pre-talk review

� Can weight the arcs: → vs. →
� a → {} b → {b}
� aaaaa → {ac, aca, acab,

acabc}

� How to find best outputs?
� For aaaaa?
� For all inputs at once?

Regular Relation (of strings)

b:b

a:a

a:εεεε

a:c

b:εεεε

b:b

?:c

?:a

?:b

a little pre-talk review

Jason Eisner
U. of Rochester

August 3, 2000 – COLING - Saarbrücken

Directional Constraint
Evaluation in OT

Synopsis: Fixing OT’s Power

� Consensus: Phonology = regular relation
E.g., composition of little local adjustments (= FSTs)

� Problem: Even finite-state OT is worse than that
Global “counting” (Frank & Satta 1998)

� Problem: Phonologists want to add even more
Try to capture iterativity by Gen. Alignment constraints

� Solution: In OT, replace counting by iterativity
Each constraint does an iterative optimization

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

What Is Optimality Theory?

� Prince & Smolensky (1993)
� Alternative to stepwise derivation
� Stepwise winnowing of candidate set

Gen

Con
str

ain
t 1

Con
str

ain
t 2

Con
str

ain
t 3

input

. .
.

output

such that different constraint
orders yield different languages

2

Filtering, OT-style

 Constraint 1 Constraint 2 Constraint 3 Constraint 4

Candidate A � � ���

Candidate B �� �

Candidate C � �

Candidate D ���

Candidate E �� � �

Candidate F �� ��� �

constraint would prefer A, but only
allowed to break tie among B,D,E

�� = candidate violates constraint twice

�

A Troublesome Example

Input: bantodibo

��

���

����

Faithfulness

bon.to.do.bo

ban.ta.da.ba

�ben.ti.do.bu

�ban.to.di.bo

Harmony

�

“Majority assimilation” – impossible with FST -
- and doesn’t happen in practice!

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

An Artificial Example

����

���

��

�

NoCoda
�

ban.ton.dim.bon

ban.to.dim.bon

ban.ton.di.bo

ban.to.di.bo

Candidates have 1, 2, 3, 4 violations of NoCoda

An Artificial Example

����

���

��

�

NoCoda

�

ban.ton.dim.bon

ban.to.dim.bon

ban.ton.di.bo

�ban.to.di.bo
C

Add a higher-ranked constraint
This forces a tradeoff: ton vs. dim.bon

An Artificial Example

σ2

����

���

��

�

σ1 σ3

�

ban.ton.dim.bon

ban.to.dim.bon

ban.ton.di.bo

�ban.to.di.bo
σ4C

NoCoda

Imagine splitting NoCoda into 4 syllable-specific constraints

3

An Artificial Example

�

�

σ2

�

�

�

�

σ1

�

�

σ3

�

�ban.ton.dim.bon

�ban.to.dim.bon

ban.ton.di.bo

�ban.to.di.bo
σ4C

NoCoda

Imagine splitting NoCoda into 4 syllable-specific constraints
Now ban.to.dim.bon wins - more violations but they’re later

An Artificial Example

�

�

σ3

�

�

σ4

�

�

σ2

�

�ban.ton.dim.bon

�ban.to.dim.bon

�ban.ton.di.bo

��ban.to.di.bo
σ1C

NoCoda

For “right-to-left” evaluation, reverse order (σ4 first)

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

When is Directional Different?

� The crucial configuration:

�

σ2

�

�

�

σ1

�

σ3

� �ban.to.dim.bon

ban.ton.di.bo

ban.to.di.bo
σ4

� Forced location tradeoff
� Can choose where to violate,

but must violate somewhere
� Locations aren’t “orthogonal”

solve location conflict
by ranking locations

(sound familiar?)

When is Directional Different?

� The crucial configuration:

�

σ2

�

�

�

σ1

�

σ3

� �ban.to.dim.bon

ban.ton.di.bo

ban.to.di.bo
σ4

� But if candidate 1 were available …

When is Directional Different?

� But usually locations are orthogonal:

�

σ2

�

�

�

σ1

�

σ3

�

�ban.to.dim.bon

ban.ton.di.bo

ban.to.di.bo
σ4

� Usually, if you can satisfy σ2 and σ3 separately, you can
satisfy them together

� Same winner under either counting or directional eval.
(satisfies everywhere possible)

4

Linguistic Hypothesis

� Q: When is directional evaluation different?
� A: When something forces a location tradeoff.

� Hypothesis: Languages always resolve these
cases directionally.

Test Cases for Directionality

� Prosodic groupings
� Syllabification

[CV.CVC.CV]
V
[CVC.CV.CV]

V

Analysis: NoInsert is
evaluated L-to-R

Cairene Arabic
L-to-R syllabification

Iraqi Arabic
R-to-L syllabification

Analysis: NoInsert is
evaluated R-to-L

In a CV(C) language, /CVCCCV/ needs epenthesis

Test Cases for Directionality

� Prosodic groupings
� Syllabification [CV.CVC.CV] vs. [CVC.CV.CV]
� Footing

σ(σσ)(σσ)
R-to-L Parse-σσσσ

(σσ)σ(σσ)
unattested

(σσ)(σσ)σ
L-to-R Parse-σσσσ

With binary footing, σσσσσ must have lapse

Test Cases for Directionality

� Prosodic groupings
� Syllabification [CV.CVC.CV] vs. [CVC.CV.CV]
� Footing σ(σσ)(σσ) vs. (σσ)(σσ)σ

� Floating material
� Lexical:
� Tone docking ban.tó.di.bo vs. ban.to.di.bó
� Infixation grumadwet vs. gradwumet

� Stress “end rule” (bán.to)(di.bo) vs. (ban.to)(dí.bo)
� OnlyStressFootHead, HaveStress » NoStress (L-R)

� Harmony and OCP effects

Generalized Alignment

� Phonology has directional phenomena
� [CV.CVC.CV] vs. [CVC.CV.CV] - both have 1 coda, 1 V

� Directional constraints work fine
� But isn’t Generalized Alignment fine too?

� Ugly
� Non-local; uses addition

� Not well formalized
� Measure “distance” to “the” target “edge”

� Way too powerful
� Can center tone on word, which is not possible using

any system of finite-state constraints (Eisner 1997)

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

5

Computational Motivation

� Directionality not just a substitute for GA
� Also a substitute for counting

� Frank & Satta 1998:

OTFS > FST
(Finite-state OT is more powerful

than finite-state transduction)

Why OTFS > FST?

� It matters that OT can count
� HeightHarmony » HeightFaithfulness

� Input: to.tu.to.to.tu
� Output: to.to.to.to.to

vs. tu.tu.tu.tu.tu
prefer candidate with

fewer faithfulness violations

� Majority assimilation (Baković 1999, Lombardi 1999)
� Beyond FST power - fortunately, unattested

can both be implemented
by weighted FSAs

Why Is OT > FST a Problem?

� Consensus: Phonology = regular relation
� OT supposed to offer elegance, not power

� FSTs have many benefits!
� Generation in linear time (with no grammar constant)

� Comprehension likewise (cf. no known OTFS algorithm)

� Invert the FST
� Apply in parallel to weighted speech lattice
� Intersect with lexicon

� Compute difference between 2 grammars

Making OT=FST: Proposals

� Approximate by bounded constraints
� Frank & Satta 1998, Karttunen 1998
� Allow only up to 10 violations of NoCoda
� Yields huge FSTs - cost of missing the generalization

� Another approximation
� Gerdemann & van Noord 2000
� Exact if location tradeoffs are between close locations

� Allow directional and/or bounded constraints only
� Directional NoCoda correctly disprefers all codas
� Handle location tradeoffs by ranking locations
� Treats counting as a bug, not a feature to approximate

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints �

�

σ2

�

�

�

σ1

�

�

σ3

�

�ban.ton.dim.bon

�ban.to.dim.bon

ban.ton.di.bo

σ4

1

0

1

1

1

1

1

1

0

1

1

0

Tuples

� Violation levels aren’t integers like ���

� They’re integer tuples, ordered lexicographically

NoCoda

6

Tuples

� Violation levels aren’t integers like ���

� They’re integer tuples, ordered lexicographically
� But what about candidates with 5 syllables?
� And syllables aren’t fine-grained enough in general

1

0

1

σ2

1

1

1

σ1

1

1

0

σ3

�

1ban.ton.dim.bon

1ban.to.dim.bon

0ban.ton.di.bo

σ4
NoCoda

Alignment to Input

� Split by input symbols, not syllables
� Tuple length = input string length + 1

0000101000

obidnotnabOutput:

obidotnabInput:

For this input (length 9),
NoCoda assigns each output candidate a 10-tuple
Possible because output is aligned with the input
So each output violation associated with an input position

Alignment to Input

� Split by input symbols, not syllables
� Tuple length = input length + 1, for all outputs

n
1010001000

obmidotnabOutput:
0000101000

obidnotnabOutput:

obidotnabInput:

Alignment to Input

� Split by input symbols, not syllables
� Tuple length = input length + 1, for all outputs

nn

n

30201001000

nobmtimidnotnabiOutput:

1010001000

obmidotnabOutput:
0000101000

obidnotnabOutput:

obidotnabInput:

Alignment to Input

� Split by input symbols, not syllables
� Tuple length = input length + 1, for all outputs

nn
30201001000

nobmtimidnotnabiOutput:

Output:
0000101000

obidnotnabOutput:

obidotnabInput:

does not count as “postponing” n
so this candidate doesn’t win (thanks to alignment)

unbounded

Finite-State Approach

Gen

Con
str

ain
t 1

Con
str

ain
t 2

Con
str

ain
t 3

input

. .
.

output

T0 = Gen

T1 maps each input to all outputs that survive constraint 1

T3 = the full grammar

T2

7

Finite-State Approach

� FST maps each input to set of outputs
(nondeterministic mapping)

� The transducer gives an alignment

nn

Output:

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
T2
FST

i:im ε:t ε:im

Finite-State Machines

� FST maps each input to set of outputs

nn

Output:

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
T2
FST

Finite-State Machines

� FST maps each input to set of aligned outputs
� Constraint is a weighted FSA that reads candidate

1

n
1

n

Output:

1001001001001000

nobmtimidnotnabiOutput:

Output:

obidotnabInput:

NoCoda
WFSA

T2
FST

Finite-State Machines

� FST maps input to aligned candidates (nondeterm.)
� Constraint is a weighted FSA that reads candidate

1

n
1

n

Output:

10010010 01001000

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
T2
FST

NoCoda
WFSA

Finite-State Machines

� FST maps input to aligned candidates (nondeterm.)
� Constraint is a weighted FSA that reads candidate
� Sum weights of aligned substrings to get our tuple

nn

Output:

3020101000

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
T2
FST

NoCoda
WFSA

Remark: OTFS would just count a total of 7 viols

Similar Work

� Bounded Local Optimization
� Walther 1998, 1999 (for DP)
� Trommer 1998, 1999 (for OT)
� An independent proposal

� Motivated by directional syllabification

� Greedy pruning of a candidate-set FSA
� Violations with different prefixes are incomparable
� No alignment, so insertion can postpone violations
� No ability to handle multiple inputs at once (FST)

8

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

The Construction

� Our job is to construct T3 - a “filtered” version of T2
� First compose T2 with NoCoda …

nn

Output:

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
T2
FST

NoCoda
WFSA

i:imtim

The Construction

� Our job is to construct T3 - a “filtered” version of T2
� First compose T2 with NoCoda to get a weighted FST

1

n
1

n

Output:

10010010 01001000

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
WFST

i:im ε:t ε:im

The Construction

� Our job is to construct T3 - a “filtered” version of T2
� First compose T2 with NoCoda to get a weighted FST
� Now prune this weighted FST to obtain T3
� Keep only the paths with minimal tuples: Directional Best Paths

nn

Output:

3020101000

nobmtimidnotnabiOutput:

Output:

obidotnabInput:
WFST

i:im ε:t ε:im

Directional Best Paths (sketch)

� Handle all inputs simultaneously!
� Must keep best outputs for each input: at least 1.

For input abc: abc axc
For input abd: axd

Must allow red arc
just if next input is d

1 2

3

5

4

6

7

a:a
b:b

b:x

c:c

c:c

d:d

In this case, just make
state 6 non-final

Directional Best Paths (sketch)

� Must pursue counterfactuals
� Recall determinization (2n states)

� DFA simulates a parallel traverser of the NDFA
� “What states could I be in, given input so far?”

� Simulate a neurotic traverser of the WFST
� “If I had taken a cheaper (greedier) path on the input

so far, what states could I be in right now?”
� Shouldn’t proceed to state q if there was a cheaper

path to q on same input
� Shouldn’t terminate in state q if there was a cheaper

terminating path (perhaps to state r) on same input
� 3n states: track statesets for equal and cheaper paths

9

Outline

� Review of Optimality Theory
� The new “directional constraints” idea
� Linguistically: Fits the facts better
� Computationally: Removes excess power

� Formal stuff
� The proposal
� Compilation into finite-state transducers
� Expressive power of directional constraints

Expressive Power

bounded
constraints

traditional
(summing)
constraints directional

constraints

a traditional constraint
with > FST power
can’t be replaced by
any system of
directional constraints

a directional constraint making
exponentially many distinctions
can’t be replaced by any system
of trad. finite-state constraints

*b (L-R) sorts {a,b}n alphabetically

Future Work

� Further empirical support?
� Examples where 1 early violation trades against

2 late violations of the same constraint?
� How do directional constraints change the style

of analysis?
� How to formulate constraint families? (They

must specify precisely where violations fall.)

An Old Slide (1997)

FST < OTFS < OTFS + GA

Should we pare OT
back to this level?

Hard to imagine
making it any simpler
than Primitive OT.

Same power as Primitive OT (formal
linguistic proposal of Eisner 1997)

Should we beef OT up to
this level, by allowing GA?

Ugly mechanisms like GA
weren’t needed before OT.

The New Idea (2000)

FST < OTFS < OTFS + GA

Should we pare OT
back to this level?

Hard to imagine
making it any simpler
than Primitive OT.

Same power as Primitive OT (formal
linguistic proposal of Eisner 1997)

Should we beef OT up to
this level, by allowing GA?

Ugly mechanisms like GA
weren’t needed before OT.

(summation)
directionality

directionality

= =

