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Abstract

We introduce a novel decoding proce-
dure for statistical machine translation and
other ordering tasks based on a family of
Very Large-Scale Neighborhoods, some
of which have previously been applied to
other NP-hard permutation problems. We
significantly generalize these problems by
simultaneously considering three distinct
sets of ordering costs. We discuss how
these costs might apply to MT, and some
possibilities for training them. We show
how to search and sample from exponen-
tially large neighborhoods using efficient
dynamic programming algorithms that re-
semble statistical parsing. We also in-
corporate techniques from statistical pars-
ing to improve the runtime of our search.
Finally, we report results of preliminary
experiments indicating that the approach
holds promise.

1 Introduction

Statistical machine translation (SMT) must choose
an apt ordering for its output words. Sim-
ilarly, multi-document extractive summarization
must choose an apt ordering for its output sentences.
Yet optimal ordering is computationally difficult for
any reasonable definition of “optimal”; the clas-
sic example is the Traveling Salesperson Problem
(TSP).

Fortunately, ordering problems are important
enough that there is a literature on practical tech-
niques to solve them (exactly or approximately).

∗This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 0347822 and
0313193.

Our goal in this paper is to extend such techniques
and show that they are relevant to natural language
processing. We show the relevance of a particular
novel class of ordering problems, and then introduce
a non-trivial new heuristic algorithm for this class.

We make the following specific contributions:

1. Formalization: We introduce a flexible “ABC”
model for scoring permutations.

2. Application: We reformulate SMT decoding
as seeking an optimal permutation of the input
words. This permuted input can then be trans-
lated by a simple finite-state transducer.

3. Approach: We propose seeking the optimal
permutation via a “local search” strategy of
iteratively improving the current permutation
(Germann et al., 2001). This provides an al-
ternative to the usual beam search methods.

4. Decoding algorithm: We show how this lo-
cal search can consider an exponentially large
set of candidate improvements at each iteration,
efficiently searching this set by dynamic pro-
gramming. This has previously been done for
the TSP (Deı̌nenko and Woeginger, 2000), but
our new algorithm handles the full ABC model.

5. Speedups: We discuss how to speed up our dy-
namic programming algorithm, which resem-
bles CKY parsing, by applying techniques from
natural-language parsing.

6. Training: We briefly discuss how to train the
costs of the ABC model.

This paper focuses on the novel models and al-
gorithms. Other than a few suggestive numbers, we
leave experimental validation to future work.



2 The Formal Problem

Our algorithmic problem is to search for a
minimum-cost permutation of the integers
{1, 2, . . . , N}, for a given N > 0 and a given
cost function. We begin by describing the rather
broad family of cost functions that our algorithms
can handle.

2.1 Notation

A permutation π is a bijective function from
{1, 2, . . . , N} to {1, 2, . . . , N}. It is often
convenient to identify π with the sequence
π(1), π(2), . . . , π(N). We therefore usually write
π(i) as πi, the ith element of this sequence.

We write πj
i for the contiguous subsequence

πi+1πi+2 . . . πj . For example, πj
j−1 = πj and πN

0 =
π.

As a convention, we will use i, j, k as indices into
π. We will use `,m, r, o to refer to the outputs of
the π function, as in “πi = `.” Commonly `,m, r, o
can be respectively interpreted as “left,” “middle,”
“right,” “outside.”

Our running example in this paper will be π =
1 4 2 5 6 3, drawn from a small machine translation
example to be discussed later (Fig. 2).

2.2 Scoring permutations: The ABC model

We wish to find the permutation π that minimizes
the total cost

A(π) + B(π) + C(π) (1)

We search only over π for which this cost is finite;
any of the three summands may be infinite.

This “ABC” cost model combines the three kinds
of costs that we know at present how to handle algo-
rithmically. For some applications, it is only neces-
sary to use just the A or the B term, but we prefer to
present our algorithm in its most general form, both
for expository reasons and because it may be useful.

Automaton cost. A(π) is defined by a given
weighted finite-state acceptor (WFSA) over the al-
phabet {1, 2, . . . , N}. A WFSA is simply an FSA
annotated with real-valued costs. The cost of a path
in A is the sum of its arc costs, plus a halting cost
on its final state. A(π) is defined as the minimum
cost of any path in A that accepts the sequence π

(e.g., 1 4 2 5 6 3). If there is no such path, then
A(π) = ∞.

The WFSA does not need to detect whether the
sequence π is actually a permutation, so it need not
have size exponential in N (Fig. 1). It is free to ac-
cept sequences that are not permutations, but it will
only be used (by equation (1)) to score true permu-
tations π.

Beforeness cost. B(π) is defined as
∑

i<k bπi,πk
,

where B is an arbitrary given N × N cost matrix.
This is a sum of

„
N
2

«
pairwise costs. For example,

B(1 4 2 5 6 3) = b1,4+b1,2+b1,5+b1,6+b1,3+b4,2+
b4,5+b4,6+b4,3+b2,5+b2,6+b2,3+b5,6+b5,3+b6,3.

Cyclic cost. C(π) generalizes B to triples. It is
defined as

∑
i<j<k cπi,πj ,πk

, a sum of
„

N
3

«
costs. C

is a given N ×N ×N array.
Although we show in the appendix how to drop

this restriction, for algorithmic reasons we require
C to have a kind of cyclic symmetry property:
c`,m,r = cm,r,` = cr,`,m. Thus, a cost equal to
c2,6,3 will actually be incurred by any permutation
of the form . . . 2 . . . 6 . . . 3 . . ., . . . 3 . . . 2 . . . 6 . . ., or
. . . 6 . . . 3 . . . 2 . . .. These are permutations in which
2, 6, 3 can be found in that order if the sequence is
read “cyclically.” Again, the appendix shows how to
drop this restriction (at some efficiency penalty).

We remark that the cost model (1) is asymmet-
ric, in the sense that there may be no reversed model
A′, B′, C ′ such that A′(π−1) + B′(π−1) + C ′(π−1)
gives the same score for all π. Thus, even if there
exists a good model of how French reorders into En-
glish, say, there may not exist as good a model of
the reverse. (This is also true of the IBM translation
models (Brown et al., 1993).) In practice, however,
we hope that (1) is flexible enough to admit reason-
able models in both directions.

2.3 Relation to difficult classical problems

Consider the special case of equation (1) where
B = 0, C = 0, and A is a “bigram model” such
that A(1 4 2 5 6 3) is a sum of the form d(1, 4) +
d(4, 2) + d(2, 5) + d(5, 6) + d(6, 3). Fig. 1 shows
how to encode such a bigram model as a WFSA for
the case N = 3.

Finding the optimal π is now a variant of the clas-
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Figure 1: A bigram automaton for a sentence of
length N = 3, with costs not shown. State “I” is the
initial state; each other state is named after the last
symbol read before entering that state. This FSA
does accept sequences that are not permutations of
1 2 3, but does not bother to include self-loops, since
a permutation could never use them.

sical Traveling Salesperson Problem (TSP).1 The
d(·, ·) terms represent city-to-city travel costs. The
only difference from the usual TSP is that we have
omitted the cost d(3, 1) for the salesperson to return
home. The usual TSP can be encoded by a simple
change to Fig. 1: arbitrarily require 1 to be the ini-
tial city of π, and set the halting cost for each state r
to be d(r, 1), the cost of returning to that initial city.

Consider also the special case of equation (1)
where A = 0 and C = 0. This is the classical Linear
Ordering Problem (LOP): minπ

∑
i<k bπi,πk

where
B is an arbitrary cost matrix.

Both the TSP and the LOP are well-known to be
NP-complete in their decision versions. Worse, the
minimization versions that concern us are believed
to be inapproximable to within any constant factor.2

Nonetheless, these are only worst-case results, and
there have been many practical attacks on such prob-
lems. In section 4 we will present our own approach.

2.4 Applications

The methods that we present are applicable to many
ordering problems that arise within computer sci-
ence. For example, the LOP has applications in eco-
nomics, sociology, graph theory, archaeology, and
task scheduling (Grötschel et al., 1984), as well as

1Namely, the weighted Hamiltonian path problem.
2MIN-TSP is known to be NPO-complete (Orponen and

Mannila, 1987), and MIN-LOP is conjectured to be outside
APX (Mishra and Sikdar, 2004). We are unaware of previous
work on C(π), but it is at least as hard as B(π), i.e., the LOP.

graph drawing (Eades and Whitesides, 1994). Other
useful NP-complete problems, such as the weighted
feedback arc set or acyclic subgraph problem, re-
duce trivially to LOP (Grötschel et al., 1984).

Within natural language processing, our model
and algorithm could be applied to ordering words
or sentences during text generation. One scenario is
multi-document summarization. Lapata (2003) pro-
posed scoring sequences of sentences according to
a bigram model. Choosing the optimal sequence
is then equivalent to the TSP: the sentences take
the place of cities, and the bigram probabilities the
costs of traveling between them. Our more flexible
“ABC” model allows consideration of other kinds
of costs as well. Our A costs would be needed for
the improved “content model” of Barzilay and Lee
(2004), an HMM-like model with hidden states. Our
B costs would express additional discourse prefer-
ences that a particular sentence is prerequisite to an-
other.

Other NLP problems also seek optimal per-
mutations. Machine translation output could be
evaluated—generalizing a recent proposal of Leusch
et al. (2006)—by whether some “low-distortion”
permutation of the output scores well under a small
language model derived from a set of reference
translations. Information extraction systems may
wish to reconstruct a temporal order for the ex-
tracted events (Mani et al., 2003; Mann, 2006); re-
solving conflicting cues to the true order may be
treated as an instance of the LOP (Glover et al.,
1974). Phonology learning involves the computa-
tionally hard problem of choosing a rule ordering or
constraint ranking (Eisner, 2000); our “ABC” cost
model might be used here to approximate the true
cost of an ordering or ranking. Finally, one might
wish to find multi-word or non-word anagrams that
score well under a language model (Morton, 1987;
Jordan and Monteiro, 2003).

We now discuss one application in detail: statisti-
cal machine translation.

3 Input Reordering for Translation3

Word reordering is a central part of statistical ma-
chine translation (SMT). We show that under a fam-

3Readers who are not primarily interested in SMT may wish
to skip ahead to the algorithm in section 4.



ily of models we propose (which appears to include
IBM Model 4), it is possible to reduce the SMT
problem to the ordering problem of section 2.

3.1 An S ◦ P ◦ T pipeline
We regard translation from language f (“French”)
to language e (“English”) as a nondeterministic
pipeline (Fig. 2):

• Input: A “surface” source string f .

• Source transduction (S): Transduce f to a
“deep” source string f ′, consisting of N sym-
bols annotated sequentially with 1, 2, . . . , N .

• Permutation (P): Permute f ′ to obtain a
“deep” target string e′, consisting of the same
N symbols in a different order, still annotated
with their original positions in f ′.

• Target transduction (T): Transduce e′ to the
final “surface” target string e.

Our intuition is that if translation were
monotonic—i.e., no word reorderings—then it
could be handled simply and reasonably well by a
cascade of finite-state transducers (FSTs). These
are quite capable on their own of breaking words
into their component morphemes, performing
monotonic translation of contiguous substrings
(“phrases”), inserting or deleting material, reassem-
bling the target language morphemes into words,
and rescoring under a language model.

Thus, our “S ◦ P ◦ T ” pipeline just introduces
a permutation step P into the middle of a simple
transducer cascade S ◦ T , where ◦ denotes compo-
sition. (Longer cascades can be accommodated in
our framework by defining S = S1 ◦ S2 ◦ · · · and
T = T1 ◦ T2 · · · .) Modeling the permutations and
searching over them seems to be the hardest part of
translation.

3.2 An example
Fig. 2 shows a possible French-to-English transla-
tion. The example presupposes a specific model that
partitions the work in a particular way among the
S, P , and T steps. In particular, we have chosen
to have the intermediate f ′ and e′ strings look like
marked-up French, rather than like English or a se-
mantic interlingua.

In the example, the S step performed some mor-
phological analysis and decomposition, including
part-of-speech tagging. The P step brought ne to-
gether with pas, allowing ne pas to be translated as
a phrase (into not or n’t). It also moved me from
French clitic position to English direct object posi-
tion. Finally, the T step translated the morphemes
phrasally in their new order.

Our S and P steps, together with the costs sup-
plied by T , can be regarded as aggressively prepro-
cessing French (f ) into a “French-prime” (e′) that
still uses French words but can be more easily—
indeed monotonically—translated into English (e).
This recalls heuristic “analysis-transfer-synthesis”
(Brown et al., 1992; Nießen and Ney, 2001), which
makes the statistical transfer step easier to learn by
linguistically hand-crafting a deterministic prepro-
cessor (analysis) and postprocessor (synthesis). Our
approach moves most of the work into the analysis
stage (S ◦ P ). We make analysis (i.e., reordering)
a learned, nondeterministic, and rather free model
in its own right, which allows us to get away with
monotonic transfer and synthesis (T ).

3.3 Permutations, alignments, and fertilities
From Fig. 2 one can read off π = 1 4 2 5 6 3, mean-
ing that the target e′ consists of the first word of f ′,
followed by the fourth word of f ′, etc.

In our SMT application, π maps each target posi-
tion i in e′ to the corresponding source position πi

in f ′. This is the “reversed” or noisy-channel direc-
tion, which is also the direction of π in (Brown et
al., 1993).

The “forward” direction is encoded by the in-
verted permutation π−1 = 1 3 6 2 4 5, which indi-
cates each f ′ word’s position in e′. Thus π−1 corre-
sponds to the traditional alignment vector a (Brown
et al., 1993). Of course, our π−1 is not an arbitrary
IBM-style alignment, as it is strictly 1-to-1.

Fertility (many-to-1) is handled only later, by
our T transduction from e′ to e. Note that our T
also allows many-to-many translations, unlike the
IBM models. While phrase-based translation mod-
els do allow many-to-many translations (Koehn et
al., 2003), they are usually limited to contiguous
phrases, while our S ◦ P ◦ T process is not. A
contiguous phrase in the source f may be translated
or annotated as a phrase by S, then scattered by P



f = Marie ne m’a pas vu
↓ S

f ′ = Marie/NNP:1 ne/Neg:2 me/PRP:3 a/Aux:4 pas/Neg:5 vu/VBN:6

↓ P
H

H
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e′ = Marie/NNP:1 a/Aux:4 ne/Neg:2 pas/Neg:5 vu/VBN:6 me/PRP:3
↓ T
e = Mary hasn’t seen me

Figure 2: An example of French-to-English translation, involving the permutation π = 1 4 2 5 6 3. The
French sentence may be glossed as Mary NEG me’has not seen. Diagonal lines show the permutation.
Vertical separators suggest which “phrases” were transduced by S and T (though as arbitrary finite-state
transducers, they need not segment a string into independently translated phrases). Other ways of achieving
this translation are possible.

to become discontiguous in e′ and e. Conversely, a
contiguous phrase in the target e may be translated
from a phrase in e′ that was brought together from
discontiguous words in f .4 Note especially that S
may shatter words of f (such as m’a in Fig. 2) and
then let P permute the shards (me a), bringing to-
gether new phrases such as a ne pas (which trans-
lates as hasn’t).5

3.4 Costs under the S ◦ P ◦ T model
Given f , there are many possible choices of how to
translate it. Of the choices allowed by one’s model,
some will be better (i.e., lower-cost) than others. We
define the total cost of a set of choices as

tc(f, f ′, e′, e) = S(f, f ′)+P (f ′, e′)+T (e′, e) (2)

Given f , we seek values of the other variables to
minimize this total cost. (Alignment is identical ex-
cept that e is also given.)

4As our model has only one permutation step, it cannot
do both at once: bring several scattered words of f ′ together,
transduce them as a phrase, and then scatter the translated
words again. Such an operation might be useful for translat-
ing one discontiguous verb-particle construction into another.
Instead, the only way for us handle this kind of discontiguous-
to-discontiguous translation is with the finite-state memory of
T . An alternative (discussed in section 5.2) is to replace T by a
synchronous grammar.

5Note that S used traditional morphological analysis to shat-
ter m’a → me a. A formally adequate alternative would be for
S to shatter m’a into the numbered shards m’a1 m’a2. This can
be done mechanically for any source word that might translate
non-contiguously (e.g., retirer1 retirer2 becomes take . . . out).
However, numbered shards increase the size of the vocabulary
that P and T must learn from data to deal with, whereas tra-
ditional morphological analysis manages to reduce vocabulary
size.

The S cost. In this paper, we simplify the compu-
tational problem by assuming that S gives a deter-
ministic mapping from f to f ′, such as the identity
map or a deterministic tokenizer, tagger, or morpho-
logical analyzer. Since f is given, f ′ is effectively
given as well, so the cost S(f, f ′) is constant and
hence unimportant.6

The T cost. T may be any finite-state transducer
with weights in the tropical semiring (R,min,+).
What might it look like? A typical noisy-channel ap-
proach would define T to be a finite-state composi-
tion cascade of the form (Lang◦Trans◦Align)−1,
so that

T (e′, e) = Lang(e) + Trans(e, e′) + Align(e′)
(3)

which models a reversed, English-to-French genera-
tive process:

• Lang(e) evaluates the fluency of the English
(Mary hasn’t seen me, in Fig. 2),

• Trans(e, e′) evaluates the various English-to-
French lexical correspondences (hasn’t → an
annotated version of a ne pas), and

• Align(e′) evaluates the English-to-French re-
ordering, as indicated by the numeric annota-

6Adapting our techniques to nondeterministic S, such as a
WFSA, is considerably harder for our techniques. The construc-
tion we have in mind effectively requires T and hence A to
enforce global constraints on the permutation π. Tromble and
Eisner (2006) found it effective to fold global constraints into a
WFSA on an as-needed basis, to avoid making the WFSA grow
larger than necessary. The same approach might work here.



tions on e′ (1 4 2 5 6 3).

In general, Align may also wish to con-
sider, say, the part-of-speech annotations
on e′ (NNP:1 Aux:4 Neg:2 Neg:5 VBN:6
PRP:3), since perhaps some reordering behav-
iors should be costly for a verb but not for an
adjective.

It is possible to write the composition cascade
more generally, replacing equation (3) with

T (e′, e) = min
e1,e2

Lang(e, e1) + Trans(e1, e2)

+Align(e2, e
′) (4)

This allows the language model to annotate e nonde-
terministically and score this annotated version e1,
which is the version then considered by translation.
Similarly, the translation model may annotate e1 fur-
ther, producing a further marked-up version e2 that
is evaluated by the alignment model. Thus Lang
and Trans could encourage Align to perform cer-
tain reorderings just if they make certain choices
about how to analyze or translate the English. Align
deletes this extra, nondeterministic markup from e2

to obtain e′ (necessary since we are allowing e′ to
include only annotations that could be deterministi-
cally produced from f by S).

For instance, to simulate IBM Model 4 (Brown
et al., 1993),7 we would define all scores
in equation (3) to be negated log-probabilities.
The language model is defined by Lang(e) def=
− log Prtrigram(e). The translation model Trans
would separately translate each English word
(“cept”) of e to a bracketed list (“tablet”) of French
words at specified positions, such as [ a/Aux:4
ne/Neg:2 pas/Neg:5 ] in Fig. 2, as well as insert-
ing words aligned to the empty cept NULL. Finally,
the alignment model Align would, while deleting
the brackets of this e2 to get e′, score the bracketed
version by considering the differences between suc-
cessive numbers within a tablet (4, 2, 5 in our exam-
ple) and successive tablet-initial numbers (1, 4, 6, 3).
Our formulation allows many variants of this model,

7Knight and Al-Onaizan (1998) proposed similar treatments
of IBM Models 1–3. Their approach further incorporated the
permutation step P−1 into the composition cascade, as a very
large “permutation acceptor” (see section 6). Our local search
algorithm (section 4) can be regarded as a way to explore paths
in this permutation acceptor without fully expanding it.

including multi-word cepts, contextual translations,
and more sophisticated Align models.

The P cost. How about P , which evaluates the
permutation? It is not unreasonable to take P = 0,
since as we have just seen, T too can evaluate the
permutation by reading the numeric annotations on
e′ (e.g., via Align). However, T uses finite-state
means only. Our algorithm in section 4.2 will also
permit us to add certain non-local costs cheaply, if
desired, so in the general case we put

Pf ′(π) def= Bf ′(π) + Cf ′(π) (5)

and put P (f ′, e′) = P (π) where π denotes the
unique permutation relating f ′ to e′.

The “beforeness cost” function Bf ′ considers
which pairs of words in f ′ (not necessarily adjacent)
have reversed their order. The “cyclic cost” func-
tion Cf ′ considers which triples of words in f ′ have
changed their cyclic order (i.e., undergone an odd
permutation). The form of these functions was given
in section 2.2. It is an empirical question whether
they can help translation, but we discuss some pos-
sible uses in section 3.6.

Note that this B matrix and C array may depend
arbitrarily on f ′. That is, when trying to translate a
given f ′, we may set our costs to define which per-
mutations we prefer of that particular f ′.

3.5 Decoding as permutation

We now show how to reduce the S ◦P ◦T decoding
problem to a search over permutations.17 To mini-
mize equation (2) for a given f , we step through S,
P , and T in that order:

• S step: Given f , compute f ′ as deterministi-
cally prescribed by S.

• P step, with lookahead to the T step: Given
f ′, choose e′ such that P (f ′, e′) + T (e′, e) will
be minimized given an optimal choice of e at
the next step.

• T step: Given e′, choose e to minimize
T (e′, e). This translation e can simply be read
off the minimum-weight path in e′ ◦ T , using
Viterbi decoding.



The interesting part is the lookahead at the P step.
We are seeking a permutation that is not only plau-
sible as a French-to-English reordering,8 but whose
result e′ can then be plausibly translated9 to good
English.10

To handle this lookahead, we define an “automa-
ton cost” function Af ′ by

Af ′(π) def= min
e

T (e′, e) (6)

where e′ is the result of permuting f ′ by π. In
other words, Af ′ scores the permutation π accord-
ing to whether the permuted French e′ that it pro-
duces would plausibly admit any plausible English
translation e. It serves as a sort of proxy language
model for permuted French.

Thus, the P step with lookahead should choose e′

to minimize

P (f ′, e′) + Af ′(π),

or equivalently, should choose π to minimize

Af ′(π) + Bf ′(π) + Cf ′(π) (7)

This is just our formal problem from section 2, with
sentence-specific A, B, and C costs.

Af ′ is implemented as a weighted FSA that scores
a sequence such as π = 1 4 2 5 6 3. It can be easily
constructed in practice as

Af ′
def= domain(f ′ ∗ ◦ T ) (8)

where the unweighted FSA f ′ simply maps any in-
teger i ∈ {1, 2, . . . , N} to f ′i (where f ′i is the ith

word of f ′, such as pas/Neg:5),11 and domain(· · · )
projects a weighted transducer onto its input tape to
obtain a weighted automaton.12

From here on, we usually suppress the subscripts
on Af ′ , Bf ′ , and Cf ′ for simplicity.

8According to the alignment model Align as well as the
additional permutation costs P .

9According to the translation model Trans.
10According to the language model Lang.
11Thus f ′ ∗ is a one-state machine that maps the integer se-

quence π to e′, and f ′ ∗ ◦ T maps π nondeterministically to
various e, with various scores.

12As the resulting Af ′ may contain duplicate arcs of different
weights, or other arcs that cannot appear on any optimal path,
it may be beneficial to reduce its size by an operation such as
local determinization (Mohri, 1997).

3.6 Modeling translation costs

Suppose we wish to construct Align as in sec-
tion 3.3. A simple approach would be a single-
parameter geometric distortion model. Here, Align
is a bigram model that considers each of the N − 1
adjacent pairs in π, namely 1 4, 4 2, 2 5 . . . in Fig. 2.
Each bigram ` r incurs a cost of α|r− `− 1|. As an
automaton, Align would be represented by a small
(N + 1)-state WFSA (Fig. 1), where the cost of ` r
appears on the arc from state ` to state r.13

A bigram Align model could also have more de-
grees of freedom, with distinct trainable costs for
different |r − ` − 1| values. The model might be
extended to also capture certain trigrams for com-
mon kinds of local rearrangements like 5 6 7 or 5 7
6. There are only a few such trigrams to consider at
a given position, so the impact on WFSA size would
be small. As long as the features abstract away from
absolute word positions to consider (say) only differ-
ences, they can be shared across sentence lengths.

The B matrix penalizes pairwise word orders
without respect to adjacency, so it can be used to pe-
nalize non-local reorderings that a small Align au-
tomaton cannot. For example, in Fig. 2, π has the
form . . . 5 . . . 3 . . ., so it incurs the cost b5,3, among
others. This penalizes e′ for putting the 5th word
of f ′ (pas/Neg:5) somewhere before the 3rd word
(me/PRP:3).

As for C, the
„

6
3

«
= 20 summands in Fig. 2 in-

clude c2,6,3 > 0, which penalizes e′ for placing the
6th word of f ′ between the 2nd and 3rd words. Sum-
ming such C costs can penalize source neighbors 2
and 3 for being far apart in the target—a rough coun-
terpart to a bigram A model, which can penalize tar-
get neighbors that were far apart in the source.

All of these costs might be made sensitive to POS
tags, perhaps even particular words, and their con-
text. We would do this by constructing Af ′ , Bf ′ ,
and Cf ′ from contextual features of word pairs and
triples in f ′. For example, given f ′, what features
characterize words 2 and 5? Perhaps they are a de-
terminer and noun separated only by adjectives, i.e.,
2 3 4 5 matches Det Adj* N. Perhaps they also agree

13Note that the full A automaton can consider more than just
the Align cost. For instance, it might favor the bigram 2 5,
since this represents a bigram f ′2 f ′5 = ne pas in e′ that is a
likely translation (according to Trans) of a common English
phrase (according to Lang).



in grammatical gender. Now, the “before cost” b2,5

can be defined as the sum of weights of all features
that characterize the pair 2,5 in f ′. The bigram cost
of 2 → 5 in Align can be described similarly, using
a separate feature set.

An intriguing use for B and C is to make our
P model sensitive to phrases, even to overlapping
or syntactically nested phrases. The S process can
mark these phrases in f ′ by inserting additional
“phrase boundary” symbols. Thus noun phrase #4
should be delimited in f ′ by coindexed brackets
[NP4 and ]NP4. The B matrix should require these
two matched brackets to stay in order, by assigning
cost=∞ to reversing them.14 Now C can be made to
reward phrase coherence, by penalizing words15 that
were inside phrase #4 in f ′ if they move outside it in
e′, and vice-versa. Finally, Align, B, and C can be
made to control the order of the left and right brack-
ets for different phrases—thereby assessing costs for
adjacent phrases (Align), non-local phrase reorder-
ing (B), and changes to the nesting or overlapping
of phrases (C).

4 Decoding

We now turn to the central algorithmic question of
how to find a permutation π that minimizes the cost
(1). There are N ! permutations—usually too many
in practice to consider by brute force.

As noted earlier in section 2.3, the problem is
computationally intractable even if one limits to sim-
ple costs, such as a pure bigram automaton model A
(the TSP) or a pure beforeness model B (the LOP).

Germann et al. (2001) reduce such a problem in
statistical MT to integer linear programming, not-
ing its NP-completeness (Knight, 1999; Udupa and
Maji, 2006). Other recent work has similarly re-
duced NLP problems to previously studied formal
problems (Roth and Yih, 2005; Taskar et al., 2005;
McDonald et al., 2005; Tromble and Eisner, 2006).

Those papers drew on exact solution methods.
We instead draw on another rich vein of literature—
heuristic strategies with some chance of search error.

14This may unfortunately reduce the number of feasible
neighbors in section 4’s local search methods. Hence one might
soften this cost in early steps of local search and gradually raise
it toward∞ (somewhat like simulated annealing, section 7).

15David A. Smith has suggested to us that clitics or particles
might be penalized less for moving out of their phrases.

4.1 Iterated local search
Local search starts with a guess, such as π =
1 4 2 5 6 3, and tries to improve it. A trivial strategy
would obtain a new guess π′ by swapping two adja-
cent elements of the sequence π. That is, for some
i, we set π′

i = πi+1 and π′
i+1 = πi. The cost of the

revised π′ can be found directly from equation (1).
Alternatively, one may use a dynamic algorithm that
obtains the cost of π′ more rapidly by revising the
cost of π.16

Given π, there are N − 1 neighboring permu-
tations π′ that can be obtained in this way (i =
1, 2, . . . , N − 1). Local search would replace π with
its lowest-cost neighbor, iterating until no further lo-
cal improvement is possible.

Local search has previously been used for SMT
decoding (Germann et al., 2001),17 as well as the
TSP (Lin and Kernighan, 1973) and the LOP (Con-
gram, 2000). In general, each step considers some
neighborhood of candidate solutions that are de-
rived from the current candidate. It greedily moves
to the lowest-cost neighbor of the current candidate,
repeating until there is no change—that is, until π
is locally optimal. This is a “hill-climbing” strat-
egy. The challenge is to design effective neighbor-
hoods that can be rapidly searched at each step for
the lowest-cost neighbor.

To help avoid poor local optima, it is common to
restart the local search at several random guesses.
This produces several possibly distinct local optima.
One may then choose the one with the lowest-cost.

Even with random restarts, the naı̈ve swap neigh-
borhood is likely to be slow and to get trapped in lo-

16To correct the B term rapidly, add −bπi,πi+1 + bπi+1,πi .
Correcting the C term requires summing over other indices in
the sequence π. To obtain a corrected A term in sublinear o(N)
time (i.e., without reading π′ from scratch), it is necessary to
maintain an array of all Viterbi forward and backward costs:
for each state q and each 0 ≤ i ≤ N , the cost of the best path
from the initial state to q that accepts πi

0, and the cost of the best
path from q to a final state that accepts πN

i .
17Germann et al. (2001) directly optimized the English out-

put, e. They therefore needed local moves that would replace
English talking with talks or insert English about. Our “looka-
head” technique (section 3.5) allows us to optimize only the per-
muted French, e′, and safely defer questions of lexical choice
and fertility in e to a later stage. This is not to say that we fully
escape the computational cost of dealing with such questions,
since A effectively incorporates them via equation (6). How-
ever, some of them are genuinely deferred; others may be safely
avoided by A* search (section 5.4), which starts with a smaller,
approximate version of A.
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Figure 3: (a) A single twisted tree reordering the
identity permutation. Swap nodes are indicated with
a horizontal bar. The left shows the tree before
swapping, and the right after. (b) A second tree,
further reordering the result of (a). The new result
could not have been reached from the identity per-
mutation in a single step.

cal minima, since it only considers a tiny number of
the possible permutations at each step. Other, more
ambitious neighborhoods are possible: for example,
π could generate O(N2) neighbors by moving some
element πi to some arbitrary new position in π. The
trouble is that these larger neighborhoods generally
take longer to search.

There is a wonderful way out: dynamic program-
ming. We will present a family of very large-scale
neighborhoods that have exponential size, yet can
be searched in quadratic or cubic time, just like the
neighborhood above.

4.2 Twisted-sequence neighborhood

Bompadre and Orlin (2005) review several very
large-scale neighborhoods for the TSP. VLSNs
are defined by exponential size but polynomial-
time searchability. The lowest-cost neighbor can
be found by dynamic programming—essentially, by
finite-state or context-free parsing algorithms famil-
iar to NLP.

Here we considerably generalize one of these al-
gorithms to handle arbitrary A, B, and C costs (e.g.,
we obtain algorithms for the LOP and IBM Model
4). We then sketch how to speed it up using NLP
techniques.

Given a current permutation sequence π, we de-
fine a large neighborhoodN (π) that can be searched

by dynamic programming. Each π′ ∈ N (π) is de-
fined by some binary tree with π at its fringe, with
some of the internal nodes marked as “swap nodes.”
π′ is found by swapping the two child subtrees of
each swap node and then reading off the new fringe.
An example appears in Fig. 3.

This “twisted-sequence neighborhood”N (π) was
independently proposed for the TSP by Deı̌nenko
and Woeginger (2000). It is also exactly the set of
sequences π′ that could be related to π by an In-
version Transduction Grammar (Wu, 1997). But un-
like these authors, when scoring these sequences, we
will consider arbitrary A, B, and C costs.

To find the minimum-cost permutation in N (π),
we construct a “parse chart” over π that builds up
partial permutations. Each partial permutation has
a cost. Consider in particular the contiguous subse-
quence πk

i = πi+1πi+2 . . . πk. Let Pikqt denote the
minimum total ABC cost of any twisted-sequence
permutation of πk

i that is accepted by some path in
A that runs from state q to state t. If k− i ≥ 2, Pikqt

may be defined recursively as the minimum of

min
j,s

Pijqs + Pjkst + γi,j,k (normal node) (9)

min
j,s

Pijst + Pjkqs + γ̄i,j,k (swap node) (10)

As the base case, when k = i+1, Pikqt is the weight
of the minimum-weight q → t arc in A that accepts
the “word” πi.18

These recurrences can be computed bottom-up as
with CKY parsing (Aho and Ullman, 1972). In-
deed, they may be regarded as “parsing” π using a
binary CFG with rules of two types. Equation (9)
combines a constituent πj

i with “nonterminal label”
q  s with an adjacent constituent πk

j with nonter-
minal label s t, resulting in a constituent πk

i with
nonterminal label q  t. Equation (10) is similar
but handles the case of swap nodes. The costs γi,j,k

and γ̄i,j,k are analogous to grammar rule weights, al-
though they are position-specific.

Fig. 4 shows the twisted tree from Fig. 3(a) as
a parse tree with nonterminal labels of the form
q  t. The best “parse” of the “sentence” π has
cost mint P0NIt + halting cost(t), where I is the

18If A contains ε-arcs, the base case involves subpaths that
accept πi. One may avoid this by a preprocessing step that ap-
plies ε-closure to A.
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Figure 4: The tree from Fig. 3(a) annotated with “non-terminal” q  t state pairs from a bigram model
A, as in Fig. 1. The left side shows the tree before swapping, and the right side after. Notice that, at swap
nodes, the right child’s path ends at the state where the left child’s path starts. The start nonterminal S can
rewrite as I 3 because that is an accepting path (I is the initial state and 3 is final); the cost of this unary
rewrite is set to be the cost of halting at state 3.

initial state of A and t ranges over the final states
of A. The actual parse can be recovered by follow-
ing backpointers in the usual way, and the optimal
neighbor π′ can be read off this parse.

Runtime depends on the topology of A. If A has
Q states, then there are O(N3Q3) ways to instanti-
ate the variables i, j, k, q, s, t in equations (9)–(10).
The runtime of the algorithm is therefore O(N3Q3).
In section 5, we will show how both factors can of-
ten be reduced.

The “grammar rule weights” γ, γ̄ are

γi,j,k
def=

∑
`∈πj

i

∑
r∈πk

j

b`,r +
∑

o∈πN
0 \πk

i

c`,r,o

 (11)

γ̄i,j,k
def=

∑
`∈πj

i

∑
r∈πk

j

br,` +
∑

o∈πN
0 \πk

i

cr,`,o

 (12)

Equation (11) is designed to fold some B and C
costs into (9) as we assemble two constituents in
“normal” order. Let p1 and p2 be permutations of πj

i

and πk
j , respectively. Any permutation π containing

p1p2 as a substring must place ` ∈ p1, r ∈ p2, o 6∈
p1p2 either in the order `, r, o (not necessarily adja-
cently) or in the order o, `, r. Hence we add b`,r and
c`,r,o (which equals co,`,r by fiat) when we assemble
p1p2. Equation (12) similarly folds B and C costs
into (10) when we assemble p2p1.

Crucially for our runtime, the apparently expen-
sive sums (11)–(12) can themselves be computed

by dynamic programming. Using the recurrences in
Fig. 5, each γi,j,k or γ̄i,j,k can be computed in O(1)
instead of O(N3) time, using previously computed
instances of γ and γ̄ that involve slightly narrower
spans, as well as summations over C that were com-
puted during O(N3) preprocessing.19

5 Speedups

As promised, we can improve the asymptotic anal-
ysis, and the runtime in practice, in several mutu-
ally compatible ways. This is necessary because
an O(N3Q3) runtime could be prohibitive. For in-
stance, that runtime becomes O(N6) if Q = N , for
example if A is a bigram model over the alphabet
1, 2, . . . , N .

5.1 Lopsided twisted-sequence neighborhoods

We can optionally reduce the N3 factor by consider-
ing only right-branching trees. This corresponds to
the “pyramidal” neighborhood used for the TSP by
(Sarvanov and Doroshko, 1981).

Better yet, consider the neighborhood defined by
“asymmetrically branching” trees: Fix a small con-
stant h, and when assembling constituents in (9)–
(10), only consider triples (i, j, k) such that (j− i ≤
h or k − j ≤ h). The recurrences in Fig. 5 continue
to work and the runtime of the algorithm reduces to
O(N2Q3), plus the O(N3) preprocessing step on

19This preprocessing step may be faster than O(N3) for
some restricted kinds of C matrices, or omitted if C = 0.



γi,j,k := γi,j,k−1 + γi+1,j,k − γi+1,j,k−1 + bπi+1,πk
−

∑
m∈πk−1

i+1

cπi+1,m,πk
+

∑
o∈πN

0 \πk
i

cπi+1,πk,o

γ̄i,j,k := γ̄i,j,k−1 + γ̄i+1,j,k − γ̄i+1,j,k−1 + bπk,πi+1 −
∑

m∈πk−1
i+1

cπk,m,πi+1 +
∑

o∈πN
0 \πk

i

cπk,πi+1,o

if i < j < k; otherwise γi,j,k := 0, γ̄i,j,k := 0

Figure 5: Efficient recurrence equations for the grammar weights in (11)–(12). Most of the necessary terms
are added in from other γ and γ̄ values; the subtractions are needed to correct for double-counting. The

∑
terms do not depend on j, and can therefore be reused. Note: This presentation of the equations relies for
correctness on the fact that ci,j,k = cj,k,i = ck,i,j .

C.19 For a bigram model, this Q3 (= N3) factor is
not tight—the total runtime is actually O(N4). This
is fast in practice since there is no hidden grammar
constant.

We may additionally allow all “anchored” triples
of the form (0, j, k) (or equivalently (i, j, N)).20

That lets us cover the sequence π with several
disjoint, asymmetrically branching trees that per-
mute substrings of π, and then string those local
trees together into one big left-branching (or right-
branching) tree. It does not damage the O(N2Q3)
runtime. Unfortunately, here the Q3 factor is tight
for a bigram model.

Search space diameter. Such neighborhoods are
still quite large. In the last case above, the com-
plete search space of size N ! has a small diameter
≤ log2 N local steps (even for h = 1). Hence, when
N = 32 words, any of the 32! > 1035 permutations
is within 5 steps of any other (if not always 5 greedy
steps). This is remarkably good for a neighborhood
that can be searched in O(N2) time. The proof of
small diameter is simple: Any permutation can be
sorted into any desired order by log2 N passes of
median quicksort, and each pass is easily shown to
correspond to one of our local permutations.

Obviously, our larger twisted-sequence neighbor-
hood also gives a diameter ≤ log2 N . It is also easy
to show a lower bound on the diameter of our search
spaces. Even the full twisted-sequence neighbor-
hood has a size that grows only as Θ(5.83N ) (Zens
and Ney, 2003). Since the full search space has size
N !, it follows that for large N , the diameter must

20This requires some new recurrences like those in Fig. 5.

be at least logc·5.83N N ! = lnN !/ ln(c · 5.83N ) ≈
N lnN/N ln 5.83 ≈ 0.39 log2 N .

5.2 Very large-scale finite-state neighborhoods

So-called “dynasearch” neighborhoods (Potts and
van de Velde, 1995; Congram, 2000; Bompadre
and Orlin, 2005) allow any collection of non-
overlapping swaps in π to be carried out as a sin-
gle move. The best move in this neighborhood may
again be found by dynamic programming.21

Dynasearch neighborhoods are similar to the lo-
cal reorderings of (Kanthak et al., 2005) and (Kumar
and Byrne, 2005) (see section 6). However, local
search can iterate them in order to explore permuta-
tions that are further afield.

While dynasearch neighborhoods are consider-
ably smaller than the twisted-sequence neighbor-
hoods above, they are still exponential in size. They
can be obtained in our approach by restricting to
very simple twisted trees, using only triples of the
form (j, j + 1, j + 2), (0, j, j + 1), and (0, j, j + 2).
This makes them considerably faster to search, if
perhaps less effective.

Dynasearch neighborhoods can also be character-
ized as finite-state lattices of permutations. This
means that they and other finite-state neighbor-
hoods, unlike the neighborhoods above, could still
be efficiently searched for the best path (permuta-
tion) if we were to replace A by a weighted gram-
mar such as a CFG or TAG. (In the SMT case, this

21Germann (2003) used a similar idea for SMT, but chose the
collection with a greedy heuristic meant to rapidly approximate
a sequence of single, individually greedy moves. By contrast,
Dynasearch’s global optimization confers a lookahead effect.



allows T to be a weighted synchronous grammar.)
Why is this possible and natural? Our algorith-

mic strategy for attaching A costs to the neigh-
borhood is always to intersect that neighborhood
(an unweighted language) with the cost model A
(a weighted language). Context-free and tree-
adjoining languages are closed under intersection
with finite-state languages. Thus, we were able
earlier to intersect a grammatical neighborhood
(twisted sequences) with a finite-state cost model A
by enriching its nonterminals. Conversely, we may
intersect any finite-state neighborhood (dynasearch)
with a grammatical cost model by lattice parsing.

5.3 Automaton topology
As section 9.1 will demonstrate, the practical run-
time of the twisted-sequence neighborhoods is quite
acceptable—because it is cubic or quadratic in N
with no hidden grammar constant—when A is triv-
ial (i.e., when Q = 1). When A is not trivial, we can
often reduce the runtime by designing a model that
reduces its number of states or arcs. Such a reduc-
tion amounts to tying parameters.

Notice that a full bigram model A as in Fig. 1 al-
lows a separate cost for each possible bigram ` r that
may appear in π. This may be more parameters than
necessary. We could replace the `

r→ r arc with a
path `

ε→ X
r→ r of approximately the same weight.

This replaces the ` r cost with a term that depends
only on ` (and X) plus a term that depends only on
r (and X). If we can replace many arcs in this way,
while introducing only one or a few shared “back-
off states” X , this may greatly reduce the number of
arcs and the number of parameters.

If this modified bigram model has only a constant
number of arcs accepting each “word” r, then our
asymptotic runtime can be as small as O(N3). This
runtime is obtained by using the lopsided twisted-
sequence neighborhood of section 5.1 with h = 1
and without the additional “anchored” triples. There
are then O(N2) choices of i, j, k in equations (9)–
(10), and only O(N) choices of q, s, t given i, j, k.

One way to get such a model is to replace arcs be-
tween pairs of indices not sufficiently close together.
For example, replace the arc `

r→ r if |r − `| > 2.
All such bigrams, for example 2 5, might simply be
given constant cost via a single backoff state X . Un-
der this scheme, we would have at most five arcs ac-

cepting each index r, including the X
r→ r arc.

5.4 Faster search of exponential neighborhoods
The considerable literature on speeding up parsing
can be applied directly to our algorithm. For ex-
ample, we can heuristically prune constituents (e.g.,
for a given i, j, discard all but the lowest-cost con-
stituents Pijqs) or use best-first search (Caraballo
and Charniak, 1998). While these methods do risk
missing the best parse, we are in the midst of a non-
optimal greedy local search anyway. Missing some
parses only means that we are not searching quite as
large a neighborhood of permutations at each step.

Among “safe” speedups that are guaranteed to
find the best parse of the current permutation π,
probably the simplest is to discard subpaths that cost
more than π. This still keeps π itself (which is in the
neighborhood) as well as any π′ that improve on π.

A better “safe” speedup is A* parsing (Klein and
Manning, 2003), which assembles constituents in a
prioritized order and can stop as soon as a full parse
is found. Defining the priority of a constituent Pijqs

requires an admissible (i.e., optimistic) bound on its
“outside” cost. Our current implementation com-
putes such bounds by replacing A with a simpler
0th-order (unigram, memoryless) WFSA. In this A′,
the cost of a self-loop labeled with the “word” r is
the best cost of any r-labeled arc in A. Since A′

has Q = 1, bounds on all outside costs can be com-
puted in O(N3) or O(N2), depending on the choice
of neighborhood.

More generally, given any partition of the states of
A into near-equivalence classes, one can construct a
new, coarser, FSA, A′, whose states correspond to
these classes (cf. Stolcke and Omohundro (1993)).
The unigram model above is the limiting case of a
single, all-encompassing equivalence class. The cost
of the r-labeled arc in A′ from class q̄ to class s̄ is de-
fined as the best cost of any r-labeled arc in A from
any q ∈ q̄ to any s ∈ s̄. Now A′ provides an ad-
missible estimate of A, and a succession of automata
A,A′, A′′, . . . can be used for an exact coarse-to-fine
search (Geman and Kochanek, 2001).

An independent type of A* heuristic would sim-
ilarly coarsen the beam-search automaton in sec-
tion 6 below, then obtain Viterbi forward/backward
estimates. Here, coarsening relaxes the requirement
that π be a permutation. The priority of a given con-



stituent Pijqs can use the tighter of the two heuris-
tics.

Finally, we remark that if some substrings of π
appear unchanged in its optimal neighbor π′, then
all of the parse chart’s entries for those substrings
may be reused at the next step of local search, where
we seek optimal neighbors of π′.

6 Other Decoding Options

Much past work in statistical MT has recognized and
faced the problem of searching for optimal permu-
tations. Several authors, particularly those working
in finite-state frameworks, explicitly model permu-
tation as a step in a composite translation process.

However, past decoders have had to consider the
full composite process all at once. Our reduction in
section 3.3 shows that it is possible to treat permuta-
tion search in isolation. This made it easier for us to
adapt existing local search methods for permutation
problems like the TSP and the LOP in section 4.

Most past decoders have not used local search
at all. Rather, they provide alternative strategies for
our problem. We now outline how they would be
applied directly to permutation search.

The usual starting point is Viterbi decoding or
stack decoding: one seeks the best path through a
very large acyclic WFSA, in which each path as-
sembles a different permutation sequence such as
π = 1 4 2 5 6 3. Each state represents a prefix of
a possible permutation, such as 1 4 2, from which
each directed edge leads to an extended prefix such
as 1 4 2 5 (but not 1 4 2 4). The edges are weighted
so as to accumulate the total permutation cost over
the entire path.

As this WFSA is enormous, with O(N !) states,
several tricks are commonly used. Following Held
and Karp (1962), Knight and Al-Onaizan (1998)
collapses states that represent the same subset (e.g.,
1 4 2 and 2 4 1) into a single state {1, 2, 4} (Fig. 6).
This simplification to O(2N ) states nonetheless ad-
mits our full “ABC” cost model. The arcs of the per-
mutation WFST can incorporate the B and C costs.
For example, the arc from {1, 2, 4} to {1, 2, 4, 5} in
Fig. 6 would have weight

∑
r∈{3,6}

b5,r +
∑

`∈{1,2,4}

c`,5,r
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Figure 6: A small portion of the permutation au-
tomaton for the example in Fig. 2. Bold arcs are
along the desired path 1 4 2 5 6 3.

Intersection with Af ′ from equation (8) incorporates
the costs from T , and results in an automaton of size
at most 2NQ.

At any rate, O(2N ) is still very large for, say, N =
30. One approach is to use a pruned beam search,
constructing states on demand as they are actually
explored (Koehn, 2004; Kanthak et al., 2005).

An alternative is to systematically limit the set of
allowed permutations. Kumar and Byrne (2005) de-
scribe restriction to movement within a three-phrase
window. Kanthak et al. (2005) investigate a variety
of subsets of the full permutation set, using simi-
lar windows, as well as the set of permutations al-
lowed by Inversion Transduction Grammar (ITG)
(Wu, 1997). We will consider the adequacy of this
particular subset in section 9.2.

As a hybrid technique, note that permutation de-
coders of any sort, including beam-search decoders
with a very narrow or greedy beam, could be used to
produce an initial permutation that is then improved
by local search. Indeed, for many problems, (ran-
domized) greedy initialization of local search is a
highly effective technique, known as GRASP (Feo
and Resende, 1995). Another hybrid possibility is
to run our local search algorithm but fall back to a
beam-search decoder for all narrow spans (say, all
Pijqs with j − i ≤ 8).

7 Stochastic Methods

We can interpret our cost model (1) in probabilistic
terms via a familiar transformation:

p(π|f ′) =
wf ′(π)∑
π′ wf ′(π′)

. (13)



where

wf ′(π) def= exp−
(
Af ′(π) + Bf ′(π) + Cf ′(π)

)
(14)

It is intractable to find the sum of the N ! terms
in the denominator of (13) (the partition function).
However, we can efficiently compute the neighbor-
hood partition function∑

π′∈N (π)

wf ′(π′) (15)

that sums over all permutations in an exponen-
tially large neighborhood of π. Simply convert the
“Viterbi algorithm” parser of section 4.2 to the “in-
side algorithm” version that sums over subtree prob-
abilities instead of minimizing over subtree costs.
The inside algorithm has the same runtime complex-
ity, although it does not allow speedups like A*.

The inside algorithm also produces a parse forest
from which we can sample permutations of N (π)
using the usual top-down parse sampling algorithm
(Goodman, 1998, pp. 146–147). π′ ∈ N (π) is se-
lected with probability proportional to wf ′(π′) (i.e.,
wf ′(π) divided by equation (15)).

The only wrinkle is that these methods sum and
sample over the set of twisted trees, not the set of
permutations. This will count a permutation multi-
ple times if it is defined by multiple different trees.
For example, every tree on π containing no swap
nodes will define π itself. The solution is to elim-
inate this spurious ambiguity in the parser, at a
small constant-time overhead, by recovering only
the normal-form trees (Eisner, 1996; Zens and Ney,
2003). Each permutation in the neighborhood is
characterized by only one normal-form tree.

Now, to sample from the entire space of permuta-
tions, rather than just the subset in one of our neigh-
borhoods, we can use the Metropolis-Hastings algo-
rithm. This means taking a random walk in permu-
tation space, where at each step we attempt to move
to a randomly sampled neighbor π′ of the current
permutation π (instead of the lowest-cost neighbor).
An attempted move is randomly rejected, however,
with a probability that depends on the neighborhood
partition functions of both π and the sampled π′.

To look for the optimal permutation, we can re-
place the hill-climbing local search of section 4 with
a simulated annealing search. In other words, we

take a random walk as above, but redefine equa-
tion (14) to divide the total cost by a temperature be-
fore exponentiating it. The temperature is gradually
lowered toward zero as the random walk progresses.

8 Training

When facing a problem such as machine translation,
we typically need to learn our costs from training
data. In the simplest case, we are given many in-
stances of f ′ and, for each, the corresponding gold-
standard permutation π∗. The goal is to learn feature
weights (see section 3.6) such that π∗ will be favored
by the cost functions A (or T ), B, and C that are de-
rived from f ′ and the feature weights.

One approach would be to learn feature weights
that maximize p(π∗ | f ′) according to equation (13).
This is a standard case of training a log-linear
model.22 The trouble, again, is that we cannot com-
pute the partition function, which we would need
for direct optimization. Nor can we compute the
expected feature counts under the distribution (13),
which we would need for the improved iterative
scaling algorithm (Della Pietra et al., 1997). How-
ever, we could compute the expectations approxi-
mately by sampling permutations as in Section 7.

A second strategy is to approximate the above
training criterion and use the neighborhood parti-
tion function (15) in place of the true partition func-
tion. That is, we would try to maximize the condi-
tional likelihood of π∗ given its own neighborhood
N (π∗) (perhaps even pruning the neighborhood for
speed). For a sufficiently large neighborhood, this
contrastive estimation strategy (Smith and Eisner,
2005) may be a good approximation.23

A third strategy is to train discriminatively us-
ing, for example, the perceptron algorithm (Freund
and Schapire, 1998). We can use our iterated local
search with the current model parameters, arriving

22The training is supervised if we only use B and C costs,
but unsupervised in general. The reason is that even though π∗

is observed, the path through A that generated π∗ may not be
uniquely determined by π∗, so we do not observe the counts of
transitions in A.

23Smith and Eisner themselves used neighborhoods that were
considerably smaller. Perhaps their accuracy would have bene-
fited from using our full twisted-sequence neighborhood. It is
hard to know, since their choice of neighborhood was designed
not only to get a fast approximation to the true partition func-
tion, but also to bias their unsupervised learner toward learning
“syntactic” hidden states as it learned the cost model A.



at a local optimum. We update the parameters if the
discovered permutation π differs from the desired π∗

and the model actually incorrectly prefers π to π∗.24

Separately, one might wish to learn to search ef-
fectively. The search procedure is trainable even for
a fixed model. We could adapt the parameters of
the model to the search procedure (Daumé III and
Marcu, 2005), adapt the objective function consulted
by local search (Boyan and Moore, 2000), or use
reinforcement learning to learn separate parameters
for search (Nareyek, 2003). Reinforcement learning
is particularly attractive because it could also learn
to choose a type of neighborhood for the next search
step, based on the search history.

9 Experiments

9.1 Speed and accuracy
We have done some preliminary experiments es-
tablishing that our algorithm, even without pruning
or other speedups, exceeds beam search’s accuracy
with comparable runtime. Beam search tends to be
faster for short sentences, where iterated local search
is overkill, but suffers more on longer sentences. We
could hybridize as suggested in section 6.

Also, a version of our code that considers only
B costs, again without any pruning (section 5.4),
is able to solve standard LOP instances (Schi-
avinotto and Stützle, 2004) on 60-word sequences
in 6–7 iterations that run as fast as 1.8 millisec-
onds/iteration in the twisted-sequence neighbor-
hood, or 0.4 ms/iteration in our largest quadratic-
time neighborhood of section 5.1 (h = 1). Using
several randomized restarts does help avoid search
error (local optima), especially in the latter case.

9.2 Length of local search trajectory
The point of using large neighborhoods is to be able
to find the correct answer within a few steps of lo-
cal search. This reduces the nearsightedness of local
search and may improve its hillclimbing speed. As
noted before, even our modest neighborhood of sec-
tion 5.1 produces a local search graph of diameter
≤ log N .

24We do not necessarily want to carry out the update if the
model already prefers π∗ but simply cannot reach it by local
search. Such updates can cause the parameters to diverge. One
fallback strategy is to perform the update using not π∗ but rather
the lowest-loss candidate inN (π), under some loss function.
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Figure 7: Number of German-English sentences
(outlined), and the portion for which the twisted-
sequence neighborhood includes the gold-standard
alignment (shaded), grouped by length.

An important empirical question is how often the
correct (“oracle”) permutation is available within a
single step of our stochastic local search. In this
case, a greedy local search decoder is actually op-
timal, provided that the cost model is adequate to
identify this correct permutation.

In particular, Dekai Wu has proposed that if
we start with the identity permutation 1 2 . . . N ,
then our neighborhood in section 4.2—which corre-
sponds to the permutations admitted by his Inversion
Transduction Grammar (Wu, 1997)—will generally
contain a reordering that is linguistically adequate
for translation.

We conjectured that our neighborhoods would in-
deed often be large enough in this case for a single
step of section 4.2 to consider the oracle permuta-
tion. This motivates our use of large neighborhoods.

However, we also conjectured that one step would
not always suffice (at least not to find the oracle per-
mutation), motivating our use of local search. For
example, Fig. 2 shows a permutation that cannot be
achieved in one step.

These conjectures were borne out on the first 5000
German-English sentence pairs from the Europarl
corpus. The results appear in Fig. 7. The twisted-
sequence neighborhood contains the gold-standard
permutation for 41.7% of all sentences, including
63.6% of those 2382 containing ≤ 20 words.



Perhaps more important, though, is that one step
in this neighborhood is only adequate for 21.9%
of examples longer than twenty words, which con-
stitute more than half of the corpus. It is espe-
cially these longer sentences for which iterated local
search compares favorably to beam search, since 230

is a million times greater than 210.
A caveat is that these measurements were made

using machine-generated alignments. Performance
might be better with human alignments. Further,
there might be a good translation in the neighbor-
hood, even if it differs from the one given in the bi-
text.

10 Conclusions

We have presented new local search algorithms that
seek optimal permutations. The power of these al-
gorithms comes from their use of dynamic program-
ming to search exponentially large neighborhoods.
While that technique was previously known, in par-
ticular for the Traveling Salesperson Problem, our
contributions include

• extensions to further cost functions, including
B costs (for the LOP) and novel A and C costs,

• extensions to new neighborhoods,

• bounds on the diameter of the search space,

• the use of parsing efficiency techniques such as
pruning, A* search, and coarse-to-fine search,

• a technique for MCMC sampling and simulated
annealing,

• some discussion of learning the cost functions.

We also discussed statistical machine translation
at length. To show that permutation search can be
regarded as the central problem of SMT (cf. foot-
note 17), we formulated an attractive “S ◦ P ◦ T ”
framework for describing SMT models, with permu-
tation as the only non-finite-state step. We showed
that this framework was expressive (among other
things, it covers IBM Model 4) and that it can be de-
coded by combining permutation search with simple
finite-state operations.

We hope that others will find the local search
paradigm to be as thought-provoking as we have. In

future work, we plan to evaluate the methods pro-
posed here by further experiments.
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Appendix: Non-Cyclic Betweenness Costs

Section 2.2 restricted the array C to have a certain
cyclic symmetry property: c`,m,r = cm,r,` = cr,`,m.
That restriction on C is natural in TSP-like problems
where π is intended to be evaluated cyclically. For
example, in TSP-like problems where π represents a
closed tour on cities, the starting point of π is arbi-
trary.

However, for some problems, such as machine
translation, it would be more useful to have three-
way costs Ĉ that are not constrained in this way.



For example, if ` and r were adjacent in the source
sequence, we might wish to encourage them to be
close to each other in the target sequence π (read
non-cyclically). This means setting large values for
ĉ`,m,r and ĉr,m,` only, for all m.

Sometimes, other costs (such as br,` = ∞) may
ensure that ` precedes r. In that case, c`,m,r fires iff
` < m < r, so it behaves just like ĉ`,m,r.

More generally, what if we wish to aug-
ment equation (1) with a fourth term, Ĉ(π) def=∑

i<j<k cπi,πj ,πk
, that acts just like C but without

the restriction that ĉ`,m,r = ĉm,r,` = ĉr,`,m?
This case can be reduced to the original equa-

tion (1), if we are willing to add extra symbols to
our set {1, 2, . . . , N}.

We may assume without loss of generality that Ĉ
is everywhere ≥ 0. If it is not, then for each ordered
triple of distinct integers `,m, r, in parallel, subtract
min(ĉ`,m,r, ĉm,r,`, ĉr,`,m) from ĉ`,m,r and add it to
c`,m,r. This does not change the total cost function
A(π) + B(π) + C(π) + Ĉ(π).

We can now eliminate Ĉ step-by-step as follows.
If Ĉ is not yet 0 everywhere, choose an `, r pair such
that (∃m)ĉ`,m,r 6= 0. To handle this `, r pair, in-
crease N by 1, and modify the cost functions A, B,
C, and Ĉ to consider the new last element N as fol-
lows:

• At every state of A, add a self-loop that reads
N with cost 0.

• Set bN,r =
∑

m ĉ`,m,r. Set to 0 all other entries
of B whose row or column is indexed by N .

• For each 1 ≤ m ≤ N , set c`,m,N = cm,N,` =
cN,`,m = ĉ`,m,r; then set ĉ`,m,r = 0. Set to 0
all other entries of C that are indexed in part by
N .

• Set to 0 all entries of Ĉ that are indexed in part
by N .

The above transformation increased N by 1 while
zeroing some Ĉ entries and adding some new B and
C entries involving N . This did not change the prob-
lem, in the following sense. Suppose π was some
permutation over {1, 2, . . . , N − 1}. Consider all
“refinements” π′ that are obtained by inserting the
extra symbol N somewhere into π. We claim that

the minimum-cost refinement π′ (under the new cost
functions) has the same cost as π (under the old cost
functions):

• If ` precedes r in the sequence π, then the
minimum-cost position for N is just after r. At
that position each old cost ĉ`,m,r, for m such
that ` < m < r, has been set to 0 but exactly
replaced by a new, equal cost c`,m,N . Placing
N any later would incur extra (positive) costs
of the form c`,o,N . Placing N any earlier might
save on some of the (positive) costs c`,m,N , but
would incur a cost bN,r that was at least as great
as the total savings.

• If ` follows r in the sequence π, then zeroing
ĉ`,m,r was harmless because no costs of this
form would have been incurred by π. Creating
(positive) costs involving N was also harmless:
the minimum-cost position for N is just after `,
at which position none of the costs involving N
are incurred.

Repeating this transformation, we eventually
eliminate Ĉ (setting it stepwise to 0) while increas-
ing N to at most N2. By induction on the claim
above, every original permutation π has some refine-
ment π′ whose cost has been preserved, and no re-
finement whose cost has improved. It follows that if
π was optimal under the old problem (with Ĉ), then
one of its refinements π′ is optimal under the new
problem (without Ĉ). We may therefore seek π′ un-
der the new problem and delete its extra symbols to
obtain π.

Of course, the increased size of the problem (in-
creased N ) will slow down each local search step,
and may also make it harder to find the correct per-
mutation by local search. It is therefore wise to keep
Ĉ small in the sense that few new symbols need to
be added. The machine translation example men-
tioned at the start of this appendix used ĉ`,m,r only
for `, r that were adjacent in the source string, which
requires adding only N − 1 new symbols.

The local search may be sensitive to the initial
placement of the new symbols. A greedy placement
would introduce each N immediately after the right-
most of the `, r with which it is associated. However,
it may be helpful to randomize this initial placement
and try several random restarts.


