
Proc. of the 37th ACL (Assoc. for
Computational Linguistics) (1999)

E�cient Parsing for Bilexical Context-Free Grammars
and Head Automaton Grammars�

Jason Eisner
Dept. of Computer & Information Science

University of Pennsylvania
200 South 33rd Street,

Philadelphia, PA 19104 USA
jeisner@linc.cis.upenn.edu

Giorgio Satta
Dip. di Elettronica e Informatica

Universit�a di Padova
via Gradenigo 6/A,
35131 Padova, Italy
satta@dei.unipd.it

Abstract

Several recent stochastic parsers use bilexical

grammars, where each word type idiosyncrat-
ically prefers particular complements with par-
ticular head words. We present O(n4) parsing
algorithms for two bilexical formalisms, improv-
ing the prior upper bounds of O(n5). For a com-
mon special case that was known to allow O(n3)
parsing (Eisner, 1997), we present an O(n3) al-
gorithm with an improved grammar constant.

1 Introduction

Lexicalized grammar formalisms are of both
theoretical and practical interest to the com-
putational linguistics community. Such for-
malisms specify syntactic facts about each word
of the language|in particular, the type of
arguments that the word can or must take.
Early mechanisms of this sort included catego-
rial grammar (Bar-Hillel, 1953) and subcatego-
rization frames (Chomsky, 1965). Other lexi-
calized formalisms include (Schabes et al., 1988;
Mel'�cuk, 1988; Pollard and Sag, 1994).
Besides the possible arguments of a word, a

natural-language grammar does well to specify
possible head words for those arguments. \Con-
vene" requires an NP object, but some NPs are
more semantically or lexically appropriate here
than others, and the appropriateness depends
largely on the NP's head (e.g., \meeting"). We
use the general term bilexical for a grammar
that records such facts. A bilexical grammar
makes many stipulations about the compatibil-
ity of particular pairs of words in particular
roles. The acceptability of \Nora convened the

� The authors were supported respectively under ARPA
Grant N6600194-C-6043 \Human Language Technology"
and Ministero dell'Universit�a e della Ricerca Scienti�ca
e Tecnologica project \Methodologies and Tools of High
Performance Systems for Multimedia Applications."

party" then depends on the grammar writer's
assessment of whether parties can be convened.
Several recent real-world parsers have im-

proved state-of-the-art parsing accuracy by re-
lying on probabilistic or weighted versions of
bilexical grammars (Alshawi, 1996; Eisner,
1996; Charniak, 1997; Collins, 1997). The ra-
tionale is that soft selectional restrictions play
a crucial role in disambiguation.1

The chart parsing algorithms used by most of
the above authors run in time O(n5), because
bilexical grammars are enormous (the part of
the grammar relevant to a length-n input has
size O(n2) in practice). Heavy probabilistic
pruning is therefore needed to get acceptable
runtimes. But in this paper we show that the
complexity is not so bad after all:

� For bilexicalized context-free grammars,
O(n4) is possible.
� The O(n4) result also holds for head au-
tomaton grammars.
� For a very common special case of these
grammars where an O(n3) algorithm was
previously known (Eisner, 1997), the gram-
mar constant can be reduced without
harming the O(n3) property.

Our algorithmic technique throughout is to pro-
pose new kinds of subderivations that are not
constituents. We use dynamic programming to
assemble such subderivations into a full parse.

2 Notation for context-free
grammars

The reader is assumed to be familiar with
context-free grammars. Our notation fol-

1Other relevant parsers simultaneously consider two
or more words that are not necessarily in a dependency
relationship (La�erty et al., 1992; Magerman, 1995;
Collins and Brooks, 1995; Chelba and Jelinek, 1998).

lows (Harrison, 1978; Hopcroft and Ullman,
1979). A context-free grammar (CFG) is a tuple
G = (VN; VT; P; S), where VN and VT are �nite,
disjoint sets of nonterminal and terminal sym-
bols, respectively, and S 2 VN is the start sym-
bol. Set P is a �nite set of productions having
the form A! �, where A 2 VN; � 2 (VN[VT)

�.
If every production in P has the form A! BC
or A ! a, for A;B;C 2 VN; a 2 VT, then the
grammar is said to be in Chomsky Normal Form
(CNF).2 Every language that can be generated
by a CFG can also be generated by a CFG in
CNF.
In this paper we adopt the following conven-

tions: a; b; c; d denote symbols in VT, w; x; y de-
note strings in V �

T , and �; �; : : : denote strings
in (VN[VT)

�. The input to the parser will be a
CFG G together with a string of terminal sym-
bols to be parsed, w = d1d2 � � � dn. Also h; i; j; k
denote positive integers, which are assumed to
be � n when we are treating them as indices
into w. We write wi;j for the input substring
di � � � dj (and put wi;j = � for i > j).
A \derives" relation, written), is associated

with a CFG as usual. We also use the reexive
and transitive closure of), written)�, and
de�ne L(G) accordingly. We write � �|{z} �)

�

�� for a derivation in which only � is rewritten.

3 Bilexical context-free grammars

We introduce next a grammar formalism that
captures lexical dependencies among pairs of
words in VT. This formalism closely resem-
bles stochastic grammatical formalisms that are
used in several existing natural language pro-
cessing systems (see x1). We will specify a non-
stochastic version, noting that probabilities or
other weights may be attached to the rewrite
rules exactly as in stochastic CFG (Gonzales
and Thomason, 1978; Wetherell, 1980). (See
x4 for brief discussion.)
Suppose G = (VN; VT; P; T [$]) is a CFG in

CNF.3 We say that G is bilexical i� there exists
a set of \delexicalized nonterminals" VD such
that VN = fA[a] : A 2 VD; a 2 VTg and every
production in P has one of the following forms:

2Production S ! � is also allowed in a CNF grammar
if S never appears on the right side of any production.
However, S ! � is not allowed in our bilexical CFGs.

3We have a more general de�nition that drops the
restriction to CNF, but do not give it here.

� A[a]! B[b] C[a] (1)

� A[a]! C[a] B[b] (2)

� A[a]! a (3)

Thus every nonterminal is lexicalized at some
terminal a. A constituent of nonterminal type
A[a] is said to have terminal symbol a as its lex-
ical head, \inherited" from the constituent's
head child in the parse tree (e.g., C[a]).
Notice that the start symbol is necessarily a

lexicalized nonterminal, T [$]. Hence $ appears
in every string of L(G); it is usually convenient
to de�ne G so that the language of interest is
actually L0(G) = fx : x$ 2 L(G)g.
Such a grammar can encode lexically speci�c

preferences. For example, P might contain the
productions

� VP[solve] ! V[solve] NP[puzzles]

� NP[puzzles] ! DET[two] N[puzzles]

� V[solve] ! solve

� N[puzzles] ! puzzles

� DET[two] ! two

in order to allow the derivation VP[solve])�

solve two puzzles, but meanwhile omit the sim-
ilar productions

� VP[eat] ! V[eat] NP[puzzles]

� VP[solve] ! V[solve] NP[goat]

� VP[sleep] ! V[sleep] NP[goat]

� NP[goat] ! DET[two] N[goat]

since puzzles are not edible, a goat is not solv-
able, \sleep" is intransitive, and \goat" cannot
take plural determiners. (A stochastic version
of the grammar could implement \soft prefer-
ences" by allowing the rules in the second group
but assigning them various low probabilities.)
The cost of this expressiveness is a very large

grammar. Standard context-free parsing algo-
rithms are ine�cient in such a case. The CKY
algorithm (Younger, 1967; Aho and Ullman,
1972) is time O(n3 �jP j), where in the worst case
jP j = jVNj

3 (one ignores unary productions).
For a bilexical grammar, the worst case is jP j =
jVDj

3 �jVTj
2, which is large for a large vocabulary

VT. We may improve the analysis somewhat by
observing that when parsing d1 � � � dn, the CKY
algorithm only considers nonterminals of the
form A[di]; by restricting to the relevant pro-
ductions we obtain O(n3 � jVDj

3 �min(n; jVTj)
2).

2

We observe that in practical applications we
always have n � jVTj. Let us then restrict
our analysis to the (in�nite) set of input in-
stances of the parsing problem that satisfy re-
lation n < jVTj. With this assumption, the
asymptotic time complexity of the CKY algo-
rithm becomes O(n5 � jVDj

3). In other words,
it is a factor of n2 slower than a comparable
non-lexicalized CFG.

4 Bilexical CFG in time O(n4)

In this section we give a recognition algorithm
for bilexical CNF context-free grammars, which
runs in time O(n4 � max(p; jVDj

2)) = O(n4 �
jVDj

3). Here p is the maximum number of pro-
ductions sharing the same pair of terminal sym-
bols (e.g., the pair (b; a) in production (1)). The
new algorithm is asymptotically more e�cient
than the CKY algorithm, when restricted to in-
put instances satisfying the relation n < jVTj.
Where CKY recognizes only constituent sub-

strings of the input, the new algorithm can rec-
ognize three types of subderivations, shown and
described in Figure 1(a). A declarative speci�-
cation of the algorithm is given in Figure 1(b).
The derivability conditions of (a) are guaran-
teed by (b), by induction, and the correctness of
the acceptance condition (see caption) follows.
This declarative speci�cation, like CKY, may

be implemented by bottom-up dynamic pro-
gramming. We sketch one such method. For
each possible item, as shown in (a), we maintain
a bit (indexed by the parameters of the item)
that records whether the item has been derived
yet. All these bits are initially zero. The algo-
rithm makes a single pass through the possible
items, setting the bit for each if it can be derived
using any rule in (b) from items whose bits are
already set. At the end of this pass it is straight-
forward to test whether to accept w (see cap-
tion). The pass considers the items in increas-
ing order of width, where the width of an item
in (a) is de�ned as maxfh; i; jg � minfh; i; jg.
Among items of the same width, those of type
4 should be considered last.
The algorithm requires space proportional to

the number of possible items, which is at most
n3jVDj

2. Each of the �ve rule templates can
instantiate its free variables in at most n4p or
(for Complete rules) n4jVDj

2 di�erent ways,
each of which is tested once and in constant

time; so the runtime is O(n4max(p; jVDj
2)).

By comparison, the CKY algorithm uses only
the �rst type of item, and relies on rules whose

inputs are pairs ��@@
B

i h0 j
�
�
Q
Q
C

j + 1 h k
. Such rules

can be instantiated in O(n5) di�erent ways for a
�xed grammar, yielding O(n5) time complexity.
The new algorithm saves a factor of n by com-
bining those two constituents in two steps, one
of which is insensitive to k and abstracts over its
possible values, the other of which is insensitive
to h0 and abstracts over its possible values.
It is straightforward to turn the new O(n4)

recognition algorithm into a parser for stochas-

tic bilexical CFGs (or other weighted bilexical
CFGs). In a stochastic CFG, each nonterminal
A[a] is accompanied by a probability distribu-
tion over productions of the form A[a] ! �. A

parse is just a derivation (proof tree) of ��@@
T

1 h n
,

and its probability|like that of any derivation
we �nd|is de�ned as the product of the prob-
abilities of all productions used to condition in-
ference rules in the proof tree. The highest-
probability derivation for any item can be re-
constructed recursively at the end of the parse,
provided that each item maintains not only a
bit indicating whether it can be derived, but
also the probability and instantiated root rule
of its highest-probability derivation tree.

5 A more e�cient variant

We now give a variant of the algorithm of x4; the
variant has the same asymptotic complexity but
will often be faster in practice.
Notice that the Attach-Left rule of Fig-

ure 1(b) tries to combine the nonterminal label
B[dh0] of a previously derived constituent with
every possible nonterminal label of the form
C[dh]. The improved version, shown in Figure 2,
restricts C[dh] to be the label of a previously de-
rived adjacent constituent. This improves speed
if there are not many such constituents and we
can enumerate them in O(1) time apiece (using
a sparse parse table to store the derived items).
It is necessary to use an agenda data struc-

ture (Kay, 1986) when implementing the declar-
ative algorithm of Figure 2. Deriving narrower
items before wider ones as before will not work
here because the rule Halve derives narrow
items from wide ones.

3

(a) ��@@
A

i h j
(i � h � j, A 2 VD) is derived i� A[dh])

� wi;j

�@
��PP
A

i j
C
h

(i � j < h, A;C 2 VD) is derived i� A[dh]) B[dh0]| {z }C[dh])
� wi;jC[dh] for some B; h0

@�
PP��

A

i j
C
h

(h < i � j, A;C 2 VD) is derived i� A[dh]) C[dh]B[dh0]| {z })
� C[dh]wi;j for some B; h0

(b) Start:

��@@
A

h h h

A[dh]! dh

Attach-Left:

��@@
B

i h0 j

�@
��PP
A

i j
C
h

A[dh]! B[dh0]C[dh]

Complete-Right:

�@
��PP
A

i j
C
h

�
�
Q
Q
C

j + 1 h k

��@@
A

i h k
Attach-Right:

��@@
B

i h0 j

@�
PP��

A

i j
C
h

A[dh]! C[dh]B[dh0]

Complete-Left:

�
�
Q
Q
C

i h j � 1
@�

PP��
A

j k
C
h

��@@
A

i h k

Figure 1: An O(n4) recognition algorithm for CNF bilexical CFG. (a) Types of items in the
parse table (chart). The �rst is syntactic sugar for the tuple [4; A; i; h; j], and so on. The stated
conditions assume that d1; : : : dn are all distinct. (b) Inference rules. The algorithm derives the
item below ||{ if the items above ||{ have already been derived and any condition to the right
of ||{ is met. It accepts input w just if item [4; T; 1; h; n] is derived for some h such that dh = $.

(a) ��@@
A

i h j
(i � h � j, A 2 VD) is derived i� A[dh])

� wi;j

��
A

i h
(i � h, A 2 VD) is derived i� A[dh])

� wi;j for some j � h

@@
A

h j
(h � j, A 2 VD) is derived i� A[dh])

� wi;j for some i � h

�@
��PP
A

i j
C
h

(i � j < h, A;C 2 VD)
is derived i� A[dh]) B[dh0]| {z }C[dh])

� wi;jC[dh])
� wi;k for

some B; h0; k

@�
PP��

A

i j
C
h

(h < i � j, A;C 2 VD)
is derived i� A[dh]) C[dh]B[dh0]

| {z }
)� C[dh]wi;j)

� wk;j for
some B; h0; k

(b) As in Figure 1(b) above, but add Halve and change Attach-Left and Attach-Right as shown.

Halve:

��@@
A

i h j

��
A

i h
@@

A

h j

Attach-Left:

��@@
B

i h0 j
�
�
C

j + 1 h

�@
��PP
A

i j
C
h

A[dh]! B[dh0]C[dh]

Attach-Right:

Q
Q
C

h j � 1
��@@
B

j h0 k

@�
PP��

A

j k
C
h

A[dh]! C[dh]B[dh0]

Figure 2: A more e�cient variant of the O(n4) algorithm in Figure 1, in the same format.

4

6 Multiple word senses

Rather than parsing an input string directly, it
is often desirable to parse another string related
by a (possibly stochastic) transduction. Let T
be a �nite-state transducer that maps a mor-
pheme sequence w 2 V �

T to its orthographic re-
alization, a grapheme sequence �w. T may re-
alize arbitrary morphological processes, includ-
ing a�xation, local clitic movement, deletion
of phonological nulls, forbidden or dispreferred
k-grams, typographical errors, and mapping of
multiple senses onto the same grapheme. Given
grammar G and an input �w, we ask whether
�w 2 T (L(G)). We have extended all the algo-
rithms in this paper to this case: the items sim-
ply keep track of the transducer state as well.
Due to space constraints, we sketch only the

special case of multiple senses. Suppose that
the input is �w = �d1 � � � �dn, and each �di has up to
g possible senses. Each item now needs to track
its head's sense along with its head's position in
�w. Wherever an item formerly recorded a head
position h (similarly h0), it must now record a
pair (h; dh), where dh 2 VT is a speci�c sense of
�dh. No rule in Figures 1{2 (or Figure 3 below)
will mention more than two such pairs. So the
time complexity increases by a factor of O(g2).

7 Head automaton grammars in
time O(n4)

In this section we show that a length-n string
generated by a head automaton grammar (Al-
shawi, 1996) can be parsed in time O(n4). We
do this by providing a translation from head
automaton grammars to bilexical CFGs.4 This
result improves on the head-automaton parsing
algorithm given by Alshawi, which is analogous
to the CKY algorithm on bilexical CFGs and is
likewise O(n5) in practice (see x3).
A head automaton grammar (HAG) is a

function H : a 7! Ha that de�nes a head au-
tomaton (HA) for each element of its (�nite)
domain. Let VT = domain(H) and D = f!;
g. A special symbol $ 2 VT plays the role of
start symbol. For each a 2 VT, Ha is a tuple
(Qa; VT; �a; Ia; Fa), where

� Qa is a �nite set of states;

4Translation in the other direction is possible if the
HAG formalism is extended to allow multiple senses per
word (see x6). This makes the formalisms equivalent.

� Ia; Fa � Qa are sets of initial and �nal
states, respectively;
� �a is a transition function mapping Qa �
VT �D to 2Qa , the power set of Qa.

A single head automaton is an acceptor for a
language of string pairs hzl; zri 2 V �

T � V �

T . In-
formally, if b is the leftmost symbol of zr and
q0 2 �a(q; b;!), then Ha can move from state q
to state q0, matching symbol b and removing it
from the left end of zr. Symmetrically, if b is the
rightmost symbol of zl and q0 2 �a(q; b;) then
from q Ha can move to q0, matching symbol b
and removing it from the right end of zl.

5

More formally, we associate with the head au-
tomaton Ha a \derives" relation `a, de�ned as
a binary relation on Qa � V �

T � V �

T . For ev-
ery q 2 Q, x; y 2 V �

T , b 2 VT, d 2 D, and
q0 2 �a(q; b; d), we specify that

(q; xb; y) `a (q0; x; y) if d = ;

(q; x; by) `a (q0; x; y) if d =! :

The reexive and transitive closure of `a is writ-
ten `�

a. The language generated by Ha is the set

L(Ha) = fhzl; zri j (q; zl; zr) `
�

a (r; �; �);

q 2 Ia; r 2 Fag:

We may now de�ne the language generated
by the entire grammar H. To generate, we ex-
pand the start word $ 2 VT into x$y for some
hx; yi 2 L(H$), and then recursively expand the
words in strings x and y. More formally, given
H, we simultaneously de�ne La for all a 2 VT
to be minimal such that if hx; yi 2 L(Ha),
x0 2 Lx, y0 2 Ly, then x0ay0 2 La, where
La1���ak stands for the concatenation language
La1 � � �Lak . Then H generates language L$.
We next present a simple construction that

transforms a HAG H into a bilexical CFG G
generating the same language. The construc-
tion also preserves derivation ambiguity. This
means that for each string w, there is a linear-
time 1-to-1 mapping between (appropriately de-

5Alshawi (1996) describes HAs as accepting (or equiv-
alently, generating) zl and zr from the outside in. To
make Figure 3 easier to follow, we have de�ned HAs as
accepting symbols in the opposite order, from the in-
side out. This amounts to the same thing if transitions
are reversed, Ia is exchanged with Fa, and any transi-
tion probabilities are replaced by those of the reversed
Markov chain.

5

�ned) canonical derivations of w by H and
canonical derivations of w by G.

We adopt the notation above for H and the
components of its head automata. Let VD be
an arbitrary set of size t = maxfjQaj : a 2 VTg,
and for each a, de�ne an arbitrary injection fa :
Qa ! VD. We de�ne G = (VN; VT; P; T [$]),
where

(i) VN = fA[a] : A 2 VD; a 2 VTg, in the usual
manner for bilexical CFG;

(ii) P is the set of all productions having one
of the following forms, where a; b 2 VT:

� A[a]! B[b] C[a] where
A = fa(r), B = fb(q

0), C = fa(q) for
some q0 2 Ib, q 2 Qa, r 2 �a(q; b;)

� A[a]! C[a] B[b] where
A = fa(r), B = fb(q

0), C = fa(q) for
some q0 2 Ib, q 2 Qa, r 2 �a(q; b;!)

� A[a]! a where
A = fa(q) for some q 2 Fa

(iii) T = f$(q), where we assume WLOG that
I$ is a singleton set fqg.

We omit the formal proof that G and H
admit isomorphic derivations and hence gen-
erate the same languages, observing only that
if hx; yi = hb1b2 � � � bj; bj+1 � � � bki 2 L(Ha)|
a condition used in de�ning La above|then
A[a])� B1[b1] � � �Bj [bj]aBj+1[bj+1] � � �Bk[bk],
for any A;B1; : : : Bk that map to initial states
in Ha;Hb1 ; : : : Hbk respectively.

In general, G has p = O(jVDj
3) = O(t3). The

construction therefore implies that we can parse
a length-n sentence under H in time O(n4t3). If
the HAs in H happen to be deterministic, then
in each binary production given by (ii) above,
symbol A is fully determined by a, b, and C. In
this case p = O(t2), so the parser will operate
in time O(n4t2).

We note that this construction can be
straightforwardly extended to convert stochas-
tic HAGs as in (Alshawi, 1996) into stochastic
CFGs. Probabilities that Ha assigns to state q's
various transition and halt actions are copied
onto the corresponding productions A[a] ! �
of G, where A = fa(q).

8 Split head automaton grammars
in time O(n3)

For many bilexical CFGs or HAGs of practical
signi�cance, just as for the bilexical version of
link grammars (La�erty et al., 1992), it is possi-
ble to parse length-n inputs even faster, in time
O(n3) (Eisner, 1997). In this section we de-
scribe and discuss this special case, and give a
new O(n3) algorithm that has a smaller gram-
mar constant than previously reported.
A head automaton Ha is called split if it has

no states that can be entered on a transi-
tion and exited on a ! transition. Such an au-
tomaton can accept hx; yi only by reading all of
y|immediately after which it is said to be in
a ip state|and then reading all of x. For-
mally, a ip state is one that allows entry on a
! transition and that either allows exit on a
transition or is a �nal state.
We are concerned here with head automa-

ton grammars H such that every Ha is split.
These correspond to bilexical CFGs in which
any derivation A[a])� xay has the form
A[a])� xB[a])� xay. That is, a word's left
dependents are more oblique than its right de-
pendents and c-command them.
Such grammars are broadly applicable. Even

ifHa is not split, there usually exists a split head
automaton H 0

a recognizing the same language.
H 0

a exists i� fx#y : hx; yi 2 L(Ha)g is regular
(where # 62 VT). In particular, H 0

a must exist
unless Ha has a cycle that includes both and
! transitions. Such cycles would be necessary
for Ha itself to accept a formal language such
as fhbn; cni : n � 0g, where word a takes 2n de-
pendents, but we know of no natural-language
motivation for ever using them in a HAG.
One more de�nition will help us bound the

complexity. A split head automaton Ha is said
to be g-split if its set of ip states, denoted
�Qa � Qa, has size � g. The languages that can
be recognized by g-split HAs are those that can
be written as

Sg
i=1 Li � Ri, where the Li and

Ri are regular languages over VT. Eisner (1997)
actually de�ned (g-split) bilexical grammars in
terms of the latter property.6

6That paper associated a product language Li�Ri, or
equivalently a 1-split HA, with each of g senses of a word
(see x6). One could do the same without penalty in our
present approach: con�ning to 1-split automata would
remove the g2 complexity factor, and then allowing g

6

We now present our result: Figure 3 speci�es
an O(n3g2t2) recognition algorithm for a head
automaton grammar H in which every Ha is
g-split. For deterministic automata, the run-
time is O(n3g2t)|a considerable improvement
on the O(n3g3t2) result of (Eisner, 1997), which
also assumes deterministic automata. As in x4,
a simple bottom-up implementation will su�ce.

For a practical speedup, add @@
s

h j
as an an-

tecedent to the Mid rule (and �ll in the parse
table from right to left).
Like our previous algorithms, this one takes

two steps (Attach, Complete) to attach a
child constituent to a parent constituent. But
instead of full constituents|strings xdiy 2
Ldi|it uses only half-constituents like xdi and

diy. Where CKY combines ��@@
i h0 j

�
�
Q
Q

j + 1 h k
,

we save two degrees of freedom i; k (so improv-

ing O(n5) to O(n3)) and combine @@
h0 j

�
�

j + 1 h
:

The other halves of these constituents can be at-
tached later, because to �nd an accepting path
for hzl; zri in a split head automaton, one can
separately �nd the half-path before the ip state
(which accepts zr) and the half-path after the
ip state (which accepts zl). These two half-
paths can subsequently be joined into an ac-
cepting path if they have the same ip state s,
i.e., one path starts where the other ends. An-
notating our left half-constituents with s makes
this check possible.

9 Final remarks

We have formally described, and given faster
parsing algorithms for, three practical gram-
matical rewriting systems that capture depen-
dencies between pairs of words. All three sys-
tems admit naive O(n5) algorithms. We give
the �rst O(n4) results for the natural formalism
of bilexical context-free grammar, and for Al-
shawi's (1996) head automaton grammars. For
the usual case, split head automaton grammars
or equivalent bilexical CFGs, we replace the
O(n3) algorithm of (Eisner, 1997) by one with a
smaller grammar constant. Note that, e.g., all

senses would restore the g2 factor. Indeed, this approach
gives added exibility: a word's sense, unlike its choice
of ip state, is visible to the HA that reads it.

three models in (Collins, 1997) are susceptible
to the O(n3) method (cf. Collins's O(n5)).

Our dynamic programming techniques for
cheaply attaching head information to deriva-
tions can also be exploited in parsing formalisms
other than rewriting systems. The authors have
developed an O(n7)-time parsing algorithm for
bilexicalized tree adjoining grammars (Schabes,
1992), improving the naive O(n8) method.

The results mentioned in x6 are related to the
closure property of CFGs under generalized se-
quential machine mapping (Hopcroft and Ull-
man, 1979). This property also holds for our
class of bilexical CFGs.

References

A. V. Aho and J. D. Ullman. 1972. The Theory
of Parsing, Translation and Compiling, volume 1.
Prentice-Hall, Englewood Cli�s, NJ.

H. Alshawi. 1996. Head automata and bilingual
tiling: Translation with minimal representations.
In Proc. of ACL, pages 167{176, Santa Cruz, CA.

Y. Bar-Hillel. 1953. A quasi-arithmetical notation
for syntactic description. Language, 29:47{58.

E. Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In
Proc. of the 14th AAAI, Menlo Park.

C. Chelba and F. Jelinek. 1998. Exploiting syntac-
tic structure for language modeling. In Proc. of
COLING-ACL.

N. Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

M. Collins and J. Brooks. 1995. Prepositional
phrase attachment through a backed-o� model.
In Proc. of the Third Workshop on Very Large
Corpora, Cambridge, MA.

M. Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. In Proc. of the 35th
ACL and 8th European ACL, Madrid, July.

J. Eisner. 1996. An empirical comparison of proba-
bility models for dependency grammar. Technical
Report IRCS-96-11, IRCS, Univ. of Pennsylvania.

J. Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the
4th Int. Workshop on Parsing Technologies, MIT,
Cambridge, MA, September.

R. C. Gonzales and M. G. Thomason. 1978. Syntac-
tic Pattern Recognition. Addison-Wesley, Read-
ing, MA.

M. A. Harrison. 1978. Introduction to Formal Lan-
guage Theory. Addison-Wesley, Reading, MA.

J. E. Hopcroft and J. D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, MA.

7

(a) @@

q

h j
(h � j, q 2 Qdh) is derived i� dh : I

x
�! q where wh+1;j 2 Lx

��

q

i h
s (i � h, q 2 Qdh [fFg, s 2

�Qdh) is derived i� dh : q
x
 � s where wi;h�1 2 Lx

HH
q

h0h
s0 (h < h0, q 2 Qdh , s

0 2 �Qd
h0
) is derived i� dh : I

xd
h0

�! q and dh0 : F
y
 � s0 where

wh+1;h0�1 2 Lxy

��
q

h0 h
s0 s (h0 < h, q 2 Qdh , s 2

�Qdh , s
0 2 �Qdh)

is derived i� dh0 : I
x
�! s0 and dh : q

d
h0y
 � s where

wh+1;h0�1 2 Lxy

(b)
Start:

@@

q

h h

q 2 Idh Mid:

��
s

h h
s

s 2 �Qdh
Finish:

��

q

i h
s

��
F

i h
s

q 2 Fdh

Attach-Right:

Q
Q
q

h i� 1
��
F

i h0
s0

HH
r

h0h
s0

r 2 �dh(q; dh0 ;!)

Complete-Right:
HH
q

h0h
s0 @@

s0

h0 i

@@

q

h i
Attach-Left:

@@
s0

h0 i
�
�
q

i+ 1 h
s

��
r

h0 h
s0 s

s0 2 �Qd
h0
; r 2 �dh(q; dh0 ;)

Complete-Left:

��
F

i h0
s0 ��

q

h0 h
s0 s

��

q

i h
s

(c) Accept input w just if ��
F

1 h
s and @@

s

h n
are derived for some h; s such that dh = $.

Figure 3: An O(n3) recognition algorithm for split head automaton grammars. The format is as
in Figure 1, except that (c) gives the acceptance condition. The following notation indicates that

a head automaton can consume a string x from its left or right input: a : q
x
�! q0 means that

(q; �; x) `�

a (q
0; �; �), and a : I

x
�! q0 means this is true for some q 2 Ia. Similarly, a : q0 x

 � q means

that (q; x; �) `�

a (q
0; �; �), and a : F

x
 � q means this is true for some q0 2 Fa. The special symbol

F also appears as a literal in some items, and e�ectively means \an unspeci�ed �nal state."

M. Kay. 1986. Algorithm schemata and data struc-
tures in syntactic processing. In K. Sparck Jones
B. J. Grosz and B. L. Webber, editors, Natu-
ral Language Processing, pages 35{70. Kaufmann,
Los Altos, CA.

J. La�erty, D. Sleator, and D. Temperley. 1992.
Grammatical trigrams: A probabilistic model of
link grammar. In Proc. of the AAAI Conf. on
Probabilistic Approaches to Nat. Lang., October.

D. Magerman. 1995. Statistical decision-tree mod-
els for parsing. In Proceedings of the 33rd ACL.

I. Mel'�cuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

C. Pollard and I. Sag. 1994. Head-Driven Phrase

Structure Grammar. University of Chicago Press.
Y. Schabes, A. Abeill�e, and A. Joshi. 1988. Parsing

strategies with `lexicalized' grammars: Applica-
tion to Tree Adjoining Grammars. In Proceedings
of COLING-88, Budapest, August.

Yves Schabes. 1992. Stochastic lexicalized tree-
adjoining grammars. In Proc. of the 14th COL-
ING, pages 426{432, Nantes, France, August.

C. S. Wetherell. 1980. Probabilistic languages: A
review and some open questions. Computing Sur-
veys, 12(4):361{379.

D. H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information
and Control, 10(2):189{208, February.

8

