
1

1

Compiling Comp Ling
Practical weighted dynamic programming
and the Dyna language

Jason Eisner
Eric Goldlust
Noah A. Smith

HLT-EMNLP, October 2005 2

An Anecdote from ACL’05

-Michael Jordan

3

An Anecdote from ACL’05

Just draw a model that actually
makes sense for your problem.

-Michael Jordan

Just do Gibbs sampling. Um, it’s only 6 lines in Matlab…

4

Conclusions to draw from that talk

1. Mike & his students are great.
2. Graphical models are great.

(because they’re flexible)
3. Gibbs sampling is great.

(because it works with nearly any graphical model)
4. Matlab is great.

(because it frees up Mike and his students to
doodle all day and then execute their doodles)

5

1. Mike & his students are great.
2. Graphical models are great.

(because they’re flexible)
3. Gibbs sampling is great.

(because it works with nearly any graphical model)
4. Matlab is great.

(because it frees up Mike and his students to
doodle all day and then execute their doodles)

6

Parts of it already are …
Language modeling
Binary classification (e.g., SVMs)
Finite-state transductions
Linear-chain graphical models

Toolkits
available; you
don’t have to be
an expert

Efficient
parsers and MT
systems are
complicated and
painful to write

But other parts aren’t …
Context-free and beyond
Machine translation

2

7

This talk: A toolkit that’s general enough for
these cases.

(stretches from finite-state to Turing machines)

“Dyna”

Efficient
parsers and MT
systems are
complicated and
painful to write

But other parts aren’t …
Context-free and beyond
Machine translation

8

Warning

� This talk is only an advertisement!
� For more details, please

see the paper

see http://dyna.org
(download + documentation)

sign up for updates by email

9

How you build a system (“big picture” slide)

cool model

tuned C++
implementation

(data structures, etc.)

practical equations

pseudocode
(execution order)

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

PCFG

10

Wait a minute …

Didn’t I just implement something
like this last month?

chart management / indexing
cache-conscious data structures
prioritize partial solutions (best-first, pruning)
parameter management
inside-outside formulas
different algorithms for training and decoding
conjugate gradient, annealing, ...
parallelization?

We thought computers were supposed to automate drudgery

11

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

How you build a system (“big picture” slide)

cool model

tuned C++
implementation

(data structures, etc.)

pseudocode
(execution order)

PCFG

Dyna language specifies these equations.

Most programs just need to compute some
values from other values. Any order is ok.

Some programs also need to update the
outputs if the inputs change:
� spreadsheets, makefiles, email readers
� dynamic graph algorithms
� EM and other iterative optimization
� leave-one-out training of smoothing params

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

practical equations

12

How you build a system (“big picture” slide)

cool model

practical equations

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

PCFG

Compilation strategies
(we’ll come back to this)

tuned C++
implementation

(data structures, etc.)

pseudocode
(execution order)

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

3

13

Writing equations in Dyna
� int a.
� a = b * c.

a will be kept up to date if b or c changes.
� b += x.
b += y. equivalent to b = x+y.

b is a sum of two variables. Also kept up to date.
� c += z(1).
c += z(2).
c += z(3).

c += z(“four”).
c += z(foo(bar,5)).

c is a sum of all
nonzero z(…) values.
At compile time, we

don’t know how many!

a “pattern”
the capitalized N
matches anything

c += z(N).

14

More interesting use of patterns
� a = b * c.

� scalar multiplication
� a(I) = b(I) * c(I).

� pointwise multiplication
� a += b(I) * c(I). means a = b(I)*c(I)

� dot product; could be sparse

� a(I,K) += b(I,J) * c(J,K). b(I,J)*c(J,K)

� matrix multiplication; could be sparse
� J is free on the right-hand side, so we sum over it

∑
I

... + b(“yetis”)*c(“yetis”)
+ b(“zebra”)*c(“zebra”)

sparse dot product of query & document

∑
J

15

By now you may see what we’re up to!

Prolog has Horn clauses:
a(I,K) :- b(I,J) , c(J,K).

Dyna has “Horn equations”:
a(I,K) += b(I,J) * c(J,K).

Dyna vs. Prolog

has a value
e.g., a real number

definition from other values

Like Prolog:
Allow nested terms

Syntactic sugar for lists, etc.
Turing-complete

Unlike Prolog:
Charts, not backtracking!

Compile � efficient C++ classes
Integrates with your C++ code

16

using namespace cky;
chart c;

c[rewrite(“s”,”np”,”vp”)] = 0.7;
c[word(“Pierre”,0,1)] = 1;
c[length(30)] = true; // 30-word sentence
cin >> c; // get more axioms from stdin

cout << c[goal]; // print total weight of all parses

The CKY inside algorithm in Dyna
:- double item = 0.
:- bool length = false.
constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

put in axioms
(values not
defined by
the above
program)

theorem
pops out

17

visual debugger –
browse the proof forest

ambiguity

shared substructure

18

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

4

19

Related algorithms in Dyna?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

max=

max=

max=

20

Related algorithms in Dyna?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

max=

max=

max=

+

+ +

log+=

log+=

log+=

21

c[word(“Pierre”, 0, 1)] = 1 state(5) state(9)

Related algorithms in Dyna?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

0.2

9

5

8

Pierre/0.2P/0.5
air/0.3

22

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

23

Earley’s algorithm in Dyna

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

need(“s”,0) = true.
need(Nonterm,J) |= ?constit(_/[Nonterm|_],_,J).
constit(Nonterm/Needed,I,I)

+= rewrite(Nonterm,Needed) if need(Nonterm,I).
constit(Nonterm/Needed,I,K)

+= constit(Nonterm/[W|Needed],I,J) * word(W,J,K).
constit(Nonterm/Needed,I,K)

+= constit(Nonterm/[X|Needed],I,J) * constit(X/[],J,K).
goal += constit(“s”/[],0,N) if length(N).

magic templates transformation
(as noted by Minnen 1996)

24

pseudocode
(execution order)

Program transformations

tuned C++
implementation

(data structures, etc.)

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

Lots of equivalent ways to write
a system of equations!

Transforming from one to another may
improve efficiency.

(Or, transform to related equations that compute
gradients, upper bounds, etc.)

Many parsing “tricks” can be generalized into
automatic transformations that help other programs, too!

cool model

practical equations

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

PCFG

5

25

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

26

Rule binarization

constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).

constit(X\Y,Mid,J) += constit(Z,Mid,J) * rewrite(X,Y,Z).
constit(X,I,J) += constit(Y,I,Mid) * constit(X\Y,Mid,J).

folding transformation: asymp. speedup!

Mid J

Z
Y Z

X

I Mid

Y

I J

X

Mid J

X\Y

I Mid

Y

27

Rule binarization

constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).

constit(X\Y,Mid,J) += constit(Z,Mid,J) * rewrite(X,Y,Z).
constit(X,I,J) += constit(Y,I,Mid) * constit(X\Y,Mid,J).

folding transformation: asymp. speedup!

constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z)∑
MidZY ,,

constit(Y,I,Mid) constit(Z,Mid,J) * rewrite(X,Y,Z)∑
MidY ,

∑
Z

graphical models
constraint programming
multi-way database join

28

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

Just add words one at a time
to the chart
Check at any time what can
be derived from words so far

Similarly, dynamic grammars

29

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

Again, no change to the Dyna
program

30

Related algorithms in Dyna?

� Viterbi parsing?
� Logarithmic domain?
� Lattice parsing?
� Earley’s algorithm?
� Binarized CKY?
� Incremental (left-to-right) parsing?
� Log-linear parsing?
� Lexicalized or synchronous parsing?

constit(X,I,J) += word(W,I,J) * rewrite(X,W).
constit(X,I,J) += constit(Y,I,Mid) * constit(Z,Mid,J) * rewrite(X,Y,Z).
goal += constit(“s”,0,N) if length(N).

Basically, just add extra
arguments to the terms above

6

31

Propagate updates
from right-to-left
through the equations.
a.k.a.
“agenda algorithm”
“forward chaining”
“bottom-up inference”
“semi-naïve bottom-up”

How you build a system (“big picture” slide)

cool model

tuned C++
implementation

(data structures, etc.)

practical equations

pseudocode
(execution order)

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

PCFG

use a
general
method

32

agenda of pending updates

prep(2,3)
= 1.0

prep(I,3)
= ?

s(3,9)
+= 0.15
s(3,7)

+= 0.21
vp(5,K)

= ?
vp(5,9)
= 0.5

vp(5,7)
= 0.7

Bottom-up inference

np(3,5)
+= 0.3

chart of derived items with current values

s(I,K) += np(I,J) * vp(J,K)
rules of program

np(3,5)
= 0.1+0.3

0.4

we updated np(3,5);
what else must therefore change?

If np(3,5) hadn’t been
in the chart already,
we would have added it.

vp(5,K)?no more matches
to this queryprep(I,3)?

pp(I,K) += prep(I,J) * np(J,K)
pp(2,5)
+= 0.3

33

() ()
...

|

),(),(
,

0
∑

≤<<≤ →
=

nkji xzyx

zy
x NNNNp

kjji
ki

ββ
β

How you build a system (“big picture” slide)

cool model

practical equations

pseudocode
(execution order)

for width from 2 to n
for i from 0 to n-width

k = i+width
for j from i+1 to k-1

…

PCFG

What’s going
on under the

hood?

tuned C++
implementation

(data structures, etc.)

34

copy, compare, & hash
terms fast, via

integerization (interning)

Compiler provides …

np(3,5)
+= 0.3

chart of derived items with current values

s(I,K) += np(I,J) * vp(J,K)

efficient storage of terms
(use native C++ types,

“symbiotic” storage,
garbage collection,

serialization, …)
vp(5,K)?

automatic indexing
for O(1) lookup

rules of program

hard-coded
pattern matching

agenda of pending updates
efficient priority queue

35

n(5,5)
= 0.2

agenda of pending updates

n(5,5)
+= ?

Beware double-counting!

n(5,5)
+= 0.3

chart of derived items with current values

n(I,K) += n(I,J) * n(J,K)
rules of program

If np(3,5) hadn’t been
in the chart already,
we would have added it.

n(5,K)?

epsilon
constituent

to make
another copy

of itself

combining
with itself

36

Parameter training
� Maximize some objective function.
� Use Dyna to compute the function.
� Then how do you differentiate it?

� … for gradient ascent,
conjugate gradient, etc.

� … gradient also tells us the
expected counts for EM!

model parameters
(and input sentence)

as axiom values

objective function
as a theorem’s value

e.g., inside algorithm
computes likelihood

of the sentence

� Two approaches:
� Program transformation – automatically derive the “outside” formulas.
� Back-propagation – run the agenda algorithm “backwards.”

� works even with pruning, early stopping, etc.

DynaMITE: training toolkit

7

37

What can Dyna do beyond CKY?
� Context-based morphological disambiguation with random fields

(Smith, Smith & Tromble EMNLP’05)
� Parsing with constraints on dependency length

(Eisner & Smith IWPT’05)
� Unsupervised grammar induction using contrastive estimation

(Smith & Eisner GIA’05)
� Unsupervised log-linear models using contrastive estimation

(Smith & Eisner ACL’05)
� Grammar induction with annealing (Smith & Eisner ACL’04)
� Synchronous cross-lingual parsing (Smith & Smith EMNLP’04)
� Loosely syntax-based MT … (Smith & Eisner in prep.)
� Partly supervised grammar induction … (Dreyer & Eisner in prep.)
� More finite-state stuff … (Tromble & Eisner in prep.)
� Teaching (Eisner JHU’05; Smith & Tromble JHU’04)
� Most of my own past work on trainable (in)finite-state machines,

parsing, MT, phonology …

Easy to try stuff out!

Programs are very
short & easy to

change!

38

Can it express everything in NLP? ☺

� Remember, it integrates tightly with C++,
so you only have to use it where it’s helpful,
and write the rest in C++. Small is beautiful.

� We’re currently extending the class of allowed
formulas “beyond the semiring”
� cf. Goodman (1999)
� will be able to express smoothing, neural nets, etc.

� Of course, it is Turing complete … ☺

39

Smoothing in Dyna

� mle_prob(X,Y,Z) % context
= count(X,Y,Z)/count(X,Y).

� smoothed_prob(X,Y,Z)
= lambda*mle_prob(X,Y,Z)

+ (1-lambda)*mle_prob(Y,Z).
� % for arbitrary n-grams, can use lists

� count_count(N) += 1 whenever N is count(Anything).
� % updates automatically during leave-one-out jackknifing

40

Neural networks in Dyna

� out(Node) = sigmoid(in(Node)).
� in(Node) += input(Node).
� in(Node) += weight(Node,Kid)*out(Kid).
� error += (out(Node)-target(Node))**2

if ?target(Node).

� Recurrent neural net is ok

1x 2x 3x 4x

1h 2h 3h

y

41

Game-tree analysis in Dyna

� goal = best(Board) if start(Board).

� best(Board) max= stop(player1, Board).
� best(Board) max= move(player1, Board,

NewBoard) + worst(NewBoard).

� worst(Board) min= stop(player2, Board).
� worst(Board) min= move(player2, Board,

NewBoard) + best(NewBoard).

42

Weighted FST composition in Dyna
(epsilon-free case)

� :- bool item=false.
� start (A o B, Q x R) |= start (A, Q) & start (B, R).
� stop (A o B, Q x R) |= stop (A, Q) & stop (B, R).
� arc (A o B, Q1 x R1, Q2 x R2, In, Out)

|= arc (A, Q1, Q2, In, Match)
& arc (B, R1, R2, Match, Out).

� Inefficient? How do we fix this?

8

43

Constraint programming (arc consistency)

� :- bool item=false.
� :- bool consistent=true. % overrides prev line

� variable(Var) |= in_domain(Var:Val).
� possible(Var:Val) &= in_domain(Var:Val).
� possible(Var:Val) &= support(Var:Val, Var2)

whenever variable(Var2).
� support(Var:Val, Var2) |= possible(Var2:Val2)

& consistent(Var:Val, Var2:Val2).

44

Is it fast enough? (sort of)
� Asymptotically efficient
� 4 times slower than Mark Johnson’s inside-outside
� 4-11 times slower than Klein & Manning’s Viterbi parser

45

Are you going to make it faster? (yup!)

� Currently rewriting the term classes
to match hand-tuned code

� Will support “mix-and-match”
implementation strategies
� store X in an array
� store Y in a hash
� don’t store Z

(compute on demand)

� Eventually, choose
strategies automatically
by execution profiling

46

Synopsis:
today’s idea � experimental results fast!

� Dyna is a language for computation (no I/O).
� Especially good for dynamic programming.
� It tries to encapsulate the black art of NLP.

� Much prior work in this vein …
� Deductive parsing schemata (preferably weighted)

� Goodman, Nederhof, Pereira, Warren, Shieber, Schabes, Sikkel…
� Deductive databases (preferably with aggregation)

� Ramakrishnan, Zukowski, Freitag, Specht, Ross, Sagiv, …
� Probabilistic programming languages (implemented)

� Zhao, Sato, Pfeffer … (also: efficient Prologish languages)

47

Contributors!

� Jason Eisner
� Eric Goldlust, Eric Northup, Johnny Graettinger

(compiler backend)
� Noah A. Smith (parameter training)
� Markus Dreyer, David Smith (compiler frontend)
� Mike Kornbluh, George Shafer, Gordon Woodhull

(visual debugger)
� John Blatz (program transformations)
� Asheesh Laroia (web services)

http://www.dyna.org

