
University of Pennsylvania

Jason M. Eisner

Efficient NORMAL−FORM Parsing
for Combinatory Categorial Grammar

June 26, 1996 at ACL

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

CCG and the Spurious Ambiguity Problem

[John likes Mary] S (sentence)
[likes Mary]

[John likes]
S\NP (sentence missing NP to its left − "\")

S/NP (sentence missing NP to its right − "/")

John

Mary

CCG allows linguistically useful extra constituents ...

... can ask who satisfies it

... can state who satisfies it
 Who does [John like]?

... can conjoin this with other predicates
 [John likes], and [Sue hates], that woman in the hat

 It is MARY that [John likes]. [John likes] MARY.

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

(non−standard parse)

(standard parse)

[[John likes] Mary]

[John [likes Mary]]

Two parses for an unambiguous sentence:

CCG and the Spurious Ambiguity Problem

... but CCG forces hundreds of extra parses on us.

the [aide in the] Senate [that D’Amato says Clinton tried to] bribe

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Today’s Talk

+ the S combinator (straightforward)
+ the T combinator (work in progress)
+ restrictions on the rules

− A solution to spurious ambiguity

− Why the solution works (formal intuitions)

− Important extensions of the solution

+ the B combinators
− Sketch of CCG formalism

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

A>B0:

A/CA/B B/C

A/B B

>B1:

>B2:

A/B B\C A\C

A/B B/C/D
A/B B/C\D
A/B B\C/D
A/B B\C\D

A\C/D
A/C\D
A/C/D

A\C\D

forward rules

Sketch of CCG Formalism: Phrase Structure

A

backward rules

<B0:

<B1:

<B2:

A\C
A/C

B A\B

B\C A\B
B/C A\B

A\C\D
A\C/D
A/C\D
A/C/D

B\C\D A\B
B\C/D A\B
B/C\D A\B
B/C/D A\B

etc. etc.

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

>B0

u bribed(the(u))λ

VP/NP
bribed

NP/N
the

>B1

A>B0:

A/CA/B B/C

A/B B

>B1:

f(x)f x

f g λ u f(g(u))

Sketch of CCG Formalism: Example

VP/NP
bribed

>B0

NP N

u bribed(the(u))λ

VP/NP
bribed

NP/N
the

>B1

VP/N

VP/N

the
NP/N

the(aide)

N

>B0

aide

aide

VP VP
bribed(the(aide)) bribed(the(aide))

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

VP/NP NP

>B0

VP

>B0

NP/N N

bribed

the aide

bribed(the(aide))

A Solution to Spurious Ambiguity: The Goal

Exactly one parse per reading.

 (Efficiently suppress all other parses.)

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

(but do allow: [[D’Amato] [said Clinton tried to bribe that aide]])

and in this case, disallow even that 1 parse!

assemble 1 parse not 25

BUT: 1 parse not 51 parse not 5

[[D’Amato said Clinton tried] [to bribe that aide]]

and when useless. [D’Amato said Clinton tried] to bribe that aide.

A Solution to Spurious Ambiguity: The Strategy

How can we rule out extra parses?

both when useful

Yes, allow all of CCG’s non−standard constituents,

[D’Amato said Clinton tried],
and [maybe he said she failed], to bribe that aide.

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

The OUTPUT of forward composition

(>B0, >B1, >B2, >B3 ...)

(>B1, >B2, >B3, ...)

may not be the primary (left) INPUT to any forward rule.

A Solution to Spurious Ambiguity:

Standard kind of spurious ambiguity:
 Forward (or backward) "chains"

The Tactics

A/A A/B B\C/D/E E/F F\G

(>B0, >B1, >B2, >B3 ...)

(>B1, >B2, >B3, ...)The OUTPUT of backward composition

may not be the primary (right) INPUT to any backward rule.

VP/NP NP/N N
2 parses 14 parses

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

The OUTPUT of forward composition

(>B0, >B1, >B2, >B3 ...)

(>B1, >B2, >B3, ...)

may not be the primary (left) INPUT to any forward rule.

>B0

NP/N N

NP

bribed(the(aide))

>B0

VP/NP NVP/N

>B0

VP
bribed(the(aide))

VP/NP NP/N

>B1

A Solution to Spurious Ambiguity: The Tactics in Action

satisfies violates
constraintconstraint

(a "normal−form" tree)

VP

−FC

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

(1) eliminate ONLY spurious ambiguity (safety)

(2) eliminate ALL spurious ambiguity (completeness)

A Solution to Spurious Ambiguity: The Result

1−1 correspondence:

 these tactics
For CCG with the generalized composition rules (including mixed),

semantic equiv. classes normal−form trees

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

λλ λ λf g h k (z y f(g(h(w k(z)(w)))(y)))λ λ λ

of the phrase.
into an interp.

them semantically
and combines

z y f(g(h(w k(z)(w)))(y))λ λ λ

z h(w k(z)(w))λ λ

Formal Intuitions: What is Spurious Ambiguity?

takes interps
of the words,

So a syntax tree on n words
 computes an n−ary function:

Two trees on the same n words are semantically equivalent
iff they compute the same n−ary semantic function.

A syntax tree

D/G
x y f(g(x)(y))λ λ

A/B
f g h k

D/(E\F) E\F/GB\C/D

A\C/D

A\C/G

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Formal Intuitions: What is Spurious Ambiguity?

 Two trees on the same n words are semantically equivalent
iff they compute the same n−ary semantic function.

What this definition is NOT:

(1) Does this mean "iff they compute the same lambda−term"?

(2) Do we eliminate one parse from each of these pairs?

[quietly [knock twice]]

[[quietly knock] twice]

[equals [[2 plus 3] over 4]]

[equals [2 plus [3 over 4]]]

π

π

denote same
truth value ("false")same action

denote

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Formal Intuitions: Existence Theorem

Theorem. For every tree T we cut down with our constraints,
we leave standing a semantically equivalent tree, NF(T).

Proof.

Construction used is inductive.
Takes O(1) time, if NF(T’) is known for T’ smaller than T.

replace
>Bm

>Bn
throughout with

To construct NF(T) from T, essentially

>Bn

>B(m+n−1)

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Proof. Given two distinct trees that we keep.
They must differ somewhere syntactically:

x y

one rule

.

.y z

x y.

(tree 2)

.x y

another rule

(tree 1)

or

Formal Intuitions:

Theorem. We never leave two equivalent trees standing.

Uniqueness Theorem

 so contain either

Show that they differ semantically as a result.

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

another tree

on same leaves
(shown upside down)

S\SS/S

>B0
<B0

S
>B0

<B0

Easy syntactic characterization of a semantic property!

>B1
>B0

>B1
>B0

ambiguous cf. S/S

>B0

spuriously
S/S

>B0

S/S S US/U
>B0 >B0

Formal Intuitions: The Spurious Ambiguity Lemma

one tree

not spuriously
ambiguous cf. S/S

>B0
<B0

>B0

U S\U

*
illegal!

Def. ... iff spuriosity is robust under changes to words’ semantics.
... iff ambiguity is robust under changes to words’ syntax.Equiv def.

2 parses on the same sequence of words are spuriously ambiguous ...

z h(w k(z)(w))λ λ

z y f(g(h(w k(z)(w)))(y))λ λ λ

D/G
x y f(g(x)(y))λ λ

A/B
f g h k

D/(E\F) E\F/GB\C/D

A\C/D

A\C/G

>B2 >B1

>B1

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Formal Intuitions:

restricted combinator

Proof of Spurious Ambig. Lemma

λλ λ λf g h k (z y f(g(h(w k(z)(w)))(y)))λ λ λ

can write as (A|C|G) | (X|G) | (D|X) | (B|C|D) | (A|B)

most general polymorphic type n−ary function in model

injective injective

no−category syntax tree

>B2

>B1

>B1

(B A) (D C B) (X D) (G X) (G C A)

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

may not be the primary (left) INPUT to (>B0, >B1, >B2, >B3, ...)
The OUTPUT of (>B1, >B2, >B3, ...)

If we add the S (substitution) combinator, we need a new restriction:

Just as

now

The OUTPUT of (>B2, >B3, ...)
may not be the primary (left) INPUT to >S

If we add the T (type−raising) combinator,

the ambiguities get much trickier! Work in progress.

Extensions: The S and T combinators

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

S/NP

likes
(S\NP)/NP

John
NP NP

Mary likes
(S\NP)/NP

John
NP

Mary
S/(S\NP)

Extensions:

 of type−raised arguments, so doesn’t look spurious:

and the ambiguity below depends on funny "lexical" properties

(S\NP)/NP
parroted yesterday

S\S
heIn fact,

S/(S\NP)

S/NP

S/NP

(S\NP)/NP

>B1

<B1

<B2

>B1

[her stand on Bosnia]
NP

parses of different sentences!

our definition can’t see this ambiguity:

Making TR visible to the grammar

If type−raising is only lexical,

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

>Bn

>B(m+n−1)

>Bm

>Bn

Extensions: Restrictions on CCG rules

In practice, a CCG grammar may state WHICH rules can apply, & WHEN.

allowed by CCG
 but skipped by parser

allowed by CCG?
 if not, we’re in trouble.

NF

Solution:

Don’t change the theorems, change the parser!

Karttunen 1986:
 parse of a constituent, check that it’s not redundant.

But

No constraints on parses. Whenever we find a new

checking new parse against old parses takes exponential time.

New idea: See if its NF matches an old parse’s. Can do in O(1) time.

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

semantic equiv. classes normal−form trees

Extensions: Finding Equiv Classes instead of NFs

 or the best according to prosody or discourse module

Have proved 1−1 correspondence:

So use each NF tree as a magnet for its equivalence class:

not found by parser

(disallowed by grammar,
or conflict with prior

"incremental" commitments)

keep just one of these legal parses − e.g. the first,

Jason Eisner, U. Penn Efficient Normal−Form Parsing for CCG

Summary of Results

 . . . and a lemma giving a syntactic test for it.

 Simple constraints provably eliminate all spurious ambiguity.

 Rapidly group legal (sub)trees by semantic equivalence class −
 just have each NF tree point to the legal trees in its class.

+ A useful model−theoretic definition of spurious ambiguity

+ Easy, fast parser for CCG with the B and S rules.

+ Fast parser still possible if grammar rules have nasty restrictions:

