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Abstract

In the Bayesian framework, a language learner should seek a grammar that explains observed data
well and is alsoa priori probable. This paper proposes such a measure of prior probability. Indeed it
develops a full statistical framework for lexicalized syntax. The learner’s job is to discover the system
of probabilistic transformations (often called lexical redundancy rules) that underlies the patterns of
regular and irregular syntactic constructions listed in the lexicon. Specifically, the learner discovers
what transformations apply in the language, how often they apply, and in what contexts. It considers
simpler systems of transformations to be more probablea priori. Experiments show that the learned
transformations are more effective than previous statistical models at predicting the probabilities of
lexical entries, especially those for which the learner had no direct evidence. © 2002 Cognitive Science
Society, Inc. All rights reserved.
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1. Introduction

How can one discover a language’s deep syntax? This brief report summarizes recent work
(Eisner, 2001)that attempts to do so from examples of the language’s surface syntax.

In modern lexicalized theories of syntax, each word of the language lists the constructions in
which it can appear. A typical construction, used for English transitive verbs, projects a subject
slot to the word’s left and an object slot to its right. Syntax trees are constructed by “gluing
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together” entries from this syntactic lexicon. There is no grammar except for the lexicon (and
the universal “gluing” operations).

The method sketched here seeks underlying regularities in the syntactic lexicon, such as
the fact that many transitive verbs in English also list intransitive and passive constructions.
It explains the observed regularities by positing optional rules, such as intransitivization and
passivization, thattransformlexical entries—just as early ideas of transformational grammar
posited rules to transform complete sentences. Armed with these rules of (lexicalized) deep
syntax, the method can then predict new lexical entries that it has not actually observed.

While this framework is familiar in linguistic circles, it is recast here in statistical terms to
allow learning from data. Probabilities are attached to the various common and uncommon
constructions in the lexicon and also to the transformational rules, which are assumed to apply
to entries randomly but at rates that may vary with the rule and the entry. Lexical exceptions
and even families of exceptions can be seamlessly described and in principle learned within
the probabilistic framework. This statistical perspective on what is learned (and why) may be
helpful to linguists, psycholinguists, and engineers alike.

2. Language learning in a Bayesian framework

Any kind of language learning is a generalization problem. A learner must extrapolate an
infinite language such as English—a set of grammatical sentences or syntax trees—from the
finite, random subset of English that he/she/it happens to have observed. That is, the learner
tries to explain the observed data as a sample from the output of an underlying generative
grammar.

Why does the learner posit a grammar that generates more than just the observations? A
grammar that generates exactly the observations may not be available within the learner’s
hypothesis space, sometimes called Universal Grammar. Or, even if it is, Occam’s Razor or
memory limitations may still drive the learner to prefer a more permissive grammar that is
“simpler” by some measure.

To name this measure of simplicity, we may say that the learner favors grammarsθ with
high a priori probabilityp(θ). The prior probability functionp(θ) is conceptually a “softer”
version of Universal Grammar, withp(θ) > 0 just whenθ is allowed by Universal Grammar
at all.

Of course a learner also prefers grammars that account well for the observed dataD. An
optimal learner will combine these two preferences according to Bayes’ theorem, which (for
fixedD) is equivalent to seekingθ that maximizes the product

p(θ) · p(D|θ) (1)

The likelihoodp(D|θ) expresses the conditional probability that if the grammar really wereθ ,
the learner would indeed have observedD. Both factors are minuscule, as there are very many
possible grammars and very many possible samples from each grammar.

The goal of this paper is to improve learning underEq. (1)by designing a sensible prior
distributionp(θ) that preferslinguistically simpler grammars—those with strong, consistent
internal structure and few lexically specific exceptions. This preference can be overwhelmed by
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Fig. 1. Level-2 structure: a six-word sentence and the six lexical entries that combined to generate it.

sufficient evidence: where observed dataD are plentiful, thep(D|θ) term will strongly favor
grammars that fit those data closely,1 even if such grammars are complex and exception-ridden.
But where the evidence is uncertain, the priorp(θ) will guide the learner to favor rules rather
than exceptions.

The paper’s intuition comes from an old notion of the size (cost) of a lexicon. In English,
nearly all transitive verbs can passivize. A grammarθ that encodes this generalization can
derivepassive verb forms by transformation from active ones, so it has a smaller (cheaper)
lexicon than a grammarθ ′ that explicitlylistspassive forms in addition to active ones. We will
ensure thatp(θ) > p(θ ′), encoding a preference for small explanatory grammars over large
stipulative ones.

For the expressionp(D|θ) to be meaningful, the grammarθ must assign probabilities to the
numerous grammatical forms that it generates. (p(D|θ) is large ifθ assigns high probabilities
to forms observed frequently inD.) That is,θ must be aprobabilisticgenerative grammar. A
reasonable starting point is a probabilistic context-free grammar (PCFG).

Indeed a number of previous researchers have attempted to learn PCFGs in this Bayesian
framework. However, they have used rather simple priors in the Minimum Description Length
tradition, typically definingp(θ) to favor grammars whose context-free rules are few, short,
nearly equiprobable, and defined over a small set of nonterminals. But in the lexicalized case
(Fig. 1), we are supposing thatθ is a large lexicon listing many context-free rules for each word.
(Such a lexicon allows word-specific exceptions.) This paper’s version ofp(θ) will gladly allow
a great multitude of rules of varying length and probability, so long as they are largely pre-
dictable from one another by linguistic transformation. It favors grammars whose probabilistic
rules are interrelated by a comparatively small number of transformational principles.

3. The explanatory hierarchy

Lexicalized theories of syntax include categorial grammar, LFG, LTAG, HPSG, link gram-
mar, and minimalism. Each can be regarded as describing a language on four levels:

1. At the simplest level, a language is merely a set of strings.
2. To explain regularities in the above set, it is taken to be generated (under universal com-

bination operations) from a more concise and perhaps finite lexicon of language-specific
syntactic substructures.
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3. Regularities in the above lexicon are explained, in turn, via language-specific transfor-
mations that relate its entries. These are commonly called lexical redundancy rules or
metarules.

4. Finally, a language’s system of transformations must be organized in a way that is ac-
ceptable, and preferably likely, under Universal Grammar.

Let us call this the explanatory hierarchy. We may regard levels 2 and 3 as the lexicalized
versions of Chomsky’s surface and deep structure. Level 4 corresponds roughly to Chomsky’s
“principles and parameters,” or more closely toBecker’s (1994)“patterns in metarules.”

Such lexicalized theories include irregular and regular forms alike in the level-2 lexicon,
deferring the account of regularities to higher levels(Aronoff, 1976; Bresnan, 1978). This
uniform treatment has become popular for several reasons, both linguistic and computational
(Eisner, 2001, Section 2.2). This paper emphasizes the following advantages:

• While the original role of a lexicon was to list only unpredictable information, nearly
every construction in a probabilistic grammar is unpredictable. For example, virtually all
English verbs passivize, but they do so at different rates. Thus, every lexical entry—even
if syntacticallyregular—must list a probability in the lexicon that may be to some extent
idiosyncratic.2 Lexically specific subcategorization probabilities(Charniak, 1997)have
been used by several recent statistical parsers.

• There is no need for a strict distinction between regular and irregular entries
(Flickinger, 1987). Level-3 transformations can be used to account for the whole spec-
trum:
◦ PP-adjunction (We encourage the team→ We encourage the team with prizes) is fairly

regular, though it applies to different verbs and nouns at somewhat different rates.
◦ Unaccusative movement in English (They sank the boat→ The boat sank) is subregular,

or systematically irregular, in that it applies to only a small set of verbs.3

◦ A transformation that applies to only asingleword can be crafted in order to produce
an exceptional entry in the lexicon. However, since all transformations and narrowly
targeted ones in particular will increase the cost of the grammar (reducep(θ)), it
behooves the learner to account for the data with as few of them as possible.

For homogeneity, we will presume that learners regard lexically specific transformations
(such as unaccusative movement) as transformations that apply at high rates to some words
and very low rates to others, just asPP-adjunction applies at lexically specific rates. Thus,
an English speaker will treat unaccusative movement of a novel verb as a possibility that is
relatively unlikely but still worth considering—whereas for more familiar verbs such assink
oreat, speakers have apparently learned that the rate of unaccusative movement is manyfold
higher or lower than this “typical” rate.4

Notice that successive levels of the explanatory hierarchy result in more detailedanalysesof
sentences. Level 1 treats sentences as unstructured strings. But level 2 describes each string as
the result of at least one tree-like derivation, from which it is possible to infer a surface seman-
tics: e.g., that a particularNP is the subject oftaken. Level 3 allows a deeper semantics by
identifying the subject of (passive)takenwith the object of (active)take. Finally, our weak
treatment of level 4 will relate the transformations themselves, explaining right-adjunction
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of a PP argument totake as reflecting more general tendencies toward right-adjunction,
PP-adjunction, and verbal modification in the language.

Children learn from unadorned level-1 material—namely speech (perhaps paired with non-
linguistic observations). But the method to be described here supposes that the learner can
already segment or parse some of this speech, so that the training samples inD are level-2
material—observed lexical entries. The learner’s job is to extract higher-level generalizations
fromD, allowing the learner to better estimate the true probabilities of all lexical entries whether
or not they appear inD. Presumably, this helps the learner parse sentences that contain novel
but plausible lexical entries(Pinker, 1989)—verifying these entries’ existence and feeding
them back intoD for further training.

Besides any light it may shed on possible human strategies, there is an engineering motivation
for learning generalizations from surface syntax. Statistical parsers for English are often trained
from the same level-2 trees used in the present experiments (the Penn Treebank). To parse novel
sentences correctly, such parsers must frequently hypothesize probabilities for lexical entries
that never appeared in these training trees. The present work hypothesizes more accurately by
exploiting the linguistic insight that generalizations are transformational.

4. A concrete framework

For concreteness, the rest of this paper will commit to a particularly simple syntactic for-
malism, a lexicalized form of context-free grammar. While the statistical and algorithmic
techniques would apply to other lexicalized formalisms,5 it is necessary to select one in order
to run actual experiments.

It is easiest to sketch the framework by example. A level-2 syntax tree and the lexical entries
that produce it are shown inFig. 1. For instance,with’s lexical entryPP → with NP allows
with to subcategorize for a followingNP to produce aPP. The lexical entries may be regarded
as context-free rules and the lexicon as a context-free grammar, from which the tree inFig. 1
is generated in the usual recursive way. We may assume a standard probability model here
(Charniak, 1997): roughly speaking, a tree is probable if its lexical entries are probable and
hence likely to be chosen during generation.

Importantly, each lexical entry inFig. 1specifies a full argument structure for a word (S →
NP encourage NP PP), including arguments such asPP that are traditionally regarded as
adjuncts.6 Hence the level-3 grammar can include transformations that rearrange this full struc-
ture, such as heavy-shift, passivization, and unaccusative movement. Moreover, the lexicon can
specify exceptions at this level of full argument structure: it need not deriveS → NP put
PP from ∗S → NP put, or the (disproportionate) probability ofS → NP went PP from
that ofS → NP went. Of course, such exceptional entries result in a more costly grammar,
since by definition they cannot be fully predicted by the usual level-3 transformations. But
it is demonstrably beneficial to represent them when they are well observed during training
(Johnson, 1998; Eisner, 2001, Section 6.7.1).

For a parser (human or machine) to find a sentence’s most probable tree, it must be able to
compare probabilities of different lexical entries.
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Table 1
Complete counts in training data of theS → · · · frames projected by six sample words

encourage question fund merge repay remove

S → To —a NP 1 1 5 1 3 2
S → To — NP PP 1 1 2 2 1 1
S → To AdvP — NP 1
S → To AdvP — NP PP 1
S → NP — NP. 2
S → NP — NP PP. 1
S → NP Md — NP 1
S → NP Md — NP PP-TMP 1
S → NP Md — PP PP 1
S → To — PP 1
S → To — S 1
S → NP — SBAR. 2

a The symbol “—” stands for the position of the head word, such asencourage.

However, these probabilities must be learned from very sparse data.Table 1shows six inflected
verbs with all the sentential lexical entries they headed in the experimental training data.7 For
example, the second row says the entryS → To encourage NP PP was used once in
the hand-constructed training parses, whileS → To fund NP PP was used twice, and so
forth.

We wish to replace the observed counts inTable 1with estimated probabilities that can be
used by a parser. The probabilities should not be strictly proportional to the luck-of-the-draw
counts: that would treat unobserved entries (count= 0) as impossible (probability= 0).
Rather, the poverty of the stimulus calls for a learner to “smooth” these sparse counts, treating
them as samples from a more plausible, broader-based probability distribution.

Fortunately, there are clear structural relationships that allow generalization among the rows
of Table 1. They boil down to the observation that a word’s entries tend to have small string
edit distance from one another (a finding that holds in the training data at large). That is, entries
in the same column can be transformed into one another by a short sequence of so-called edit
operations:

• Insert a single nonterminal into the RHS (right-hand side)
• Delete a single nonterminal from the RHS
• Substitute a single nonterminal for another in the RHS
• Swap two adjacent elements in the RHS

For example, rows 1 and 2 differ by a singlePP. One might explain their numeric correlation
by positing that all the counts in both rows started out in row 1, but a transformation inserted
PP about one-third of the time. The samePP-insertion transformation relates many other rows
as well. More generally, almost every row is at edit distance 1 from some other row, and all
have small edit distance from rows 1–2.

Even the entries that might reflect actual lexical idiosyncrasies—the ability ofmerge to
lose its object (row 10:to merge with the hospital), the affinity of remove for adverbial
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modification (row 3:to completely/properly/surgically remove the tumor)—are plausibly the re-
sult of simple edit transformations such asNP-deletion andAdvP-insertion that have non-negligible
probability in English. In other words, these transformations just apply tomerge andremove
at a multiple of their “typical” rates. Such cases are typical; so we will adopt a prior under
which it is cheapest for a grammar to list idiosyncratic entries that are already plausible on
transformational grounds.

As Carpenter (1991)remarks, these simple edit transformations have been repeatedly in-
voked in lexicalized theories of syntax. They correspond to natural operations on argument
structure: adding or suppressing semantic roles, changing their syntactic type, or permuting
their positions as in heavy-shift.

Let us therefore take these edit operations to be the basic transformations allowed on lexical
entries. It is the job of the learner to discover which of these universal transformations apply in
the language, how often they apply, and in what contexts. For example,Table 1suggests that
in EnglishS → · · · entries,PP-insertion is common at the right edge, whereas insertion of
AdvP (adverbs) orMd (modals) is more common just before the head word.

One could easily argue for a richer universal set of allowable transformations, such as
transformations that manipulate argument structure more radically in a single step (English
passivization), or change an entry’s phrasal categoryS into S/NP (extraction) or intoNP
(nominalization). This would arm a learner with more possible generalizations to test against
the data. However, the experiments of this paper are confined to sequences of simple edit
transformations, as a basic test of the approach.

5. Transformation graphs

Attaching statistics to the level-2 grammar was simple: the lexicon is simply a probability
distribution over possible lexical entries. Let us now develop statistical accounts of level-3
structure (this section) and level-4 structure (the next section).

Fig. 2 shows a “transformation graph.” The graph’s topology is determined by one’s syn-
tactic theory and is supposed to be the same for all languages. Its vertices are simply the lexical
entries allowed universally by the theory. The arcs (directed edges) represent linguistically
possible transformations—in this case, single edits and also arcs from Start. The latter serve
to generate lexical entries from thin air.

What must be learned are the arc probabilities, which specify which of the possible trans-
formations are likely. These probabilities constitute the level-3 description of a particular
language. From each lexical entry there are several arcs with total probability 1, represent-
ing possible transformations that will compete for the right to modify an instance of the
entry. If the arc to the special node Halt is chosen, the instance is not modified any
further.

The transformation graph merely describes a random process for generating lexical entries.
One generates a lexical entry by taking a random walk from Start. The steps of this walk
in effect choose a starting lexical entrye′ and a succession of transformations to apply to it
before halting at some final entrye. A lexical entry is taken to be probable if a random walk is
likely to halt at it:p(e) is defined as the total probability of all paths of the form Start, . . . , e,
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Fig. 2. A fragment of a transformation graph. “S →” is omitted at vertices to avoid visual clutter. Dashed arrows
stand for other transformations not shown in this figure: in practice there are hundreds of arcs from each node (e.g.,
insertions of different nonterminals at different positions).

Halt. (A path’s probability is the product of its arcs’ probabilities, since the arcs are chosen
independently.)

The level-3 transformation probabilities therefore determine the level-2 lexical entry proba-
bilities p(e). The latter can be computed by matrix inversion or (for speed) by an approximate
relaxation algorithm(Eisner, 2001).8 These probabilities can then be used for parsing.9

Recall that a Bayesian learner will try to maximizeEq. (1). If the observed training dataD
is a random sample of lexical entries, then the likelihood termp(D|θ) is proportional to the
product

∏
e∈D p(e).10 To increasep(D|θ), the learner can increase the probabilities of arcs on

paths to these observed entries. But such arcs participate in other paths as well, so this has a
side effect of increasing the probabilities ofother, related entries.

Observinge will therefore cause the learner to raise its probability estimate not only fore, but
also for entries thate is likely to transform into, and perhaps fore’s transformational precursors
as well. These deductive and abductive generalizations (including “explaining away”) are
similar to those made by Bayesian networks. However, nodes in a Bayesian network represent
correlated variables, rather than mutually exclusive but related values of the same variablee.

6. Transformation models

It remains to define the Bayesian priorp(θ), which pressures the learner to stick to a
small and consistent set of transformations. Specifically,p(θ) should state that similar arcs
in a language’s transformation graph—e.g., all thePP-insertion arcs—tend to have similar
probabilities. Otherwise, the learner would have no reason to posit predictive generalizations,
such as a typical rate forPP-insertion in the language. It would simply adjust individual arcs’
probabilities so as to maximize the probability of the training dataD, leading to overfitting.

Each arc in the universal transformation graph can be characterized by its several lin-
guistically salient features. This provides a way to identify “similar arcs.” For example, all
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Fig. 3. How the arc probabilities inFig. 2 were determined from a vectorθ of feature weights. TheZ values are
chosen so that the arcs leaving each vertex have total probability 1. A formula such as [exp(θ3 + θ4)]/Z2 is best
regarded as a product of eθ3, eθ4, and a normalizing factor.

PP-insertion arcs might have a certain feature in common. It is up to the learner to discover
which features tend to make arcs probable or improbable in the language.

The formal solution is to define arc probabilities in terms of a smaller number of arc features,
using a so-called log-linear model. Let us say that each featurei has a weightθi , and that each
arc’s probability inFig. 2is computed from the weights of its featuresby the formulas illustrated
in Fig. 3. An arc is probable (relative to other arcs from the same entry) if its features have
high total weight. Similar arcs share most of their features and so their probabilities are similar,
indeed coupled.

A language is now completely determined by the values of the weightsθ1, θ2, . . . ∈ R. The
learner’s job now is to estimate these weights, which constitute the level-4 structure of the
language. The layout of nodes, arcs, and features inFig. 3 is assumed to be universal across
languages: it describes the kinds of lexical entries and transformational patterns that learners
will consider.

For example, by raisingθ3, the learner can scale up the probabilities of allPP-insertion arcs,
all of which include a factor of eθ3. But not allPP-insertion arcs are identical: the ones that
awkwardly insertPP immediately beforeNP also have a factor of eθ4, so by settingθ4 < 0, the
learner can model the fact that those arcs are less probable. To distinguish the probabilities of
insertingPP into S → To fund NP andS → To merge NP, the learner must manipulate
the only weights that differentiate those nearly identical arcs, namely the word-specific feature
weightsθ8 andθ9.

A simple and natural prior is now at hand to discourage the learner from manipulating too
many weights. Let us stipulate thata priori, eachθi is independently normally distributed with
mean 0 and some varianceσ 2. In other words, we suppose that typical languages are simple
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in that their exceptions are few and modest: most features tend to have weights close to zero
and are therefore irrelevant. The learner can favor such languages and obtain a high value of
p(θ)=defconst· exp(− ∑

i θ
2
i /2σ 2) only by keeping

∑
i θ

2
i small. This means avoiding large

weights as far as possible (Occam’s Razor).
Given observed dataD, a Bayesian learner simply adjustsθ to maximize the product

p(θ) · p(D|θ). This is possible either by gradient ascent or by Expectation–Maximization.11

Large θi harmsp(θ), so is justified only when featurei appears on one or more arcs that
can collectively explain many observations and dramatically raisep(D|θ). If one arc, thisθi

encodes an exception; if many, a generalization.
An example may help to illustrate the learning dynamic. Suppose the entrye = S → To

merge NP PP is observed more often thanPP-insertion would predict. Thep(D|θ) term
encourages the learner to increaseθ9 (which appears just on arcs toe) until p(e) matches the
empirically observed probability.12 But thep(θ) term acts as an opposing brake that tries to
keepθ9 ≈ 0 and thereby keepp(e) to about 1 times the predicted probability. Choosingθ

to maximizep(θ) · p(D|θ) yields a smoothed estimate ofp(e)—a compromise between the
predicted and observed probabilities. (The influence of the observed probabilities through the
p(D|θ) factor depends on the number of observations: see Note 2.) Of course, it is possible
that the predicted probability is too low and should itself be raised. For instance, if not only
S → To merge NP PP but alsoS → To fund NP PP is more likely than the current rate
of PP-insertion would predict, the prior certainly prefers increasing the single weightθ3 to
increasing bothθ8 andθ9; so a single generalization about the rate ofPP-insertion is preferred
to multiple exceptions if the likelihoodp(D|θ) is the same either way.

Under our prior, is the cost of a grammarθ related to the number of entries in the lexicon? No:
the grammar always includes every possible lexical entry. But many entries have extremely low
probabilities; a parser will not use them unless it has no better choice. Then is the cost related
to the number of high-probability entries? Again no. Expensive probabilities are simply those
that deviate greatly from what the transformations would already predict. The prior considers
it as unlikelya priori for p(e) to be tiny in the above example (viaθ9 
 0) as forp(e′) to be
large for a transformationally implausible entrye′.

De Marcken (1996)likewise made lexical entries cheaper to list if their form could be easily
derived from other lexical entries. But in his work, every new entry needed to specify its deriva-
tion and its new probability, at some cost. In transformation models, fully predictable entries
come atzerocost. The only cost to the grammar comes from adjusting entries’ probabilities
to better match observed data (e.g.,θ9 �= 0), and from setting up the system of predictive
transformations in the first place (e.g.,θ3 �= 0, θ4 �= 0).

7. Experimental evaluation

In this brief report it is only possible to outline the main experiments conducted in
(Eisner, 2001). Such experiments examine how well transformation models fit real data, which
tests both the linguistic intuitions behind them and their engineering promise.

Lexical entries of the formS → · · · were extracted from the Penn Treebank(Marcus,
Santorini, & Marcinkiewicz, 1993), a collection of hand-parsed sentences fromThe Wall Street
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Journal. A transformation model with simple local features was trained on 18836 of these
entries (a larger version ofTable 1) and then used to evaluate the probability of 973 unseen
test entries.13 Nearly half of the test entries had never been observed in training data, and
6.3% of them contained argument structures that had not even been observed with other head
words. Yet, it is desirable for a model to generalize and recognize these test entries as plausible;
otherwise the correct parses of test sentences would appear implausible. We may check this
by measuring a simple, standard quantity called perplexity.

The perplexity of the test entries (given their head words) was 108.6, meaning that the
transformation model assigned them an average (geometric mean) probability of 1/108.6.
Several other models of lexical entries from the parsing literature were evaluated under the
same conditions. The transformation model’s perplexity was 20% lower than the best of these,
a bigram model(Eisner, 1996). This means that it did a better job of predicting future lexical
entries from past ones, being less surprised by them.

An even better perplexity of 102.3 was achieved by averaging the transformation model
with an improved bigram model that, like the transformation model, could learn exceptions.
This represents a 12% perplexity reduction over the improved bigram model alone. More
significantly, the averaged model (the best model with transformations) needed only half as
much training data to perform about as well as the improved bigram model (the best model
without transformations).

Comparing the detailed predictions of these two best models showed that transformations
helped not just on average but across the board. Transformational estimates particularly helped
boost the probability of novel or rare argument structures, as hoped, and they were better able
to choose which of two novel argument structures had occurred with a word. Meanwhile, there
was no evident class of entries on which using transformations hurt.

Table 2shows some of the probabilities predicted by the learned transformation model. It is
possible to see where the model generalized (and how strongly), and where it took pains to fit

Table 2
Part of the probabilistic lexicon induced by transformational smoothing

p(entry| head word, S)a encourage question fund merge repay remove

S → To — NP 0.142 0.117 0.397 0.210 0.329 0.222
S → To — NP PP 0.077 0.064 0.120 0.181 0.088 0.080
S → To AdvP — NP 0.00055 0.00047 0.0011 0.00082 0.00091 0.079
S → To AdvP — NP PP 0.00018 0.00015 0.00033 0.00037 0.00026 0.050
S → NP — NP. 0.022 0.161 0.0078 0.0075 0.0079 0.0075
S → NP — NP PP. 0.079 0.0085 0.0026 0.0027 0.0026 0.0026
S → NP Md — NP 0.090 0.0021 0.0024 0.0020 0.024 0.0026
S → NP Md — NP PP-TMP 0.0018 0.00016 0.00017 0.00016 0.069 0.00019
S → NP Md — PP PP 0.00010 0.000027 0.000027 0.000038 0.000078 0.059
S → To — PP 0.0092 0.0065 0.012 0.126 0.010 0.0091
S → To — S 0.098 0.0016 0.0043 0.0039 0.0036 0.0027
S → NP — SBAR. 0.0034 0.190 0.0032 0.0032 0.0032 0.0032

Other 0.478 0.449 0.449 0.461 0.461 0.482

a The model actually definesp(entry), but for parsing we need to condition that probability on the head word
(encourage) and phrasal category (S), as shown here.
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the training data inTable 1. SeeEisner, 2001, Section 1.5.3for discussion and a comparison
to the bigram model.

8. Discussion

Several recent papers have used heuristics to generalize lexical subcategorization frames.
Briscoe and Copestake (1999)even did so along transformational lines. However, the present
work appears to be the first actual statistical model of transformational syntax or lexical re-
dundancy rules. The transformation models introduced here (Fig. 3) could be applied to any
formalization of lexical entries, transformations, and features. By learning which features of
a transformation make it probable or improbable in a language, the learner acquires a proba-
bilistic syntactic lexicon that can be used for parsing and generation. Much more detail and
discussion (and a review of related work) can be found inEisner (2001).

The major difficulty with the method at present is the lack of a good optimization technique.
The model reduces learning to the maximization of a precisely specified function:p(θ)·p(D|θ).
However, optimization techniques such as gradient descent and EM tend to get stuck in local
maxima of this function. Moreover, the function is expensive to evaluate even for a single value
of θ , since it is non-trivial to derive level-2 lexical entry probabilities from level-4 feature
weights. Improving optimization is important if the technique is to be used for large-scale
parsing or applied to linguistically richer transformation models.

Notes

1. If observingx is 10 times less likely underθ thanθ ′, then observingx twice is 100
times less likely. With enough observations it becomes untenable to chooseθ overθ ′.

2. Not to mention idiosyncratic semantic or pragmatic connotations: consider the past
participle of the verbretard.

3. Like the subregular morphological transformationsing→ sang, ring → rang,swim →
swam.

4. Much of the extreme rate variation from word to word can actually be predicted by the
word’s semantics(Levin, 1993). Unaccusative movement is much more likely when
the verb has a change-of-state semantic feature. The method described in this paper
could in principle discover that correlation, allowing seamless syntactic and seman-
tic bootstrapping (where a verb’s change-of-state feature is inferred from its rate of
unaccusative movement or vice-versa).

5. Provided that the formalism defines a tree’s probability as a function of a product of
“scores” assigned to the tree’s component lexical entries. (Then transformations can
redistribute fractions of an entry’s score to related entries.) This is true in standard
probability models for CFG and TAG, and more generally in the log-linear models that
Johnson and Riezler (this issue) propose for a broader class of grammars.

6. These simple string-like lexical entries will permit a particularly simple set of trans-
formations. But one could instead use lexical entries with more internal structure
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(Joshi and Schabes, 1991): S → NP [VP [VP [V encourage ] NP ] PP ]. Besides cos-
metically replacing the “flat” tree ofFig. 1 with a more traditional syntax tree, this
would permit transformations to be sensitive to this internal structure.

7. The words were not specially chosen, except that each was required to appear with
S → To — NP PP (so that they would be related) and to appear 4–7 times in total (so
that this example table would be small but not trivial). The lexical entries shown were
easy to extract from parsed training data, but are overly simple from a linguistic point
of view. For example, the first one would be better written asSinf\NP → To— NP, in
order to indicate that this “sentence” is infinitival and has a missing (or silent) subject
NP. Moreover, since the words shown are zero-inflected, their lexical entries include
only infinitive and present-tense constructions. Morphological stemming of the data
would have discovered additional entries such asS → NP Aux — + PresP NP (we
are encourag-ing the team) andNP → Det — + Nom (much encourage-ment).

8. In general the graph may have infinitely many vertices, since lexical entries can be
arbitrarily long. In this case, it is only possible to explore part of the graph, resulting in
underestimates of the probabilities. However, when certain lexical entries are known
to be of interest to the parser, one can take pains to explore some paths to them so that
at least the estimates are non-zero.

9. Statistical parsers seek the parse tree maximizingp(tree), which they model as a prod-
uct of conditionalized versions ofp(e) probabilities and perhaps other probabilities
representing lexical preferences(Charniak, 1997). Eisner (2001, Section 5.4)suggests
that surprisingly, the transformation graph could also help estimate the latter.

10. If D was derived from a collection of parses, then its lexical entries were not chosen
independently but rather during stochastic tree generation. In this case,p(D|θ) =∏

tree∈D pθ (tree), so is proportional to a product ofconditionalizedversions ofp(e)

probabilities as in the previous footnote.
11. SeeEisner (2001). The gradient computation resembles back-propagation in neural

networks; so does the E step of EM, which reconstructs the random walks probably
taken in the transformation graph. The M step of EM reestimatesθ to make these
random walks more likely, using standard “iterative scaling” techniques for parameter
estimation in conditional log-linear models. Since these algorithms find only local
maxima, it is necessary to make a good heuristic initial guess ofθ .

12. Increasingp(e) beyond this will tend to hurtp(D|θ), sincep(e) can only be increased
at the expense of other lexical entries. The total probability of all lexical entries is 1.

13. A development set of 1588 entries was used to tune control parameters and to deter-
mine when to stop training. The experiment actually used a “perturbed transformation
model,” which uses entry-specific weights (θ8, θ9) slightly differently than described
here(Eisner, 2001, Section 3.9).
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