

Filtering, OT-style											
\star = candidate violates constraint twice											
		Constraint 1	Constraint 2	Constraint 3	Constraint 4						
	Candidate A	*		*	***						
Ŧ	Candidate B		**	*							
	Candidate C	*	*								
	Candidate D		***								
	Candidate E		**	*	*						
	Candidate F	**	***		*						
			-								
	constraint would prefer A, but only allowed to break tie among B,D,E										

np	ut: bantodibo		
		Harmony	Faithfulness
	ban.to.di.bo	*	
	b <mark>e</mark> n.t <mark>i</mark> .do.bu	*	****
	ban.t <mark>a</mark> .da.ba		***
P	bon.to.do.bo		**

Outline

- Review of Optimality Theory
- → The new "directional constraints" idea
 - Linguistically: Fits the facts better
 - Computationally: Removes excess power
 - Formal stuff
 - The proposal
 - Compilation into finite-state transducers
 - Expressive power of directional constraints

An Artificial Example Candidates have 1, 2, 3, 4 violations of NoCoda Candidates have 1, 2, 3, 4 violations of NoCoda NoCoda ban.to.di.bo * ban.ton.di.bo ** ban.ton.dim.bon ***

An Artificial Example										
Add a higher-ranked constraint This forces a tradeoff: ton vs. dim.bon										
				1						
		с	NoCoda							
	ba <mark>n</mark> .to.di.bo	*	*							
Ŧ	ba <mark>n</mark> .ton.di.bo		**							
	ba <mark>n</mark> .to.dim.bon		***							
	ban.ton.dim.bon		****							

,	An	Artificial E	Exa	mp	le		
	Ima	gine splitting NoCoda	a into 4	1 syllal	ble-specific o	constrai	ints
					NoCoda	3]
			С	σ1	σ2 σ3	σ4	
		ba <mark>n</mark> .to.di.bo	*		*		
	Ŧ	ba <mark>n</mark> .ton.di.bo			**		
		ban.to.dim.bon			***		
		ban.ton.dim.bon			****		

An	Artificial E	Exa	mp	le		1			
Ima Nov	ngine splitting NoCod a v ban.to.dim.bon wins	a into 4 - mor	4 syllal e viola	ole-spe tions b	ecific c out the	onstrai y're lat	nts ær		
		6	NoCoda						
	ban to di bo	с *	<u></u> σι	σΖ	σσ	04			
		~							
	ban.ton.di.bo		*	*					
Ŧ	ban.to.dim.bon		* * *						
	ban.ton.dim.bon		*	*	*	*			

An Artificial Example

For "right-to-left" evaluation, reverse order (σ 4 first)

				1			
			NoCoda				
		С	σ4 σ3 σ2 σ1				
	ba <mark>n</mark> .to.di.bo	*				*	
Ŧ	ban.ton.di.bo				*	*	
	ba <mark>n</mark> .to.dim.bon		*	*		*	
	ba <mark>n</mark> .ton.dim.bon		*	*	*	*	

Outline

- Review of Optimality Theory
- The new "directional constraints" idea
- Linguistically: Fits the facts better
- Computationally: Removes excess power
- Formal stuff
 - The proposal
 - Compilation into finite-state transducers
 - Expressive power of directional constraints

Linguistic Hypothesis

- Q: When is directional evaluation different?
- A: When something forces a location tradeoff.
- Hypothesis: Languages always resolve these cases directionally.

Computational Motivation

- Directionality not just a substitute for GA
- Also a substitute for counting

Frank & Satta 1998: OTFS > FST

(Finite-state OT is *more powerful* than finite-state transduction)

Why Is OT > FST a Problem?

- Consensus: Phonology = regular relation
 OT supposed to offer elegance, not power
- FSTs have many benefits!
 - Generation in linear time (with no grammar constant)
 - Comprehension likewise (cf. <u>no</u> known OTFS algorithm)
 Invert the FST
 - Apply in parallel to weighted speech lattice
 - Intersect with lexicon
 - Compute difference between 2 grammars

Making OT=FST: Proposals Approximate by bounded constraints Frank & Satta 1998, Karttunen 1998 Allow only up to 10 violations of NoCoda Yields huge FSTs - cost of missing the generalization Another approximation Gerdemann & van Noord 2000

- Exact if location tradeoffs are between close locations
- Allow directional and/or bounded constraints only
 - Directional NoCoda correctly disprefers all codas
 - Handle location tradeoffs by ranking locations
 - Treats counting as a bug, not a feature to approximate

Outline

- Review of Optimality Theory
- The new "directional constraints" idea
- Linguistically: Fits the facts better
- Computationally: Removes excess power

Formal stuff

- The proposal
 - Compilation into finite-state transducers
 - Expressive power of directional constraints

Tuples Violation levels aren't integers like ★★★ They're integer *tuples*, ordered lexicographically NoCoda σ4 σ1 σ2 σ3 ban.ton.di.bo 0 0 1 1 ban.to.dim.bon 1 0 1 1 ban.ton.dim.bon 1 1 1 1

Tuples

- Violation levels aren't integers like * * *
- They're integer *tuples*, ordered lexicographically
- But what about candidates with 5 syllables?
 And syllables aren't fine-grained enough in general

		NoCoda						
		σ1 σ2 σ3 σ4						
	ban.ton.di.bo	1	1	0	0			
Ŧ	ban.to.dim.bon	1	0	1	1			
	ban.ton.dim.bon	1	1	1	1			

Alignment to Input

- Split by input symbols, not syllables
- Tuple length = input length + 1, for all outputs

Input:		b	а	n	t	0	d	i	b	0
Output:		b	а	n	t	o n	d	i	b	0
	0	0	0	1	0	1	0	0	0	0
Output		Ь	_		÷	0	Ы	i m	Ь	
οαφαι.		υ	d	n	ι	0	u	1 111	υ	o n
οαφαι.	0	0	0	n 1	ι 0	0	0	1	0	0 n 1

		~	<u>۳</u>			<u>ا</u>		~	•		۲	• • •
	0	0	0	1	0	0		0	1		0	1
Output:	i	b	а	n	t	0	n	d	i	mtim	b	o n n n
	0	0	0	1	0	0	1	0	2		0	3

Outline

- Review of Optimality Theory
- The new "directional constraints" idea
- Linguistically: Fits the facts better
- Computationally: Removes excess power
- Formal stuff
 - The proposal
- Compilation into finite-state transducers
- Expressive power of directional constraints

Outline

- Review of Optimality Theory
- The new "directional constraints" idea
- Linguistically: Fits the facts better
- Computationally: Removes excess power
- Formal stuff
 - The proposal
 - Compilation into finite-state transducers
- Expressive power of directional constraints

Future Work An Old Slide (1997) Further empirical support? Same power as Primitive OT (formal linguistic proposal of Eisner 1997) Examples where 1 early violation trades against 2 late violations of the same constraint? How do directional constraints change the style OTFS < OTFS + GA FST < of analysis? How to formulate constraint families? (They Should we pare OT must specify precisely where violations fall.) Should we beef OT up to back to this level? this level, by allowing GA? Hard to imagine Ugly mechanisms like GA making it any simpler weren't needed before OT. than Primitive OT.

