
1

Efficient Generation in
Primitive Optimality Theory

Jason Eisner
University of Pennsylvania
ACL - 1997

2

Overview

• A new formalism
– What is Optimality Theory? (OT)
– Primitive Optimality Theory (OTP)

• Some results for OTP
– Linguistic fit
– Formal results
– Practical results on generation

3

What Is Optimality Theory?
• Prince & Smolensky (1993)
• Alternative to stepwise derivation
• Stepwise winnowing of candidate set

Gen

Con
str

ain
t 1

Con
str

ain
t 2

Con
str

ain
t 3

input

. .
.

output

such that different constraint
orders yield different languages

4

Filtering, OT-style

Constraint 1 Constraint 2 Constraint 3 Constraint 4

Candidate A � � ���

Candidate B �� �

Candidate C � �

Candidate D ���

Candidate E �� � �

Candidate F �� ��� �

constraint would prefer A, but only
allowed to break tie among B,D,E

�� = candidate violates constraint twice

5

Formalisms in phonology

Linguists Computer
Scientists

SPE (1968) string rewrites
 (restricted)

finite-state
transducers

(equivalent)

Autosegmental
phonology (1979)

tier-local rewrites finite-state
transducers

(equivalent)

OT (1993) informal
English

OTFS
(finite-state)?? ??

Two communities with different needs ...

6

Unformalized OT isn’t a theory
Linguists Computer

Scientists
OT (1993) OTFS

(finite-state)

We need a formalism here, not informal English.

Using English, can express any constraint
⇒⇒⇒⇒ describe impossible languages
⇒ ⇒ ⇒ ⇒ specify any grammar with 1 big constraint

(undermines claim that typology = constraint reranking)
⇒ ⇒ ⇒ ⇒ no algorithms (generation, parsing, learning)

??

2

7

OTFS: A finite-state formalization
(used computationally: Ellison 1994, Frank & Satta 1996)

Let’s call this system OTFS, for “finite-state”:

Q: What does a candidate look like? A: It’s a string.
And a set of candidates is a regular set of strings.

Q: Where does the initial candidate set come from?
A: Gen is a nondeterministic transducer.
It turns an input into a regular set of candidate strings.

Q: How powerful can a constraint be?
A: Each constraint is an arc-weighted DFA.
A candidate that violates the constraint 3 times, ���,
is accepted on a path of weight 3.

8

… but should linguists use OTFS?
Linguists Computer

Scientists
OT (1993) OTFS (finite-

state)

Linguists probably won’t use OTFS directly:

• Strings aren’t a perspicuous representation
• Again, can specify grammar with 1 big constraint
• Too easy to express “unnatural” constraints
• Linguistically too strong? (e.g., it can count)

too weak? (floating tones? GA?)

??

9

Solution: Primitive OT (“OTP”)
Linguists Computer

Scientists
OT (1993) OTFS (equivalent)OTPOTP

• Formalizes current practice in linguistics
(and easy for linguists to use)

• Turns out to be equivalent to OTFS
(new result! not in the paper)

• Simple enough for computational work
10

Representations in OTP

VCCVC

voi

nasnas

σ σ

Stem

cf. Goldsmith style (old)

V
CC

V
C

σ σ
Stem

voi
nasnas

OTP style (new)

OTP’s “autosegmental timeline” specifies the relative timing
of phonetic gestures and other constituents. (not absolute timing)

11

Edges & Overlaps

V
CC

V
C

σ σ
Stem

voi
nasnas

• Edges are explicit; no association lines
• Associations are now captured by temporal overlap

OTP’s constraints are simple & local:
They merely check whether
these gestures overlap in time,
and whether their edges line up.

12

The Primitive Constraints

Each α overlaps with some β.

αααα
β β

αα αααα
β

α
β

2 violations (all other α’s attract β’s)

αααα →→→→

 ββββ
“implication”

αααα ⊥⊥⊥⊥ ββββ
“clash”

Each α overlaps with no β.

α
β β

αααααααα α
β

αααα
β

3 violations (all other α’s repel β’s)

3

13

Examples from the literature
nas → voi every nasal segment bears some voicing feature

[σ → [C every syllable starts with some consonant (onset)

F → [µ every foot crosses some mora boundary (non-

ATR ⊥ low no ATR feature on any low vowel

]F ⊥]word

[σ ⊥ C no σ boundary during any consonant (no geminates)

σ → H or L every syllable bears some tone ()

no foot at the end of any word (extrametricality)

conj → disj

degenerate)

14

Input, Output, and Gen in OTP

VCCVC
voi

CCVC
voi }underlying

tiers

surface
tiers

CCVC
voi

Gen

CCVC

CCVC
voi

CCC
velar

CCVC
voi

voi
CC C

V

etc.Gen proposes all
candidates that include
this input.

}

15

Example (Korean Final Devoicing)

Input Output
bi-bim bab bi-bim bap

word-final, devoiced

word-final, NOT devoiced
(because it’s sonorant)

Relevant constraints
son → voi “sonorants attract voicing”
]word ⊥]voi “ends of words repel voicing”
voi → voi “input voicing attracts surface voicing”

16

Example (Korean Final Devoicing)

 son → voi]word ⊥]voi voi → voi

bibim bab ��

bibim bap � �

bibim bap � � ��

pipim pap � ����

winner!

voi
word
b a b

voi
word
b a p

word
p a p

voi

(and many
more)

17

INTERMISSION

• I’ve sketched:
– Why (something like) OTP is needed
– How OTP works

• What’s left:
– Results about OTP and OTFS
– How can we build a tool for linguists?

18

Linguistic appropriateness

• Tested OTP against the literature
• Powerful enough?

– Nearly all constraints turn out primitive
• Not too powerful?

– All degrees of freedom are exercised …
• e.g.,

– … in each of several domains:
• features, prosody, featural prosody, I-O, morph.

[x →]y[x → [yx → [yx → y

4

19

Generative power: OTP = OTFS

• Encode OTP grammar in OTFS?
– Cheaply - OTP constraints are tiny automata!
– Encode multi-tier candidates as strings

• Encode OTFS grammar with just OTP?
– Yes, if we’re allowed some liberties:

• to invent new kinds of OTP constituents
(beyond nas, voi, σ …)

• to replace big OTFS constraint with many small
primitive constraints that shouldn’t be reordered

-F +F
[F

]F

20

Is OTP = OTFS strong enough?
• OTP less powerful than McCarthy & Prince’s

Generalized Alignment, which sums distances
• Proof:

– Align-Left(σ, Hi) prefers a floating tone to
dock centrally; this essentially gives anbn

– Pumping ⇒⇒⇒⇒ OTFS can’t capture this case

HσσσσσσσHσσσσσσσ Hσσσσσσσ
0+1+2+3+4+5+6
= 21 violations

6+5+4+3+2+1+0
= 21 violations

3+2+1+0+1+2+3
= 12 violations

21

current linguistic practice
(OT as she is often spoke)

On the other hand ...
• OTFS known more powerful than

rational transductions (Frank & Satta 1997)

So is OTP too weak or too strong??

rat. transductions < OTP < OTP+GA

past linguistic practice
(serial derivations)

22

Eliminating Generalized Alignment

Should we pare OTP
back to this level?

Hard to imagine
making it any simpler.

Should we beef OT up to
this level, by allowing GA?

Ugly mechanisms like GA
weren’t needed before OT.

GA is non-local, arithmetic, and too powerful.
Does OT really need it, or would OTP be enough?

rat. transductions < OTP < OTP+GA

23

Stress typology without GA
• OTP forbids ALIGN and other stress constraints

– But complete reanalysis within OTP is possible
– The new analysis captures the data, and does a

better job at explaining tricky typological facts!

• In OTP analysis, constraint reranking explains:
– several iambic-trochaic asymmetries
– coexistence of metrical & non-metrical systems
– restricted distribution of degenerate feet
– a new typological fact not previously spotted

24

Building a tool for generation

• If linguists use OTP (or OTFS), can we
help them filter the infinite candidate set?

Gen

Con
str

ain
t 1

Con
str

ain
t 2

Con
str

ain
t 3

input

. .
.

output

OTP grammar

5

25

Ellison’s generation method (1994)

Gen . .
.

Candidate set
(an unweighted
DFA accepting
candidate strings)

• Encode every candidate as a string

input

(simplified)

26

Ellison’s generation method (1994)

Gen

Con
str

ain
t =

 sim
ple

weig
hte

d
DFA

. .
.

Candidate set

• Encode every candidate as a string
• A constraint is an arc-weighted DFA that evaluates strings

– Weight of the accepting path = degree of violation
input

27

Ellison’s generation method (1994)

Gen . .
.

• Encode every candidate as a string
• A constraint is an arc-weighted DFA that scores strings

– Weight of accepting path = degree of violation

Con
str

ain
t =

 sim
ple

weig
hte

d
DFA

In
ter

sec
tio

n
yields weighted
DFA that accepts
the candidates and
scores each one

input

Candidate set

28

Gen . .
.

• Encode every candidate as a string
• A constraint is a weighted DFA that scores strings

– Weight of accepting path = degree of violation

Prune back to
min-weight
accepting paths
(best candidates)Con

str
ain

t =
 sim

ple

weig
hte

d
DFA

In
ter

sec
tio

n

input

Ellison’s generation method (1994)

Candidate set

29

Alas - Explosion of states

• Ellison’s algorithm is impractical for OTP
• Why? Initial candidate set is huge DFA

– 2k states: An intersection of many orthogonal 2-state automata
– For every left edge on any tier, there must be a right edge
– So state must keep track: “I’m in C, and in nas, but out of σσσσ...”

• Mostly the same work gets duplicated at
nasal and non-nasal states, etc.
– Wasteful: stress doesn’t care if foot is nasal!

30

Solution: Factored automata

• Clumsy big automata arise in OTP when
we intersect many small automata

• Just maintain the list of small automata
– Like storing a large integer as a list of prime

factors
– Try to compute in this “factored” domain for as

long as possible: defer intersection

6

31

Solution: Factored automata

nas tier is well-formed
∩∩∩∩

x tier is well-formed
∩∩∩∩

F tier is well-formed
∩∩∩∩

input material
∩∩∩∩

word never ends
on voiced obstruent

etc.

nas tier is well-formed
∩∩∩∩

x tier is well-formed
∩∩∩∩

F tier is well-formed
∩∩∩∩

input material
∩∩∩∩

word never ends
on voiced obstruent

etc.

Candidate set

intersect
candidate set
with new constraint
and prune back
to lightest paths

[F without [x

other

new constraint [F →→→→ [x

32

Solution: Factored automata

nas tier is well-formed
∩∩∩∩

x tier is well-formed
∩∩∩∩

F tier is well-formed
∩∩∩∩

input material
∩∩∩∩

word never ends
on voiced obstruent

etc.

nas tier is well-formed
∩∩∩∩

x tier is well-formed
∩∩∩∩

F tier is well-formed
∩∩∩∩

input material
∩∩∩∩

word never ends
on voiced obstruent

etc.

Candidate set
[F without [x

other

Just add this as a new factor?

No, must follow heavy arc as
rarely as possible.

CERTAIN of the existing
factors force us to take heavy
arc. Ignore the other factors!

33

Factored automata
• Filter candidates via “best intersection”

– Candidate set = unweighted factored DFA
– Constraint = simple weighted DFA
– Goal: Winnow candidate set (i.e., add new factor)

Factored
DFA
Factored
DFA

small DFA:
where does
[F bar [x ?

intersection,
pruned back
to best paths

constraint [F →→→→ [x

34

Good news & bad news
• Factored methods work correctly
• Can get 100x speedup on real problem
• But what is the worst case?

– O(n log n) on the size of the input
– but NP-complete on the size of the grammar!

• can encode Hamilton Path as an OTP grammar
– Significant if grammar keeps changing

• learning algorithms (Tesar 1997)
• tools for linguists to develop grammars

35

Summary
• OTP: A clean formalism for linguists

– simple, empirically plausible version of OT
– good fit to current linguistic practice
– can force fruitful new analyses

• Formal results
– transducers < OTFS = OTP < OTP+GA
– the generation problem is NP-complete

• Practical results on generation
– use factored automata for efficiency

36

Representation = Edge Ordering

V
CC

V
C

voi
nasnas

[voi voi]

σ σ
Stem [Stem Stem]

[σ σ]σ][σ
[V V] [V V]

[C C] [C C][C C]
[nas nas] [nas nas]

=

7

37

Linguists have not formalized OT

Gen

Infor
mal

Engli
sh

More
 Eng

lis
h

Eng
lis

hinput

. .
.

output

??
?? ??

• How powerful is Gen in preselecting candidates?
• How powerful can constraints be?
• What do the candidates look like?

(to their chagrin)

38

• Regard string abc as
• Given a finite-state constraint:

– invent a new constituent type for each arc
– use several primitive constraints to ensure:

• each symbol must project an arc that accepts it
• these arcs must form an accepting path
• the path must have as few violations as possible

Encoding OTFS into OTP

YX Z
ba c

ba c

�

symbols

arcs

violations

39

OTP generation is NP-complete

• Solve Hamilton Path within OTP
1. The word attracts one copy of each vertex
2. Repels added copies (so candidate = vertex ordering)
3. No gaps: vertices attract each other
4. Unconnected vertices repel each other

a

uv

...[a][v][u]...

• To solve a big Hamilton Path
problem, construct a big grammar

• For fixed grammar, only O(n log n), but
some grammars require huge constant

