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Introduction
� This paper is batting cleanup.

� Pursues some other people’s ideas to their logical 
conclusion.  Results are important, but follow easily 
from previous work. 
� Comprehension: More finite-state woes for OT
� Compilation: How to shoehorn OT into finite-state world

� Other motivations:
� Clean up the notation.  (Especially, what counts as 

“underlying” and “surface” material and how their 
correspondence is encoded.)

� Discuss interface to morphology and phonetics.

� Help confused people.  I get a lot of email. ☺

Computational OT is 
Mainly Finite-State – Why? 

� Good news:
� Individual OT constraints appear to be finite-state

� Bad news (gives us something to work on):
� OT grammars are not always finite-state

compilation

map each input to the best candidate 
(aggregates several constraints (easy part)

and uses them to search (hard part))

evaluate a given candidate  (good or bad? how bad?)

Computational OT is 
Mainly Finite-State – Why? 

� Good news:
� Individual OT constraints appear to be finite-state

� Bad news:
� OT grammars are not always finite-state

� Oops!  Too powerful for phonology.

� Oops!  Don’t support nice computation.
� Fast generation

� Fast comprehension

� Interface with rest of linguistic system or NLP/speech system

Get FS grammar 
by hook 

or by crook

Get FS grammar 
by hook 

or by crook

interface w/ 
morphology, 
phonetics…?

OT constraints 
are generally 
finite-state

OT constraints 
are generally 
finite-state

Eisner 1997

Main Ideas in Finite-State OT

unify these 
maneuvers?

approximate OT

Generation algo. 
from finite-state 

constraints

Generation algo. 
from finite-state 

constraints
Ellison 1994

Finite-state 
constraints 
don’t yield 

FS grammar

Finite-state 
constraints 
don’t yield 

FS grammarFrank & Satta 1998

change OT Eisner 2000

Karttunen 1998; Gerdemann & van Noord 2000

comprehension?

Encode 
funky 

represent-
ations as 
strings

Phonology in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

phonology

morphology

ab + dip or IN + HOUSE

phonetics
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OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

can extract x ∈ Σ *

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

can extract z ∈ ∆ *

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
to evaluate x � z mapping, just evaluate y!
• is z a close variant of x?  (faithfulness)
• is z easy to pronounce?   (well-formedness)

y contains all the info: x, z, & their alignment

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate

OT in the Abstract

x = “abdip” underlying form in Σ*

z = surface form in ∆*

Y = {“aabbddiipp”, 
“aab0[ddii][pb0u]”, 

“[0baa]b0d0i0p0”, …}

many
candidates
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OT in the Abstract

x = “abdip” underlying form in Σ*

z = surface form in ∆*

Y = {“aabbddiipp”, 
“aab0[ddii][pb0u]”, 

“[0baa]b0d0i0p0”, …}

pick the best
candidate

“a[di][bu]”

OT in the Abstract

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = {      “a[di][bu]”,   …}
Pron

Y1(x) = { B,   D,E, …}
constraint 1

Y2(x) = {          D, …}
constraint 2

=“aab0[ddii][pb0u]”,

Don’t worry 
yet about how 
the constraints 

are defined.

Pron

OT Comprehension?  No …

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = {      “a[di][bu]”,   …}

Y1(x) = { B,   D,E, …}
constraint 1

Y2(x) = {          D, …}
constraint 2

=“aab0[ddii][pb0u]”,

Pron

OT Comprehension?  No …

z = “a[di][bu]”

Y2(z) = {A,B,C,D,E,F,G, …}

Gen

Y1(z) = { B,   D,E, …}
constraint 1

constraint 2

Y0(z) = {          D, …}=“aab0[ddii][pb0u]”,
X(z) = {      “abdip”,   …}

x = “abdip” ?

Y0(x) = {A,B,C,D,E,F,G, …}

Y1(x) = { B,   D,E, …}

Y2(x) = {          D, …}

Pron

OT Comprehension Looks Hard!

Gen

Z(x) = {      “a[di][bu]”,   …}

constraint 1

constraint 2

x = “dipu” ?

Y0(x) = {C,D,G,H,L …}

Y1(x) = { D,   H, …}

Y2(x) = {          H, …}

x = “adipu” ?

Y0(x) = {B,D,K,L,M, …}

Y1(x) = {B,D,   L,M, …}

Y2(x) = {   D, M,…}

Pron

OT Comprehension Is Hard!

Gen

Z(x) = { [], …}

constraint 1

Constraint 1: One violation for each a inside brackets   (*[a])
or b outside brackets (*b)

x = aabbb

Y0(x) = {[aabbb], aabbb}

Y1(x) = {[aabbb]}

x = aabb

Y0(x) = {[aabb], aabb}

Y1(x) = {[aabb], aabb}

possible x’s are all strings where # a’s ≤ # b’s !  Not a regular set.
x = aaabb

Y0(x) = {[aaabb], aaabb}

Y1(x) = {  aaabb}
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OT Comprehension Is Hard!
Constraint 1: One violation for each a inside brackets

or b outside brackets

possible x’s are all strings where # a’s ≤ # b’s !  Not a regular set.

� The constraint is finite-state (we’ll see what this means)
� Also, can be made more linguistically natural

� If all constraints are finite-state:
� Already knew: Given x, set of possible z’s is regular (Ellison 1994)

� That’s why Ellison can use finite-state methods for generation
� The new fact:  Given z, set of possible x’s can be non-regular 

� So finite-state methods probably cannot do comprehension
� Stronger than previous Hiller-Smolensky-Frank-Satta result that the 

relation (x,z) can be non-regular

Possible Solutions

1. Eliminate nasty constraints
� Doesn’t work: problem can arise by nasty grammars 

of nice constraints  (linguistically natural or primitive-OT)

2. Allow only a finite lexicon
� Then the grammar defines a finite, regular relation
� In effect, try all x’s and see which ones � z

� In practice, do this faster by precompilation & lookup

� But then can’t comprehend novel words or phrases
� Unless lexicon is “all forms of length < 20”; inefficient?

3. Make OT regular “by hook or by crook”

In a Perfect World, Y0, Y1, Y2, … Z 
Would Be Regular Relations (FSTs)  

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = {      “a[di][bu]”,   …}
Pron

Y1(x) = { B,   D,E, …}
constraint 1

Y2(x) = {          D, …}
constraint 2

Y0 = Gen
is regular

construct
Y1 from Y0

construct
Y2 from Y1

whole 
system Z = 
Y2 o Pron

In a Perfect World, Compose FSTs
To Get an Invertible, Full-System FST

x = “abdip”

Z(x) = “a[di][bu]”

phonology

morphology

ab + dip or IN + HOUSE

Gen

Pron

phonetics

adibu or

language model FSA

pronunciation
“dictionary” FST
(built by OT!)

acoustic 
model 
FST

How Can We Make Y0, Y1, Y2, … Z 
Be Regular Relations (FSTs) ?

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = {      “a[di][bu]”,   …}
Pron

Y1(x) = { B,   D,E, …}
constraint 1

Y2(x) = {          D, …}
constraint 2

Need to talk now about 
what the constraints say
and how they are used.

A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

Yi+1(x) = {[aabbb]}

One violation for 
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {    aab0[ddii][pb0u], …}

One violation for each 
surface coda consonant: b], p], etc.

break into 2 steps
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A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

One violation for 
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

One violation for each 
surface coda consonant: b], p], etc.

Yi+1(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabbb]} Yi+1(x) = {    aab0[ddii][pb0u], …}

Yi+1(x) = {[aabbb], aabbb}

constraint

harmonic
pruning

A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

One violation for 
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

One violation for each 
surface coda consonant: b], p], etc.

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u], …

Yi+1(x) = {[aabbb]} Yi+1(x) = {    aab0[ddii][pb0u], …}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

constraint

harmonic
pruning

Why Is This View “General”?

� Constraint doesn’t just count �’s but marks their location
� We might consider other kinds of harmonic pruning

� Including OT variants that are sensitive to location of �

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u], 

Yi+1(x) = {[aabbb]} Yi+1(x) = {    aab0[ddii][pb0u], …}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

constraint

harmonic
pruning

The Harmony Ordering

� An OT grammar really has 4 components:
� Gen, Pron, harmony ordering, constraint seq.

� Harmony ordering compares 2 starred 
candidates that share underlying material:
� Traditional OT says “fewer stars is better”
� aab0[ddii][pb0u] > [aabb�][ddiipp�] “0 beats 2”
� [a�a�bbb] > aab�b�b� “2 beats 3”
� Unordered: [a�a�bb],  aab�b� “2 vs. 2”
� Unordered: aab0[ddii][pb0u], aab�b�b� “abdip vs. aabbb” 

language-specific

Regular Harmony Orderings

� A harmony ordering > is a binary relation
� If it’s a regular relation, it can be computed by a 

finite-state transducer H
� H accepts (q,r) iff q > r  (e.g., [a�a�bbb] > aab�b�b�)

� H(q) = range(q o H) = {r: q > r}
“set of r’s that are worse than q”

� H(Q) = range(Q o H) = Uq∈ Q{r: q > r}
“set of r’s that are worse than something in Q”

(or if Q is an FST, worse than some output of Q)

Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r}    (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

� Yi is FST that maps each x to its optimal
candidates under first i constraints

By induction, assume it’s regular!
Note: Yi(x) ∩ Yi(x’) = ∅

� range(Yi+1 o H) is set of all suboptimal 
starred candidates – those comparable 
to, but worse than, something in Yi+1

Yi(x) = {[aabbb], aabbb}

{[a�a�bbb]}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

Yi+1(x) = {[aabbb]}

� Yi+1 = Yi o Ci+1 maps each x to same 
candidates, but starred by constraint i+1

Ci+1
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Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r}    (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

Yi(x) = {[aabbb], aabbb}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u],

{[a�a�bbb]}

Yi+1(x) = {[aabbb]}

{    aab0[ddii][pb0u], …}

Yi+1(x) = {    aab0[ddii][pb0u], …}

� range(Yi+1 o H) is set of all suboptimal 
starred candidates – those comparable 
to, but worse than, something in Yi+1

to be removed!

Ci+1

[]a[a�b]b�b�

Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r}    (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

Yi(x) = {[aabbb], aabbb}

{[a�a�bbb]}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

� Yi is FST that maps each x to its optimal
candidates under first i constraints

Note: Yi(x) ∩ Yi(x’) = ∅

Yi+1(x) = {[aabbb]}

� Yi+1 = Yi o Ci+1 maps each x to same 
candidates, but starred by constraint i+1

� range(Yi+1 o H) is set of all suboptimal 
starred candidates – those comparable 
to, but worse than, something in Yi+1

� Delete �’s to get Yi+1
(by composition with another FST)

Ci+1

� Yi+1 o ~range(Yi+1 o H) maps x to just 
the Ci+1-optimal candidates in Yi+1(x) 

� An OT grammar has 4 components:
� Gen, Pron, constraints, harmony ordering 

� Theorem (by induction): 
� If all of these are regular relations, then 

so is the full phonology Z.

What Have We Proved?

Y0(x)

Z(x)

Y1(x)

Y2(x)

C1

C2

x
Y0
Y1Y2Z

Gen

Pron

� Z = (Gen ooH C1 ooH C2) o Pron
where Y ooH C  =  Y o C o ~range(Y o C o H) o D

� Generalizes Gerdemann & van Noord 2000

� Operator notation follows Karttunen 1998

Consequences: 
A Family of Optimality Operators ooH

� Y o C Inviolable constraint (traditional composition)
� Y ooH C Violable constraint with harmony ordering H
� Y o+ C Traditional OT: harmony compares # of stars

Not a finite-state operator!

� Y oo C: Binary constraint: “no stars” > “some stars”

This H is a regular relation:
Can build an FST that accepts (q,r)
iff  q has no stars and r has some stars,
and q,r have same underlying x

Therefore oo is a finite-state operator!
If Y is a regular relation and C is a regular constraint, 
then Y oo C is a regular relation

q  >  r

Consequences: 
A Family of Optimality Operators ooH

� Y o C Inviolable constraint (traditional composition)
� Y ooH C Violable constraint with harmony ordering H
� Y o+ C Traditional OT: harmony compares # of stars

Not a finite-state operator!

� Y oo C: Binary constraint: “no stars” > “some stars”
� Y oo3 C Bounded constraint: 0 > 1 > 2 > 3 = 4 = 5 …

Frank & Satta 1998; Karttunen 1998
Yields big approximate FSTs that count

� Y oo⊂ C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000
Exact for many grammars, though not all

� Y o> C Directional constraint  (Eisner 2000)
Y <o C Non-traditional OT – linguistic motivation

Consequences: 
A Family of Optimality Operators ooH

� For each operator, the paper shows how to construct H as 
a finite-state transducer.

� Z = (Gen ooH C1 ooH C2) o Pron becomes, e.g.,
� Z = (Gen oo C1 oo3 C2) o Pron 
� Z = (Gen o⊂ C1 oo C2) o Pron
� Z = (Gen o> C1 <o C2) o Pron

For each operator, the paper shows how to construct H as a finite-state transducer.
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� Y oo⊂ C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000

Exact for many grammars, not all

� As for many harmony orderings, ignores surface symbols.  
Just looks at underlying and starred symbols.

Subset Approximation

a�b c d�e

a�b�c d�e�>

a�b c d�e 

a�b�c d e�

incomparable;
both survive

top candidate wins

� Y o> C Directional constraint  (Eisner 2000)
Y <o C Non-traditional OT – linguistic motivation

� As for many harmony orderings, ignores surface symbols.  
Just looks at underlying and starred symbols.

Directional Constraints

a�b c d�e

a�b�c d�e�>

a�b c d�e �

a�b�c d e

always same result as subset approx
if subset approx has a result at all

if subset approx has a problem, 
resolves constraints directionally

top candidate wins under o>
bottom candidate wins under <o

Seems to be what languages do, too.

Directional Constraints

� So one nice outcome of our construction 
is an algebraic construction for 
directional constraints – much easier to 
understand than machine construction.

Interesting Questions

� Are there any other optimality operators 
worth considering?  Hybrids?

� Are these finite-state operators useful for 
filtering nondeterminism in any finite-state 
systems other than OT phonologies?

Get FS grammar 
by hook 

or by crook

Get FS grammar 
by hook 

or by crook

OT constraints 
are generally 
finite-state

OT constraints 
are generally 
finite-state

Eisner 1997

Summary

unify these 
maneuvers?

approximate OT

Generation algo. 
from finite-state 

constraints

Generation algo. 
from finite-state 

constraints
Ellison 1994

Finite-state 
constraints 
don’t yield 

FS grammar

Finite-state 
constraints 
don’t yield 

FS grammarFrank & Satta 1998

change OT Eisner 2000

Karttunen 1998; Gerdemann & van Noord 2000

comprehension?NO
YES – everything 
works great if harmony 
ordering is made regularand more

FIN


