Comprehension & Compilation
in Optimality Theory

Jason Eisner
Johns Hopkins University

July 8, 2002 — ACL

Introduction

This paper is batting cleanup.
Pursues some other people’s ideas to their logical
conclusion. Results are important, but follow easily
from previous work.
Comprehension: More finite-state woes for OT
Compilation: How to shoehorn OT into finite-state world

Other motivations:

Clean up the notation. (Especially, what counts as
“underlying” and “surface” material and how their
correspondence is encoded.)

Discuss interface to morphology and phonetics.

Help confused people. | get a lot of email. ©

Computational OT is
Mainly Finite-State - Why?

Good news: evaluate a given candidate (good or bad? how bad?)

Individual OT|constraints appear to be finite-state

compilation
Bad news (giv. something to work on):
OT|grammars are not always finite-state
map each input to the best candidate

(aggregates several constraints (easy part)
and uses them to search (hard part))

Computational OT is
Mainly Finite-State - Why?

Good news:
Individual OT constraints appear to be finite-state

Bad news:
OT grammars are not always finite-state
Oops! Too powerful for phonology.
Oops! Don't support nice computation.
Fast generation
Fast comprehension

Interface with rest of linguistic system or NLP/speech system

Main ldeas in Finite-State OT

Generation algo. . Encode
from finite-state OT constraints funky
; are generally represent-
constraint: =t .
heon 1994 finite-statg at'tOUS as
I strings
— “ner 199, =]
.
interface w/

morphology,
ics.,.?

Finite-state
constraints
don't yield

unify these
maneuvers?
(=1

Phonology in the Abstract

ab + dip or IN + HOUSE

morphology 1

X = “abdip”

phonology l

z = “a[di][bu]”

phonetics 1

underlying form in =*

surface form in A*

OT in the Abstract

“

X =

|

y = “aabO0[ddii][pb0u]” candidate
1 in (2 ()0

z = “a[di][bu]”

abdip” underlying form in =*

surface form in A*

OT in the Abstract

X = “abdip” underlying form in =*

can extract x [*

> ||

“

y = "aab0[ddi|[pb0

candidate
in (Z)0

surface form in A*

z = “a[di][bu]”

OT in the Abstract

X = “abdip” underlying form in =*

y = “aab0[ddii][pbOu]” candidate
in (Z Q)0
é can extract z [\ *

z = “a[di][bu]”

surface form in A*

OT in the Abstract

X = “abdip” underlying form in =*

1 y contains all the info: x, z, & their alignment

y = “aabO0[ddii][pb0u]” candidate

to evaluate X > z mapping, just evaluate y!
« is z a close variant of x? (faithfulness)
* is z easy to pronounce? (well-formedness)

surface form in A*

z = “a[di][bu]”

OT in the Abstract

X = “abdip” underlying form in =*

|

y = “aabO0[ddii][pb0u]” candidate

|

z = “a[di][bu]”

surface form in A*

OT in the Abstract
X = “abdip” - underlying form in =*

Y= {“éabbgdi®<

“aab0[ddii][pbOu]”,

many
candidates

Z= surface form in A*

OT in the Abstract

X = “abdip” derlying f in X*

~ underlying form in
pick the best
candidate
L)

z = “a[di][bu]”

surface form in A*

OT in the Abstract

OT Comprehension? No ...

X = “abdip”
Gen
Y,(x) ={AB,C,D,E,F,G, ...}

constraint 1 t

Y,)={ B, DE, ..}
constraint 2 t) '\;‘“nguv'
v,9={ ==

Pron
Z)={ “a[dibu]’, ..}

TR ourtuory
h :
Yo(X) = {AB,C,D,EF,G, ...} aredetinen
constraint 1 ‘
Y,)={ B, DE ..
constraint 2 ‘ sropOul’s
_enghO[ddiillRP=
Y,(x) = { D7
Pron)
Z(x)={ “a[di][bu]’, ...}
OT Comprehension? No ...
X(z)={ “abdip”, ...} \
Gen t —egaD O\Qd";‘“gbgux ,
Yo(2) = { D Y
constraint 1 t
Y(2)={ B, DE, ..}

constraint 2 t
YZ(Z) = {A,B,C,D,E,F,G, }

Pron

z = “a[di][bu]”

OT Comprehension Looks Hard!

x = “abdip” ? x = "dipu” ? x = “adipu” ?

Gen 3 J

Yo(x) ={A,B,C,D,E,F,G, ..}| Yo(x) ={C,D,G,H,L ..} | Yo(x) ={B,D,K,LM, ...}
constraint 1 3 3 3

Y,0={ B, DE, .}/ Y,®0={ D, H ..}|Y,®={BD, LM,..}
constraint 2 3 3 3

Ya(x) ={ D, < Ya(X) ={ Hoow b Y,0={ D, M.}

Pron wu ~ "4

Z(x)={ “a[di][bu]’, ...}

OT Comprehension Is Hard!

Constraint 1: One violation for each a inside brackets (*[a])
or b outside brackets (*b)

possible x’s are all strings where # a’s <#b’s! Nota regular s

X = aabbb X = aaabb

Gen LS
Yo(x) = {[ggbbb s aa*tr)*bg} Yo(x) = {[ggbb s aaﬁg} Yo(x) = {[aaabb],

constraint 1 3 3 3

Y, (x) = {[aabbb]} Y,(x) = {[aabb], aabb} | Y,(x) = {
Pron 34

Z(x) ={1[, ...}

et.

aaa*bg

aaabb}

OT Comprehension Is Hard! Possible Solutions

Constraint 1: One violation for each a inside brackets

or b outside brackets Eliminate nasty constraints

. . Doesn’t work: problem can arise by nasty grammars
g 's <#b’s! ;)
possible x’s are all strings where # a’s <#Db’s ! Nota regular set. of nice constraints (linguistically natural or primitive-OT)

The constraint is finite-state (we'll see what this means) Allow onIy a finite lexicon

Also, can be made more linguistically natural

Then the grammar defines a finite, regular relation
If all constraints are finite-state:) .
) . . In effect, try all xX’s and see which ones > z
Already knew: Given x, set of possible z's is regular (Ellison 1994)) , o
,) L] In practice, do this faster by precompilation & lookup
That's why Ellison can use finite-state methods for generation

The new fact: Given z, set of possible x's can be non-regular
So finite-state methods probably cannot do comprehension

Stronger than previous Hiller-Smolensky-Frank-Satta result that the Make OT regular “by hook or by crook”
relation (x,z) can be non-regular

But then can't comprehend novel words or phrases
Unless lexicon is “all forms of length < 20”; inefficient?

In a Perfect World, YO, Y1, Y2, ... Z In a Perfect World, Compose FSTs
Would Be Regular Relations (FSTs) To Get an Invertible, Full-System FST
b = ab + dip or IN + HOUSE } language model FSA
X = Ha I ”
Gen ‘ abaip b = Gen morphology 1
Yo(X) ={A.B,C,D,E,F.G, ..} |[|*"™ x = “abdip”
constraint 1 ‘ copstruc\t{o] Gen pronunciation
rom honology “dictionary” FST
Y,(x)={ B, D, P :
constraint 2 1()‘{ }— construct] Pron (built by OTY
2 from Y . .
Y ,(X) i{ D,) Z(x) = “a[di][bu]
Pron —'| whole honetics 1 acoustic
“ . " system Z 5 p
Z(X) = { a[dl][bU] , } _|Y2oPron adibu or WW»—« n?:(g—e'

How Can We Make YO, Y1,Y2, ..Z

Be Regular Relations (FSTs) ? A General View of Constraints

One violation for

—_ in” each a inside brackets One violation for each
X= abd|Q or Boulside brackets surface coda consonant: b], p], etc.
Gen ‘ -
—_ X = aabbb X = abdi
Yo(x) = {A, ' —‘;
constraint 1 ‘

V) = (Bbbb], a8} | Y, = {laabblladiipf], aabolddilipbou], ..}

‘ break into 2 steps ‘

Y1(x) =1

constraint 2

Yo(x) ={
L 2

-

Yisa(x) = {{2abbbl} Yia(x) ={ aabo[ddii][pbOu], ...}

D,

Pron

zZx)={ “aldibu]’, ..}

A General View of Constraints

One violation for
each a inside brackets
or b outside brackets

One violation for each
surface coda consonant: b], p], etc.

X = aabbb x = abdip
4 J

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aabO[ddiil[pbOu], ...}

‘ constraint ‘

Vs = {(Bbbb], adBEB} | ¥;,,00 = {faabBiddiinB], aabo[ddiipboul, ...}
harmonic

L L

Yi.1(x) = {[aabbb]} Y.,.(x) ={ aabO[ddii][pb0u], .

A General View of Constraints

One violation for
each a inside brackets
or b outside brackets

One violation for each
surface coda consonant: b], p], etc.

X = aabbb x = abdip
4 J

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aabO[ddii][pbOu], ..

‘ constraint ‘

harmonic

L

Yi.1(x) = {[aabbb]} Y.,.(x) ={ aabO[ddii][pb0u], .

}

_Hl(x) ={[a*xaxbbb], aabxb*b} Vul(x) = {[aabb*][ddiipp*], aab0[ddii][pb0Ou],

Why Is This View “General”?

Constraint doesn't just count *'s but marks their /ocation
We might consider other kinds of harmonic pruning
Including OT variants that are sensitive to location of »

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aabO[ddii][pbOu], ...

‘ constraint ‘

Viua(x) = {[axaxbbb], aabxbxb#}{ ¥,.,(x) = {laabb+][ddiipp+], aab0[ddii][pbOul,

harmonic
% pruning /

¥1.1(x) = {[2abbbl} Yia() ={ aabolddji[pbou], .

The Harmony Ordering

An OT grammar really has 4 components:
Gen, Pron, harmony ordering, constraint seq.
language-specific
Harmony ordering compares 2 starred
candidates that share underlying material:
Traditional OT says “fewer stars is better”

aab0[ddii][pbOu] > [aabb#][ddiipp*] “0 beats 2"
[axaxbbb] > aabxbxb* “2 beats 3"
Unordered: [a*axbb], aabxb* “2vs. 2"

Unordered: aabO[ddii][pbOu], aabxb*b+ “abdip vs. aabbb”

Regular Harmony Orderings

A harmony ordering > is a binary relation

If it's a regular relation, it can be computed by a
finite-state transducer H

H accepts (q,r) iff @ > r (e.g.,, [axaxbbb] > aabxbxbx*)

H(a) = range(q o H) = {r: q >r}

“set of r's that are worse than q”
H(Q) = range(Q o H) = Ugnolr: a > 1}

“set of r's that are worse than something in Q”
(or if Q is an FST, worse than some output of Q)

range(Q o H) = Uun{r: q>r} (where H accepts (q,r) iff g > 1)
“set of starred candidates r that are worse than some output of Q”

Using a Regular Harmony Ordering

_ Y; is FST that maps each x to its optimal
Yi(x) = {[aabbb], aabbb} candidates under first i constraints

c ' By induction, assume it’s regular!
s Note: Y.(x) n Y.(x) =0

Hl(x) {[axaxbbb], aabxbxb*} Vﬂ =Y, 0C,, , maps each x to same

' % candidates, but starred by constraint i+1

{la*axbbbl}
14
Yiu1(x) = {[aabbb}

range(?I+1 o H) is set of all suboptimal
starred candidates — those comparable
to, but worse than, something in Y,

range(Q o H) = Uquo{r: q>r} (where H accepts (q,r) iff g > 1)
“set of starred candidates r that are worse than some output of Q”

Using a Regular Harmony Ordering

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aabO[ddii][pbOu], ..

4 4

Viua(x) = {[axaxbbb], aabxbxb#} V.;(x) = {[aabb#][ddiipp*], aabO[ddiil[pb0u

[lgJaxblbxb*
to be removed!

range(7H10 H) is set of all suboptimal
starred candidates — those comparable
{la*a*bbbl} to, but worse than, something in Y,

$ 14

Yina(x) = {{aabbb]} Yi.a(x) ={ aabO[ddiil[pbOul], ...}

range(Q o H) = Uquo{r: q>r} (where H accepts (q,r) iff g > 1)
“set of starred candidates r that are worse than some output of Q”

Using a Regular Harmony Ordering

Y; is FST that maps each x to its optimal

Yi(x) = {[aabbb], aabbb} candidates under first i constraints
C ‘ Note: Y(x) n Y(x) =0

Y.,; = Y; 0 C,,., maps each x to same

Yisa(¥) = {[axaxbbb], aabxbxbx} candidates, but starred by constraint i+1

starred candidates — those comparable

range(?,+1 o H) is set of all suboptimal
to, but worse than, something in Y,

{[axaxbbb]} 7‘40 ~range(7‘+lo H) maps x_to just
‘ the C;,,-optimal candidates in Y,,;(x)
_ Delete »'s to get Y,
Y, = bbb - i+l
»1(X) = {[aabbbl} (by composition with another FST)

What Have We Proved?

An OT grammar has 4 components: Gen
Gen, Pron, constraints, harmony ordering Yo()
Theorem (by induction): ‘ Yt(xc)l
If all of these are regular relations, 3G,
so is the full phonology Z. PI’OHYi(X)
Z(x)

Z = (Gen oo, C1 0o, C2) o Pron
where Yoo, ,C = YoCo~range(YoCoH)oD

Generalizes Gerdemann & van Noord 2000

Operator notation follows Karttunen 1998

Consequences:
A Family of Optimality Operators 00,

YoC Inviolable constraint (traditional composition)

Yoo,C Violable constraint with harmony ordering H

Y o+ C Traditional OT: harmony compares # of stars
Not a finite-state operator!

Y oo C: Binary constraint: “no starsq” : ‘r‘some stars”

This H is a regular relation:
Can build an FST that accepts (q,r)
iff g has no stars and r has some stars,
and g,r have same underlying x
Therefore oo is a finite-state operator!
If Y is a regular relation and C is a regular constraint,
then Y oo C is a regular relation

Consequences:
A Family of Optimality Operators 00,

YoC Inviolable constraint (traditional composition)
Yoo,C Violable constraint with harmony ordering H
Yo+ C Traditional OT: harmony compares # of stars
Not a finite-state operator!
Y oo C: Binary constraint: “no stars” > “some stars”
Y 0o; C Bounded constraint: 0 >1>2>3=4=5 .
Frank & Satta 1998; Karttunen 1998
Yields big approximate FSTs that count
Y o000 C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000
Exact for many grammars, though not all

Yo>C Directional constraint (Eisner 2000)
Y<oC Non-traditional OT — linguistic motivation

Consequences:
A Family of Optimality Operators 00,

For each operator, the paper shows how to construct H as
a finite-state transducer.

Z = (Gen oo, Cl oo, C2) o Pron becomes, e.g.,
Z = (Gen 00 C1 005 C2) o Pron
Z = (Gen o[J C1 oo C2) o Pron
Z = (Gen 0> C1 <o C2) o Pron

Subset Approximation

Y oo C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000
Exact for many grammars, not all

As for many harmony orderings, ignores surface symbols.
Just looks at underlying and starred symbols.

ax dxe ax
> ax d= ax
top candidate wins incomparable;

both survive

Directional Constraints

So one nice outcome of our construction
is an algebraic construction for
directional constraints — much easier to
understand than machine construction.

Summary

Generation algo.
from finite-state
constraints

OT constraints

are generally

heon 1994 finite-statg
&

[S—1 1Sney 199,

o YES - everything

unify these 3 H

orks_ great if harmony
armo-mere~ ordering is made regular

Finite-state
constraints
don't yield

Directional Constraints

Yo>C Directional constraint (Eisner 2000)
Y<oC Non-traditional OT — linguistic motivation

As for many harmony orderings, ignores surface symbols.
Just looks at underlying and starred symbols.

ax dxeg| ar
> ax d=» ax
if subset approx has a problem,
always same result as subset approx resolves constraints directionally
if subset approx has a result at all top candidate wins under 0>

bottom candidate wins under <o
Seems to be what languages do, too.

Interesting Questions

Are there any other optimality operators
worth considering? Hybrids?

Are these finite-state operators useful for
filtering nondeterminism in any finite-state
systems other than OT phonologies?

FIN

