Comprehension & Compilation in Optimality Theory

Jason Eisner

Johns Hopkins University

July 8, 2002 — ACL

Introduction

- This paper is batting cleanup.
 - Pursues some other people's ideas to their logical conclusion. Results are important, but follow easily from previous work.
 - Comprehension: More finite-state woes for OT
 - Compilation: How to shoehorn OT into finite-state world
- Other motivations:
 - Clean up the notation. (Especially, what counts as "underlying" and "surface" material and how their correspondence is encoded.)
 - Discuss interface to morphology and phonetics.
 - Help confused people. I get a lot of email. ☺

Computational OT is Mainly Finite-State - Why?

- Good news: evaluate a given candidate (good or bad? how bad?)
 - Individual OT constraints appear to be finite-state

compilation

- Bad news (gives something to work on):
 - OT grammars are not always finite-state

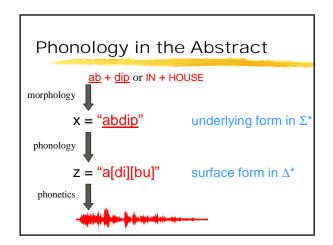
map each input to the best candidate

(aggregates several constraints (easy part) and uses them to search (hard part))

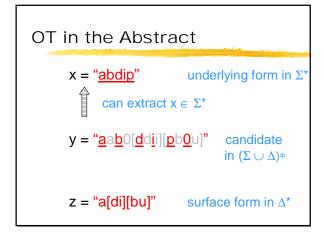
Computational OT is Mainly Finite-State – Why?

- Good news:
 - Individual OT constraints appear to be finite-state
- Bad news:
- OT grammars are not always finite-state
- Oops! Too powerful for phonology.
- Oops! Don't support nice computation.
 - Fast generation
 - Fast comprehension
 - Interface with rest of linguistic system or NLP/speech system

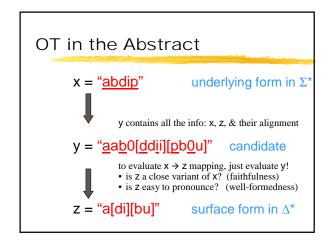
Main Ideas in Finite-State OT Encode Generation algo OT constraints from finite-state are generally epresentconstraints ations as finite-state strings Eisner 1997 comprehension? morphology, phonetics. Finite-state constraints don't yield Get FS grammar by hook < change OT Eisner 2000 or by crook < approximate OT FS grammar



OT in the Abstract $x = \text{``abdip''} \qquad \text{underlying form in } \Sigma^*$ $y = \text{``aab0[ddii][pb0u]''} \qquad \text{candidate} \\ \text{in } (\Sigma \cup \Delta)^*$ $z = \text{``a[di][bu]''} \qquad \text{surface form in } \Delta^*$

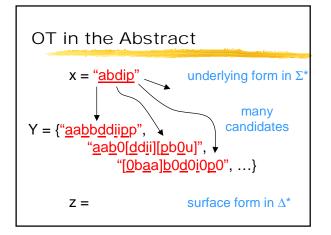


```
OT in the Abstract x = \text{``abdip''} \qquad \text{underlying form in } \Sigma^* y = \text{``aab0[ddii][pb0u]''} \qquad \text{candidate} \\ \text{in } (\Sigma \cup \Delta)^* \\ \text{can extract } z \in \Delta^* \\ z = \text{``a[di][bu]''} \qquad \text{surface form in } \Delta^*
```



```
OT in the Abstract

x = "\underline{abdip}" \qquad \text{underlying form in } \Sigma^*
y = "\underline{aab0}[\underline{ddii}][\underline{pb0}u]" \qquad \text{candidate}
z = "a[\underline{di}][\underline{bu}]" \qquad \text{surface form in } \Delta^*
```



```
OT in the Abstract  x = \text{``abdip''} \qquad \text{underlying form in } \Sigma^*   Y = \{\text{``aabbddiipp''}, \qquad \text{pick the best candidate}   \text{``aab0[ddii][pb0u]''}, \qquad \text{candidate}   \text{``[0baa]b0d0i0p0''}, \ldots \}   z = \text{``a[di][bu]''} \qquad \text{surface form in } \Delta^*
```

```
OT in the Abstract

\begin{array}{cccc}
x &= \text{``abdip''} && \text{Don't worry} \\
\text{Gen} && \text{yet about how} \\
Y_0(x) &= \{A,B,C,D,E,F,G,\ldots\} && \text{the constraints} \\
&\text{constraint 1} && \text{are defined.} \\
Y_1(x) &= \{B, D,E,\ldots\} \\
&\text{constraint 2} && \text{prob} \\
Y_2(x) &= \{D,=\text{``aab0[ddii][pb0ul]''},\ldots\} \\
&& Z(x) &= \{\text{``a[di][bu]''},\ldots\}
\end{array}
```

```
OT Comprehension? No ...

x = "abdip"

Y_0(x) = \{A,B,C,D,E,F,G, ...\}

constraint 1 

Y_1(x) = \{B, D,E, ...\}

constraint 2 

Y_2(x) = \{D, e^{-aab0[addin[bb0u]"}, ...\}

Z(x) = \{ a[di][bu]", ...\}
```

```
OT Comprehension? No ...

X(z) = \{ \frac{abdip}{a}, \dots \}

Y_0(z) = \{ D, \frac{ab0[ddii][pb0u]}{a}, \dots \}

Y_1(z) = \{ B, D, E, \dots \}

Y_2(z) = \{ A, B, C, D, E, F, G, \dots \}

Y_2(z) = [a[di][bu]]
```

```
OT Comprehension Looks Hard!

x = \text{"abdip"}?

Gen

Y_0(x) = \{A,B,C,D,E,F,G,...\}

Y_0(x) = \{C,D,G,H,L...\}

Y_1(x) = \{B,D,E,...\}

Y_1(x) = \{B,D,E,...\}

Y_1(x) = \{D,H,...\}

Y_1(x) = \{B,D,L,M,...\}

constraint 2

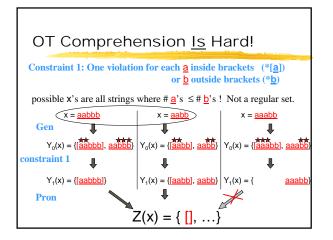
Y_2(x) = \{D,...\}

Y_2(x) = \{H,...\}

Y_2(x) = \{D,M,...\}

Pron

Z(x) = \{\text{"a[di][bu]"},...\}
```



OT Comprehension Is Hard!

Constraint 1: One violation for each <u>a</u> inside brackets or <u>b</u> outside brackets

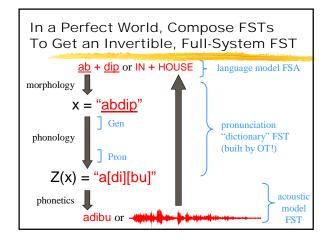
possible x's are all strings where $\# \underline{\mathbf{a}}$'s $\leq \# \underline{\mathbf{b}}$'s! Not a regular set.

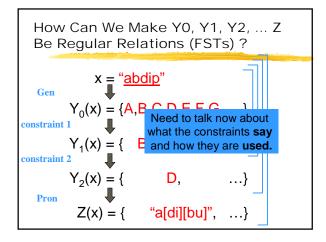
- The constraint is finite-state (we'll see what this means)
- Also, can be made more linguistically natural
- If all constraints are finite-state:
 - Already knew: Given x, set of possible z's is regular (Ellison 1994)
 That's why Ellison can use finite-state methods for generation
 - The new fact: Given z, set of possible x's can be non-regular
 So finite-state methods probably cannot do comprehension
 - Stronger than previous Hiller-Smolensky-Frank-Satta result that the relation (x,z) can be non-regular

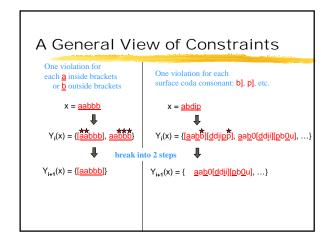
Possible Solutions

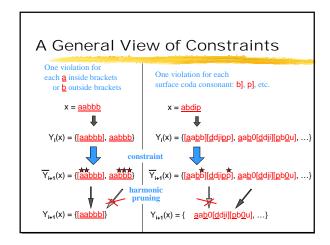
- 1. Eliminate nasty constraints
 - Doesn't work: problem can arise by nasty grammars of nice constraints (linguistically natural or primitive-OT)
- 2. Allow only a finite lexicon
 - Then the grammar defines a finite, regular relation
 - In effect, try all x's and see which ones → z
 In practice, do this faster by precompilation & lookup
 - But then can't comprehend novel words or phrases
 Unless lexicon is "all forms of length < 20"; inefficient?</p>
- 3. Make OT regular "by hook or by crook"

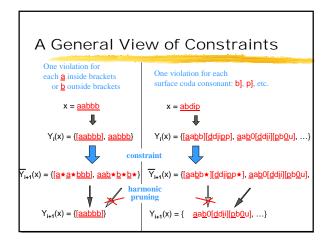


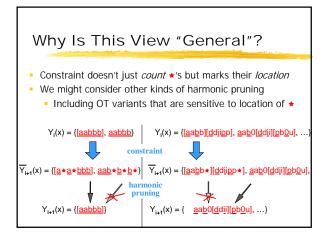


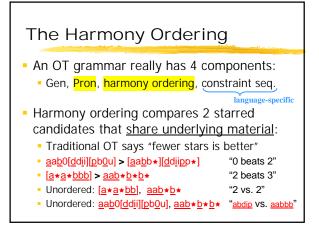


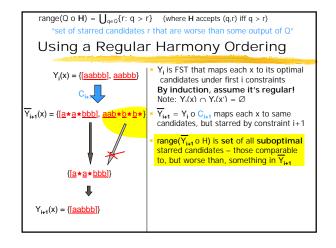


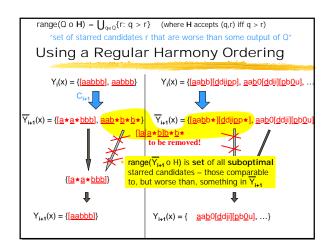


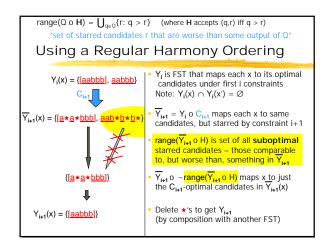












What Have We Proved? ■ An OT grammar has 4 components: ■ Gen, Pron, constraints, harmony ordering ■ Theorem (by induction): ■ If all of these are regular relations, so is the full phonology Z. ■ Z = (Gen oo_H C1 oo_H C2) o Pron where Y oo_H C = Y o C o ~range(Y o C o H) o D ■ Generalizes Gerdemann & van Noord 2000 ■ Operator notation follows Karttunen 1998

Consequences: A Family of Optimality Operators 00_H Inviolable constraint (traditional composition) Y o C Y 00H C Violable constraint with harmony ordering H Y o + CTraditional OT: harmony compares # of stars Not a finite-state operator Binary constraint: "no stars" > "some stars" | q > r Y oo C: This H is a regular relation: Can build an FST that accepts (q,r) iff q has no stars and r has some stars, and q,r have same underlying x Therefore oo is a finite-state operator! If Y is a regular relation and C is a regular constraint, then Y oo C is a regular relation

Consequences: A Family of Optimality Operators 00H - YoC Inviolable constraint (traditional composition) Y 00_H C Violable constraint with harmony ordering H Y o+ C Traditional OT: harmony compares # of stars Not a finite-state operator! Y oo C: Binary constraint: "no stars" > "some stars" Bounded constraint: 0 > 1 > 2 > 3 = 4 = 5... Y oo₃ C Frank & Satta 1998; Karttunen 1998 Yields big approximate FSTs that count Y oo C Subset approximation to o+ (traditional OT) Gerdemann & van Noord 2000 Exact for many grammars, though not all $Y \circ C Y < 0 C$ Directional constraint (Eisner 2000) Non-traditional OT – linguistic motivation

For each operator, the paper shows how to construct H as a finite-state transducer.

Consequences:

A Family of Optimality Operators ⁰⁰_H

For each operator, the paper shows how to construct H as a finite-state transducer.

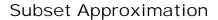
Z = (Gen ⁰⁰_H C1 ⁰⁰_H C2) ° Pron becomes, e.g.,

Z = (Gen ⁰⁰ C1 ⁰⁰₃ C2) ° Pron

Z = (Gen ⁰ C1 ⁰ C2) ° Pron

Z = (Gen ⁰ C1 ⁰ C2) ° Pron

Gen ⁰ C1 ⁰ C2) ° Pron



- Y oo⊂ C Subset approximation to o+ (traditional OT) Gerdemann & van Noord 2000 Exact for many grammars, not all
- As for many harmony orderings, ignores surface symbols.
 Just looks at underlying and starred symbols.

top candidate wins

incomparable; both survive

Directional Constraints

- Y o > C Directional constraint (Eisner 2000)
 Y < o C Non-traditional OT linguistic motivation
- As for many harmony orderings, ignores surface symbols.
 Just looks at underlying and starred symbols.

<u>a*b</u> ¢ <u>d*e</u>
> <u>a*b</u>*c <u>d*e</u>*

always same result as subset approx if subset approx has a result at all

a*b c d*e *
a*b*c d e

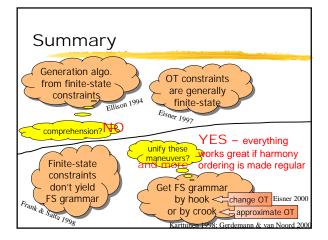
if subset approx has a problem, resolves constraints directionally top candidate wins under o> bottom candidate wins under <0 Seems to be what languages do, too.

Directional Constraints

 So one nice outcome of our construction is an algebraic construction for directional constraints – much easier to understand than machine construction.

Interesting Questions

- Are there any other optimality operators worth considering? Hybrids?
- Are these finite-state operators useful for filtering nondeterminism in any finite-state systems other than OT phonologies?



FIN