
1

Comprehension & Compilation
in Optimality Theory

Jason EisnerJason Eisner
Johns Hopkins University

July 8, 2002 — ACL

Introduction
� This paper is batting cleanup.

� Pursues some other people’s ideas to their logical
conclusion. Results are important, but follow easily
from previous work.
� Comprehension: More finite-state woes for OT
� Compilation: How to shoehorn OT into finite-state world

� Other motivations:
� Clean up the notation. (Especially, what counts as

“underlying” and “surface” material and how their
correspondence is encoded.)

� Discuss interface to morphology and phonetics.

� Help confused people. I get a lot of email. ☺

Computational OT is
Mainly Finite-State – Why?

� Good news:
� Individual OT constraints appear to be finite-state

� Bad news (gives us something to work on):
� OT grammars are not always finite-state

compilation

map each input to the best candidate
(aggregates several constraints (easy part)

and uses them to search (hard part))

evaluate a given candidate (good or bad? how bad?)

Computational OT is
Mainly Finite-State – Why?

� Good news:
� Individual OT constraints appear to be finite-state

� Bad news:
� OT grammars are not always finite-state

� Oops! Too powerful for phonology.

� Oops! Don’t support nice computation.
� Fast generation

� Fast comprehension

� Interface with rest of linguistic system or NLP/speech system

Get FS grammar
by hook

or by crook

Get FS grammar
by hook

or by crook

interface w/
morphology,
phonetics…?

OT constraints
are generally
finite-state

OT constraints
are generally
finite-state

Eisner 1997

Main Ideas in Finite-State OT

unify these
maneuvers?

approximate OT

Generation algo.
from finite-state

constraints

Generation algo.
from finite-state

constraints
Ellison 1994

Finite-state
constraints
don’t yield

FS grammar

Finite-state
constraints
don’t yield

FS grammarFrank & Satta 1998

change OT Eisner 2000

Karttunen 1998; Gerdemann & van Noord 2000

comprehension?

Encode
funky

represent-
ations as
strings

Phonology in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

phonology

morphology

ab + dip or IN + HOUSE

phonetics

2

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

can extract x ∈ Σ *

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
in (Σ ∪ ∆)∗

can extract z ∈ ∆ *

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate
to evaluate x � z mapping, just evaluate y!
• is z a close variant of x? (faithfulness)
• is z easy to pronounce? (well-formedness)

y contains all the info: x, z, & their alignment

OT in the Abstract

x = “abdip” underlying form in Σ*

z = “a[di][bu]” surface form in ∆*

y = “aab0[ddii][pb0u]” candidate

OT in the Abstract

x = “abdip” underlying form in Σ*

z = surface form in ∆*

Y = {“aabbddiipp”,
“aab0[ddii][pb0u]”,

“[0baa]b0d0i0p0”, …}

many
candidates

3

OT in the Abstract

x = “abdip” underlying form in Σ*

z = surface form in ∆*

Y = {“aabbddiipp”,
“aab0[ddii][pb0u]”,

“[0baa]b0d0i0p0”, …}

pick the best
candidate

“a[di][bu]”

OT in the Abstract

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = { “a[di][bu]”, …}
Pron

Y1(x) = { B, D,E, …}
constraint 1

Y2(x) = { D, …}
constraint 2

=“aab0[ddii][pb0u]”,

Don’t worry
yet about how
the constraints

are defined.

Pron

OT Comprehension? No …

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = { “a[di][bu]”, …}

Y1(x) = { B, D,E, …}
constraint 1

Y2(x) = { D, …}
constraint 2

=“aab0[ddii][pb0u]”,

Pron

OT Comprehension? No …

z = “a[di][bu]”

Y2(z) = {A,B,C,D,E,F,G, …}

Gen

Y1(z) = { B, D,E, …}
constraint 1

constraint 2

Y0(z) = { D, …}=“aab0[ddii][pb0u]”,
X(z) = { “abdip”, …}

x = “abdip” ?

Y0(x) = {A,B,C,D,E,F,G, …}

Y1(x) = { B, D,E, …}

Y2(x) = { D, …}

Pron

OT Comprehension Looks Hard!

Gen

Z(x) = { “a[di][bu]”, …}

constraint 1

constraint 2

x = “dipu” ?

Y0(x) = {C,D,G,H,L …}

Y1(x) = { D, H, …}

Y2(x) = { H, …}

x = “adipu” ?

Y0(x) = {B,D,K,L,M, …}

Y1(x) = {B,D, L,M, …}

Y2(x) = { D, M,…}

Pron

OT Comprehension Is Hard!

Gen

Z(x) = { [], …}

constraint 1

Constraint 1: One violation for each a inside brackets (*[a])
or b outside brackets (*b)

x = aabbb

Y0(x) = {[aabbb], aabbb}

Y1(x) = {[aabbb]}

x = aabb

Y0(x) = {[aabb], aabb}

Y1(x) = {[aabb], aabb}

possible x’s are all strings where # a’s ≤ # b’s ! Not a regular set.
x = aaabb

Y0(x) = {[aaabb], aaabb}

Y1(x) = { aaabb}

4

OT Comprehension Is Hard!
Constraint 1: One violation for each a inside brackets

or b outside brackets

possible x’s are all strings where # a’s ≤ # b’s ! Not a regular set.

� The constraint is finite-state (we’ll see what this means)
� Also, can be made more linguistically natural

� If all constraints are finite-state:
� Already knew: Given x, set of possible z’s is regular (Ellison 1994)

� That’s why Ellison can use finite-state methods for generation
� The new fact: Given z, set of possible x’s can be non-regular

� So finite-state methods probably cannot do comprehension
� Stronger than previous Hiller-Smolensky-Frank-Satta result that the

relation (x,z) can be non-regular

Possible Solutions

1. Eliminate nasty constraints
� Doesn’t work: problem can arise by nasty grammars

of nice constraints (linguistically natural or primitive-OT)

2. Allow only a finite lexicon
� Then the grammar defines a finite, regular relation
� In effect, try all x’s and see which ones � z

� In practice, do this faster by precompilation & lookup

� But then can’t comprehend novel words or phrases
� Unless lexicon is “all forms of length < 20”; inefficient?

3. Make OT regular “by hook or by crook”

In a Perfect World, Y0, Y1, Y2, … Z
Would Be Regular Relations (FSTs)

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = { “a[di][bu]”, …}
Pron

Y1(x) = { B, D,E, …}
constraint 1

Y2(x) = { D, …}
constraint 2

Y0 = Gen
is regular

construct
Y1 from Y0

construct
Y2 from Y1

whole
system Z =
Y2 o Pron

In a Perfect World, Compose FSTs
To Get an Invertible, Full-System FST

x = “abdip”

Z(x) = “a[di][bu]”

phonology

morphology

ab + dip or IN + HOUSE

Gen

Pron

phonetics

adibu or

language model FSA

pronunciation
“dictionary” FST
(built by OT!)

acoustic
model
FST

How Can We Make Y0, Y1, Y2, … Z
Be Regular Relations (FSTs) ?

x = “abdip”

Y0(x) = {A,B,C,D,E,F,G, …}
Gen

Z(x) = { “a[di][bu]”, …}
Pron

Y1(x) = { B, D,E, …}
constraint 1

Y2(x) = { D, …}
constraint 2

Need to talk now about
what the constraints say
and how they are used.

A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

Yi+1(x) = {[aabbb]}

One violation for
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = { aab0[ddii][pb0u], …}

One violation for each
surface coda consonant: b], p], etc.

break into 2 steps

5

A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

One violation for
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

One violation for each
surface coda consonant: b], p], etc.

Yi+1(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabbb]} Yi+1(x) = { aab0[ddii][pb0u], …}

Yi+1(x) = {[aabbb], aabbb}

constraint

harmonic
pruning

A General View of Constraints

x = aabbb

Yi(x) = {[aabbb], aabbb}

One violation for
each a inside brackets

or b outside brackets

x = abdip

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

One violation for each
surface coda consonant: b], p], etc.

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u], …

Yi+1(x) = {[aabbb]} Yi+1(x) = { aab0[ddii][pb0u], …}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

constraint

harmonic
pruning

Why Is This View “General”?

� Constraint doesn’t just count �’s but marks their location
� We might consider other kinds of harmonic pruning

� Including OT variants that are sensitive to location of �

Yi(x) = {[aabbb], aabbb} Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u],

Yi+1(x) = {[aabbb]} Yi+1(x) = { aab0[ddii][pb0u], …}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

constraint

harmonic
pruning

The Harmony Ordering

� An OT grammar really has 4 components:
� Gen, Pron, harmony ordering, constraint seq.

� Harmony ordering compares 2 starred
candidates that share underlying material:
� Traditional OT says “fewer stars is better”
� aab0[ddii][pb0u] > [aabb�][ddiipp�] “0 beats 2”
� [a�a�bbb] > aab�b�b� “2 beats 3”
� Unordered: [a�a�bb], aab�b� “2 vs. 2”
� Unordered: aab0[ddii][pb0u], aab�b�b� “abdip vs. aabbb”

language-specific

Regular Harmony Orderings

� A harmony ordering > is a binary relation
� If it’s a regular relation, it can be computed by a

finite-state transducer H
� H accepts (q,r) iff q > r (e.g., [a�a�bbb] > aab�b�b�)

� H(q) = range(q o H) = {r: q > r}
“set of r’s that are worse than q”

� H(Q) = range(Q o H) = Uq∈ Q{r: q > r}
“set of r’s that are worse than something in Q”

(or if Q is an FST, worse than some output of Q)

Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r} (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

� Yi is FST that maps each x to its optimal
candidates under first i constraints

By induction, assume it’s regular!
Note: Yi(x) ∩ Yi(x’) = ∅

� range(Yi+1 o H) is set of all suboptimal
starred candidates – those comparable
to, but worse than, something in Yi+1

Yi(x) = {[aabbb], aabbb}

{[a�a�bbb]}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

Yi+1(x) = {[aabbb]}

� Yi+1 = Yi o Ci+1 maps each x to same
candidates, but starred by constraint i+1

Ci+1

6

Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r} (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

Yi(x) = {[aabbb], aabbb}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

Yi(x) = {[aabb][ddiipp], aab0[ddii][pb0u], …}

Yi+1(x) = {[aabb�][ddiipp�], aab0[ddii][pb0u],

{[a�a�bbb]}

Yi+1(x) = {[aabbb]}

{ aab0[ddii][pb0u], …}

Yi+1(x) = { aab0[ddii][pb0u], …}

� range(Yi+1 o H) is set of all suboptimal
starred candidates – those comparable
to, but worse than, something in Yi+1

to be removed!

Ci+1

[]a[a�b]b�b�

Using a Regular Harmony Ordering

range(Q o H) = Uq∈ Q{r: q > r} (where H accepts (q,r) iff q > r)

“set of starred candidates r that are worse than some output of Q”

Yi(x) = {[aabbb], aabbb}

{[a�a�bbb]}

Yi+1(x) = {[a�a�bbb], aab�b�b�}

� Yi is FST that maps each x to its optimal
candidates under first i constraints

Note: Yi(x) ∩ Yi(x’) = ∅

Yi+1(x) = {[aabbb]}

� Yi+1 = Yi o Ci+1 maps each x to same
candidates, but starred by constraint i+1

� range(Yi+1 o H) is set of all suboptimal
starred candidates – those comparable
to, but worse than, something in Yi+1

� Delete �’s to get Yi+1
(by composition with another FST)

Ci+1

� Yi+1 o ~range(Yi+1 o H) maps x to just
the Ci+1-optimal candidates in Yi+1(x)

� An OT grammar has 4 components:
� Gen, Pron, constraints, harmony ordering

� Theorem (by induction):
� If all of these are regular relations, then

so is the full phonology Z.

What Have We Proved?

Y0(x)

Z(x)

Y1(x)

Y2(x)

C1

C2

x
Y0
Y1Y2Z

Gen

Pron

� Z = (Gen ooH C1 ooH C2) o Pron
where Y ooH C = Y o C o ~range(Y o C o H) o D

� Generalizes Gerdemann & van Noord 2000

� Operator notation follows Karttunen 1998

Consequences:
A Family of Optimality Operators ooH

� Y o C Inviolable constraint (traditional composition)
� Y ooH C Violable constraint with harmony ordering H
� Y o+ C Traditional OT: harmony compares # of stars

Not a finite-state operator!

� Y oo C: Binary constraint: “no stars” > “some stars”

This H is a regular relation:
Can build an FST that accepts (q,r)
iff q has no stars and r has some stars,
and q,r have same underlying x

Therefore oo is a finite-state operator!
If Y is a regular relation and C is a regular constraint,
then Y oo C is a regular relation

q > r

Consequences:
A Family of Optimality Operators ooH

� Y o C Inviolable constraint (traditional composition)
� Y ooH C Violable constraint with harmony ordering H
� Y o+ C Traditional OT: harmony compares # of stars

Not a finite-state operator!

� Y oo C: Binary constraint: “no stars” > “some stars”
� Y oo3 C Bounded constraint: 0 > 1 > 2 > 3 = 4 = 5 …

Frank & Satta 1998; Karttunen 1998
Yields big approximate FSTs that count

� Y oo⊂ C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000
Exact for many grammars, though not all

� Y o> C Directional constraint (Eisner 2000)
Y <o C Non-traditional OT – linguistic motivation

Consequences:
A Family of Optimality Operators ooH

� For each operator, the paper shows how to construct H as
a finite-state transducer.

� Z = (Gen ooH C1 ooH C2) o Pron becomes, e.g.,
� Z = (Gen oo C1 oo3 C2) o Pron
� Z = (Gen o⊂ C1 oo C2) o Pron
� Z = (Gen o> C1 <o C2) o Pron

For each operator, the paper shows how to construct H as a finite-state transducer.

7

� Y oo⊂ C Subset approximation to o+ (traditional OT)
Gerdemann & van Noord 2000

Exact for many grammars, not all

� As for many harmony orderings, ignores surface symbols.
Just looks at underlying and starred symbols.

Subset Approximation

a�b c d�e

a�b�c d�e�>

a�b c d�e

a�b�c d e�

incomparable;
both survive

top candidate wins

� Y o> C Directional constraint (Eisner 2000)
Y <o C Non-traditional OT – linguistic motivation

� As for many harmony orderings, ignores surface symbols.
Just looks at underlying and starred symbols.

Directional Constraints

a�b c d�e

a�b�c d�e�>

a�b c d�e �

a�b�c d e

always same result as subset approx
if subset approx has a result at all

if subset approx has a problem,
resolves constraints directionally

top candidate wins under o>
bottom candidate wins under <o

Seems to be what languages do, too.

Directional Constraints

� So one nice outcome of our construction
is an algebraic construction for
directional constraints – much easier to
understand than machine construction.

Interesting Questions

� Are there any other optimality operators
worth considering? Hybrids?

� Are these finite-state operators useful for
filtering nondeterminism in any finite-state
systems other than OT phonologies?

Get FS grammar
by hook

or by crook

Get FS grammar
by hook

or by crook

OT constraints
are generally
finite-state

OT constraints
are generally
finite-state

Eisner 1997

Summary

unify these
maneuvers?

approximate OT

Generation algo.
from finite-state

constraints

Generation algo.
from finite-state

constraints
Ellison 1994

Finite-state
constraints
don’t yield

FS grammar

Finite-state
constraints
don’t yield

FS grammarFrank & Satta 1998

change OT Eisner 2000

Karttunen 1998; Gerdemann & van Noord 2000

comprehension?NO
YES – everything
works great if harmony
ordering is made regularand more

FIN

