Efficient Generation in Primitive Optimality Theory

Jason Eisner University of Pennsylvania ACL - 1997

• •				
Filtering, OT-style				
\star = candidate violates constraint twice				
	_			
	Constraint 1	Constraint 2	Constraint 3	Constraint 4
Candidate A	*		*	***
Candidate B		**	*	
Candidate C	*	*	_	
Candidate D		***		
Candidate E		**	*	*
Candidate F	**	***		*
constraint would prefer A, but only allowed to break tie among B,D,E				

Alas - Explosion of states Ellison's algorithm is *impractical* for OTP Why? Initial candidate set is huge DFA 2^k states: An intersection of *many* orthogonal 2-state automata For every left edge on any tier, there must be a right edge So state must keep track: "I'm in C, and in nas, but out of c..." Mostly the same work gets duplicated at nasal and non-nasal states, etc. Wasteful: stress doesn't care if foot is nasal!

