Efficient NORMAL-FORM Parsing

for Combinatory Categorial Grammar

Jason M. Eisner
University of Pennsylvania
June 26, 1996 at ACL

CCG and the Spurious Ambiguity Problem

[John likes Mary] S (sentence)

John [likes Mary] S\NP (sentence missing NP to its left — "\")
[John likes] mary S/NP (sentence missing NP to its right — "/")
_

\

... can conjoin this with other predicates

[John likes], and [Sue hates], that woman in the hat
... can ask who satisfies it

Who does [John like]?
... can state who satisfies it

It is MARY that [John Iikes]./ [John likes] MARY.

CCG allows linguistically useful extra constituents ... I

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

CCG and the Spurious Ambiqguity Problem

Two parses for an unambiguous sentence:
[[John likes] Mary] (non—standard parse)
[John [likes Mary]] (standard parse)

the [aide in the] Senate [that D’Amato says Clinton tried to] bribe

... but CCG forces hundreds of extra parses on us. I

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Today’s Talk

— Sketch of CCG formalism
+ the B combinators

— A solution to spurious ambiguity
— Why the solution works (formal intuitions)

— Important extensions of the solution

+ the S combinator (straightforward)
+ the T combinator (work in progress)
+ restrictions on the rules

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Sketch of CCG Formalism: Phrase Structure

forward rules backward rules

>B0: A/B B — A <BO: B AB— A

>B1: A/B B/C — A/C <B1: B\C A\B — A\C
A/B B\C — A\C B/C A\B — A/C

>B2: A/B B/C/D A/C/D <B2: B\C\D A\B —— A\C\D

A/B B/C\D —= A/C\D B\C/D A\B —— A\C/D

A/B B\C/D —= A\C/D B/C\D A\B —— A/C\D

A/B B\C\D —= A\C\D B/C/D A\B —— A/C/D
etc. etc.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Sketch of CCG Formalism: Example
>B0: A/B B — A
f X f(x)

>B1.: A48 B/g — AIC

Au f(g(u))

VP/N
Au bribed(the(u))

VP
bribed(the(aide))

VP
bribed(the(aide))

>B0 >B1

VP/N
Au bribed(the(u))

P/NP NP VP/NP NP/N

g) bribed the

>B1

NP/N VP/NP NP/N
bribed the

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

A Solution to Spurious Ambiguity: The Goal

<
\

bribed(the(aide))

Exactly one parse per reading.

(Efficiently suppress all other parses.)

VP/NP NP
bribed

>B0

NP/N N
the aide

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

A Solution to Spurious Ambiguity: The Strategy

How can we rule out extra parses?

Yes, allow all of CCG’s nhon—-standard constituents,

both when useful [D’Amato said Clinton tried],
and [maybe he said she failed], to bribe that aide.

and when useless. [D’Amato said Clinton tried] to bribe that aide.

BUT:

/ 1 parse not 5 / 1 parse not 5

[[D’Amato said Clinton tried] [to bribe that aide]]

N ~ /

assemble 1 parse not 25

and in this case, disallow even that 1 parse!

(but do allow: [[D’Amato] [said Clinton tried to bribe that aide]])

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

A Solution to Spurious Ambiguity: The Tactics

Standard kind of spurious ambiguity:
Forward (or backward) "chains"

VP/NP NP/N N A/A A/B B\C/D/E E/F F\G
2 parses 14 parses
The OUTPUT of forward composition (>B1, >B2, >B3, ..)

may not be the primary (left) INPUT to any forward rule.
(>BO, >B1, >B2, >B3 ..))

-

The OUTPUT of backward composition (>B1, >B2, >B3, ..)

may not be the primary (right) INPUT to any backward rule.
(>B0, >B1, >B2, >B3 ...)

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

A Solution to Spurious Ambiguity: The Tactics in Action

-

The OUTPUT of forward composition (>B1, >B2, >B3, ..))

may not be the primary (left) INPUT to any forward rule.
(>B0, >B1, >B2, >B3 ..)

VP VP
bribed(the(aide)) violates bribed(the(aide))
o .
$BO constramt constraint
VP/NP NP
>B0
NP/N VP/NP NP/N

(a "normal—-form" tree)

Jason Eisner, U. Penn Efficient Normal—-Form Parsing for CCG

A Solution to Spurious Ambiguity: The Result

For CCG with the generalized composition rules (including mixed),
these tactics

(1) eliminate ONLY spurious ambiguity (safety)

(2) eliminate ALL spurious ambiguity (completeness)

1-1 correspondence:

semantic equiv. classes normal-form trees

Va7
LA AN

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: What is Spurious Ambiguity?

s

A\C/G
Az Ny H(g(h(Aw k(z)(w)))(y))

PN

A\C/D D/G |
MAY f(g(xX)(y)) Az h(Aw k(z)(w)) —|___and combines

them semantically
A syntax tree /\ /\
Into an interp.

takes Interps | aj B\C/D DIEVF) EVF/G
of the words, [f g %) K of the phrase.

|

So a syntax tree on n words
computes an n—ary function: MAgAhAK (AzAy f(g(h(Aw k(z)(wW)))(Y)))

Two trees on the same n words are semantically equivalent
Iff they compute the same n—ary semantic function.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: What is Spurious Ambiguity?

Two trees on the same n words are semantically equivalent
Iff they compute the same n—ary semantic function.

What this definition is NOT:

(1) Does this mean "iff they compute the same lambda-term"?

(2) Do we eliminate one parse from each of these pairs?

'quietly [knock twice]] [Tt equals [[2 plus 3] over 4]]

[quietly knock] twice] Tt equals [2 plus [3 over 4]]]
denote denote same
same action truth value ("false")

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: Existence Theorem

Theorem. For every tree T we cut down with our constraints,
we leave standing a semantically equivalent tree, NF(T).

Proof. To construct NF(T) from T, essentially

>Bn > +N

replace throughout with

>B >Bn

Construction used is inductive.
Takes O(1) time, if NF(T’) is known for T* smaller than T.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: Uniqueness Theorem

Theorem. We never leave two equivalent trees standing.

Proof. Given two distinct trees that we keep.
They must differ somewhere syntactically:

SO contain either

one_rule] -
(tree 1) /\ /\
or
another rule
(tree 2) /\ /\
. X y ... Y, Z

Show that they differ semantically as a result.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: The Spurious Ambiguity Lemma

onetree/\ 80
/\\ not spuriously <BO

S/S S\S amb|guous cf. S/S S\U

another tree B0 \/Ie Al
(shown u,o5|de down) <BO g
on same leaves

>B0 >B0
//\450\\spuriously ABONL

S/S S/S S ambiguous cf. S/S S/U U
>B1 =z >B1
>B0 >B0

2 parses on the same sequence of words are spuriously ambiguous ...
Def. ... Iff spuriosity is robust under changes to words’ semantics.
Equiv def. ... iff ambiguity is robust under changes to words’ syntax.

Easy syntactic characterization of a semantic property! I

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Formal Intuitions: Proof of Spurious Ambig. Lemma

A\C/G

no—category syntax tree

Az Xy f(g(h(Aw k(z)(W)))(yY))
>B1

A\C/D D/G />/Bx
MAy f(g(x)(y)) Az hQw k(z)(w))
B2 Bl

B1

PN

A/B B\C/D DI/(E\F) E\F/G
g h k

|

restricted combinator

?\f AgAh A (Az ly (g (h(W k(z)(W)))(¥))

M@

most general polymorphic type

M

n—ary function in model

(B ~A) =(D ~C ~B) (X =D) =(G ~X) =(G ~C %A)} { e — J

can write as (A|C|G) | (X|G) | (DIX) | (BIC|D) | (A|B)

Jason Eisner, U. Penn

Efficient Normal-Form Parsing for CCG

Extensions: The S and T combinators

If we add the S (substitution) combinator, we need a new restriction:

Just as

s

The OUTPUT of (>B1, >B2, >B3, ..))
may not be the primary (left) INPUT to (>BO, >B1, >B2, >B3, ...)

now

s

The OUTPUT of (>B2, >B3, ..))
may not be the primary (left) INPUT to >S

If we add the T (type-raising) combinator,

the ambiguities get much trickier! Work in progress.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Extensions: Making TR visible to the grammar

If type-raising is only lexical,
our definition can’t see this ambiguity:

John likes Mary John likes Mary
NP (S\NP)/NP NP S/(S\NP) (S\NP)/NP NP

parses of different sentences!

and the ambiguity below depends on funny "lexical" properties

of type—-raised arguments, so doesn’t look spurious:
S/NP

<B1
S/INP

_SBIN

parroted yesterday [her stand on Bosnia]
(S\NP)/NP S\S NP

<B2
(S\NP)/NP
B

In fact,

S/NP

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Extensions: Restrictions on CCG rules

In practice, a CCG grammar may state WHICH rules can apply, & WHEN.

Bn > +Nn
NF
>B — >Bn
allowed by CCG allowed by CCG?
but skipped by parser If not, we’re in trouble.

Solution:

Don’t change the theorems, change the parser!

Karttunen 1986: No constraints on parses. Whenever we find a new
parse of a constituent, check that it’s not redundant.

But checking new parse against old parses takes exponential time.

New idea: See if its NF matches an old parse’s. Can do in O(1) time.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Extensions: Finding Equiv Classes instead of NFs

Have proved 1-1 correspondence:
semantic equiv. classes normal-form trees

/)

So use each NF tree as a magnet for its equivalence class:

/

\ /

not found by parser keep just one of these legal parses — e.g. the first,
(disallowed by grammar or the best according to prosody or discourse module

or conflict with prior
"Incremental” commitments)

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

Summary of Results

+ A useful model-theoretic definition of spurious ambiguity
. and a lemma giving a syntactic test for it.

+ Easy, fast parser for CCG with the B and S rules.
Simple constraints provably eliminate all spurious ambiguity.

+ Fast parser still possible if grammar rules have nasty restrictions:
Rapidly group legal (sub)trees by semantic equivalence class -
just have each NF tree point to the legal trees in its class.

Jason Eisner, U. Penn Efficient Normal-Form Parsing for CCG

