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Program Transformations for
Optimization of Parsing Algorithms and
Other Weighted Logic Programs
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Abstract

Dynamic programming algorithms in statistical naturalgaage processing can be
easily described as weighted logic programs. We give ainatand semantics for such
programs. We then describe several source-to-sourcefdrarations that fiect a pro-
gram’s dficiency, primarily by rearranging computations for bet&use or by changing
the search strategy.
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4.1 Introduction

In this paper, we show how somdfieiency tricks used in the natural lan-
guage processing (NLP) community, particularly for pagsoan be regarded
as specific instances of transformations on weighted logignamming al-
gorithms.

We define weighted logic programs and sketch the general Girthe
transformations, enabling their application to new progsé NLP and other
domains. Several of the transformations (folding, unfodgdimagic templates)
have been known in the logic programming community, but @megalized
here to our weighted framework and applied to NLP algorithiive also
present a powerful generalization of folding—speculatiamhich appears
new and is able to derive some important parsing algorittmally, our
formalization of these transformations has been simpltiiedur use of “gap
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passing” ideas from categorial grammar and non-groundstdrom logic
programming.

The framework that we use for specifying the weighted logampams is
roughly based on that of Dyna (Eisner et al., 2005), an impleed system
that can compile such specifications infa@ent G++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an imgri¢ed
probabilistic Prolog.

It is especially useful to have general optimization teghes for dy-
namic programming algorithms (a special case in our framievbecause
NLP researchers regularly propose new such algorithmsa®ynprogram-
ming is used to parse manyfiirent grammar formalisms. It is also used in
stack decoding, grammar induction, finite-state methond, syntax-based
approaches to machine translation and language modeling.

One might select program transformations either manuallgutomati-
cally. Our goal here is simply to illustrate the search spafceemantically
equivalent programs. We do not address the practical qurestisearching
this space—that is, the question of where and when to applytrémsfor-
mations. For some programs and their typical inputs, a toamstion will
speed a program up; in other cases, it will slow it down. Thealafect can
of course be determined empirically by running the tramatx program (or
in some cases, predicted more quickly by profiling thieransformedoro-
gram as it runs on typical inputs). Thus, at least in prirgiphe could apply
automatic local search methods.

4.2 Our Formalism
4.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running exanipdeall that one
can write a logic program for CKY recognition (Younger, 19@# follows,
whereconstit(X,1,K) is provable ff the grammar, starting at nontermitxalcan
generate the input substring from positido positionk.

constit(X,1,K) :- rewrite(X,W), word(W,1,K).

constit(X,1,K) :- rewrite(X,Y,Z), constit(Y,1,J), constit(Z,J,K).

goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,"Dumbo”).

rewrite(np,’flies”).

rewrite(vp,"flies”).

word("Dumbo”,0,1). % tiny input sentence
word("flies”,1,2).
length(2).
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We say that this logic program is@dynamic program because it satis-
fies a simple restriction: allariables (capitalized) in a rule’s left-hand side
(rule head) also appear on its right-hand side (ridedy). Logic programs
restricted in this way correspond to the “grammatical dédacsystems” dis-
cussed by Shieber et al. (1995). They can be evaluated bym@esagenda-
based, bottom-up dynamic programming algorithm.

This paper, however, deals with general logic programsawitlthis re-
striction. For example, one may wish to assert the avaitgloif an “epsilon”
word ateverypositionk in the sentencevord(epsilon,K,K). We emphasize this
because it is convenient for some of our transformationsittmduce new
non-dynamic rules. One can often eliminate non-dynamesr(ih particular,
the ones we introduce) to obtain a semantically equivalgnaohic program,
but we do not here explore transformations for doing so syatieally.

4.2.2 Weighted Logic Programs

We now define our notion afieightedogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs disedl by Good-
man (1999) and Eisner et al. (2005). See the latter paperd@cassion of
relevant work on deductive databases with aggregation, (€itting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

Our running example is the inside algorithm for contexefparsing:

constit(X,1,K) += rewrite(X,W) * word(W,|,K).

constit(X,,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s—npvpls)
rewrite(np,"Dumbo”) = 0.6. % p(np — "Dumbo” | np)
rewrite(np,’flies”) = 0.4. % p(vp — "flies” | vp)

rewrite(vp,"flies”) = 1. % p(vp — "flies” | vp)
word("Dumbo”,0,1) = 1. % 1 for all words in the sentence
word("flies”,1,2) = 1.

length(2) = 1.

This looks just like the unweighted logic program in secto®.1, except
that now the body of each rule is an arbitr@xpressionand the- operator
is replaced by an “aggregation operator” such-asr max=. Since line 2 can
be instantiated for example asnstit(s,0,2) += rewrite(s,np,vp) * constit(np,0,1)
* constit(vp,1,2), the value ofrewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2) (if
any) is used as a summand (i.e., an operandpiih the value ofonstit(s,0,2).

1This is superior to a Prolog-style backtracking algorithinmuns in polynomial time, rather
than wasting exponential time re-deriving the same cargstis in diferent contexts, or failing
to terminate if the grammar is left-recursive.
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We will formalize this in section 4.2.3 below.

The result—for this program—is that the computed valueonétit(s,0,2)
will be the inside probabilitys (0, 2) for a particular input sentence and gram-
mar? In practice one might wait until runtime to provide the déstion of
the sentence (the rules feord andlength) and perhaps even of the grammar
(therewrite axioms). In this case our transformations would typicatyused
only on the part of the program specified at compile time. Busfmplicity,
we suppose in this paper that the whole program is specifieghapile time.

If the left-hand sides of two rules unify, then the rules musst the same
aggregation operator, to guarantee that each item is agfgicbop a consistent
way. Eachronstit(. . . ) item above is aggregated with.

4.2.3 Semantics of Weighted Logic Programs

In an unweighted logic program, the semantics is the setifgie items.
For weightedlogic programs, the semantics is a partial function that snap
each provable item to a value[r]. All items in our example take values in
R. However, one could use values of any type or types.

The domain of the-] function is the set of items for which there exist
finite proofs under thenweightedsersion of the program. We exterjd in

the obvious way to expressions on provable items: for exanjgly] £
X1 * [y]- | |

For each provable ground itemlet P(r) be the non-empty multiset of all
ground expressiong on provable items such that,= E instantiates some
rule of P. Heres,= denotes the single aggregation operator shared by all those
rules.

We now interpret the weighted rules as a set of simultanequat®ns
that constrain th¢-] function. If &= is +=, then we require that

M= [E]
EeP(r)
(putting[[r] = o if the sum diverges). More generally, we require that
[[r]] = [[El]] D [[Ez]] Dr ...
whereP(r) = {Ey, Ep, .. .}. For this to be well-defined;, must be associative
and commutative. I, = is the special operatet, as in the final rules of our
example, then we sét] = [E;] if P(r) is a singleton sefE; }, and generate
an error otherwise.
In the terminology of the logic programming community, thisfinition
is equivalent to saying that the valuation functiphis a fixed point of the
monotone consequence operator.

2However, unlike probabilistic programming languages (@lamd Sato, 2003), we do not
enforce that values be reals in [Q or have probabilistic interpretations.
3Such a fixed point need not be unique, and there is a rich liresafarch into attempting
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Example. Inthe example of section 4.2.2, this means that for any pasi
X, I, K for which constit(X,I,K) is provable Jconstit(X, I, K)] equals

Y yyz[rewrite(X,Y,2)] * [constit(Y,1,3)] * [constit(Z,3,K)]
+  Ywlrewrite(X,W)] = [word(W,1,J)]

where, for example, the first summation ranges over terrtegipY, Z such
that the summand has a value. We sum oz because they do not appear
in the rule’s headonstit(X,1,J), which is being defined.

Notation. We will henceforth adopt a convention of underlining anyivar
ables that appear only in a rule’s body, to more clearly iatiche range of
the summation. We will also underline variables that appeérin the rule’s
head; these indicate that the rule is not a dynamic progragnaie.

Discussion. Substitutingmax= for += throughout the program would find
Viterbi probabilities (best derivation) rather than insigrobabilities (sum
over derivations). Similarly, we can obtain the unweightezbgnizer of sec-
tion 4.2.1 by writing expressions over boolean valties:

constit(X,1,K) |= rewrite(X,Y,Z) & constit(Y,1,J) & constit(Z,J,K).

In general, this framework subsumes the practically usedsé of Good-
man (1999), which requires all values to fall in a single sérgiand all rules
to use only the semiring operatiofs.

Definition. A program transformatiom : £ — %’ is defined to be
semantics-preservingf for every itemr which is provable byP, r is also
provable by”” and

[r]p = [r]p
4.2.4 Computing Semantics by Forward-Chaining

A basic strategy for computing the semantics is “forwardming.” The idea
is to maintain current values for all proved items, and tqpgate updates to
these values, from the right-hand side of a rule to its leftéhside, until all
the equations are satisfied. (This might not halt: even areigivied dynamic
program can encode an arbitrary Turing machine.)

to more precisely characterize the intuitive semanticsogfcl programs with negation or ag-
gregation. The interested reader should refer to Fittirf@2, or to, for example, Van Gelder
(1992) or Ross and Sagiv (1992) for a discussion of the sécsaoitaggregate logic programs.
In practice, one may obtain some single fixpoint by runnirgftirward-chaining algorithm of
the section 4.2.4 below and hoping that it converges.

4Using| for “or” and & for “and.” The aggregation operatos and&= can be regarded as
implementing existential and universal quantification.

5Dropping these requirements allows our framework to handleal networks, game trees,
and other interesting systems of equations. Note that Gantrfiside conditions” can be easily
handled in our framework (see Eisner et al., 2005).
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As already noted in section 4.2.1, Shieber et al. (1995) gafe@ward
chaining algorithm (elsewhere called “semi-naive bottoprevaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle
the semiring-weighted case. Goodman (1999) gave a mixeditdm.

Dealing with our full class of weighted logic programs—nuagtj semiring-
weighted dynamic programs—is a substantial generalizalibe algorithm
must propagate arbitrary updates, derive values for noofgt items, and
obtain the value ofoo(3,3), if not explicitly derived, from (e.g.) the derived
value offoo(X,X) or foo(X,3) in preference to the less specifto(X,Y). Fur-
thermore, certain aggregation operators, but not all, eqimizations that
are important for fliciency. We defer these algorithmic details to a separate

paper.

4.3 Folding

Weighted dynamic programs are schemata that define systesmudtane-
ous equations. Such systems can often be rearranged witffiecting their
solutions. In the same way, weighted dynamic programs carabsformed
to obtain new programs with better runtime.

For a first example, consider our previous rule from secti@m?4

constit(X,1,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

If the grammar ha®\ nonterminals, and the input is aaword sentence
or ann-state lattice, then the above rule can be instantiatedlin@(N® - n%)
different ways. For this—and the other parsing programs we densere—
it turns out the runtime of forward chaining can be kept dow®1) time
per instantiatiorf. Thus the runtime i©(N® - n).

However, the following pair of rules is equivalent:

temp(X,Y,Z,1,.J) =rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,l,K) +=temp(X.,Y,Z,1,J) * constit(Z,J,K).

We have just performed a weighted version of the claséidding trans-
formation for logic programs (Tamaki and Sato, 1984). Thiginal body
expression would be explicitly parenthesizedrasrite(X,Y,2) * constit(Y,1,J))

* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the restithe parenthe-
sized subexpression, then “folded” that temporary itera the computation

6Assuming that the grammar is acyclic (in that it has no unaly cycles) and so is the in-
put lattice. Even without such assumptions, a meta-theafelicAllester (1999) allows one to
derive asymptotic runtimes of appropriately-indexed famvchaining from the number of in-
stantiations. However, that meta-theorem applies onlyeaighted dynamic programs. Similar
results in the weighted case require acyclicity. Then omeusa the two-phase method of Good-
man (1999), which begins with a run of McAllester's methodasnunweighted version of the
program.
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of constit. The temporary item mentions all the capitalized varialrethe
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the secand's body sums
over the (underlined) free variables,Y, andz. However,Y appears only
in thetemp item. We could therefore have summed over valueg bkfore
multiplying by constit(z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,1,J) += rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,l,K) +=temp2(X,Z,1,J) * constit(Z,J,K).

This version of the transformation is permitted only beeaudistributes
over*.’ By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N® - n®) to O(N3 - n? + N? - n3).

Using the distributive law to improve runtime is a well-knotechnique.

Aji and McEliece (2000) present an algorithm inspired by jingction-tree
algorithm for probabilistic inference in graphical modelsich they call the
“generalized distributive law,” which is equivalent to egged application of
the folding transformation, and which they demonstrate ¢oubeful on a
broad class of weighted logic programs.

A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,z,1,J) can be regarded as a categorial grammar con-
stituent: an incomplet® missing a subconstitueatat its right (i.e., arnx/z)

that spans the substring frano J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,l,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).

constit(X,1,K) += constit(X,l,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar faslash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is meardutggestlivision: as the
second rule showgyB is an item which, if multiplied by, yields a summand
of A. In effect, the first rule above is derived from the original rulets t
start of this section by dividing both sides bynstit(z,J,K). The second rule
multiplies the missing factaronstit(z,J,K) back in, now that the first rule has
summed ovey.

Notice thatk appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actualitgvablein this program are
non-ground terms such asnstit(s,0,K)/constit(n,1,K). That is, they have the
form constit(X,1,K)/constit(Z,J,K) whereX,l,J are ground variables bytremains
free. The equality of the tw& arguments (by internal unification) indicates
that the missing is always at theight of the X, while their freeness means

7Since all semirings enforce a similar distributive propette trick can be applied equally
well to Viterbi parsing and unweighted recognition (sectb?2.3).
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that the right edge of the fulk and missingz are still unknown (and will
remain unknown until the second rule fills in a particutqr Thus, the first
rule performs a computation once fall possiblex—the source of folding’s
efficiency. Our earlier program wittemp2 could have been obtained by a
further automatic transformation that replacedcalistit(X,!,K)/constit(Z,J,K)
having freex with the more compactly storeemp2(X,z,1,J).

We emphasize that although our slashed items are inspiredtegorial
grammars, they can be used to describe foldingrigweighted logic pro-
gram. Section 4.5 will further exploit the analogy to obtainovel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the literature. Eisner and Satt®]5p@ed up parsing
with bilexical context-free grammars fro@(n°) to O(n*), using precisely
the above trick (see section 4.4 below). Huang et al. (200fley the same
“hook trick” to improve the complexity of syntax-based MTtwiann-gram
language model.

Another parsing application is the common “dotted ruletkr{Earley,
1970). If one’s CFG contains ternary rulgs— Y1 Y2 Y3, the naive CKY-
like algorithm take®(N* - n*) time:

constit(X,l,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,l,J))

* constit(Y2,J,K)) * constit(Y3,K,L).
Fortunately, folding allows one to sum first ovetr before summing sepa-
rately overy2 andJ, and then over3 andK:

temp(X,Y2,Y3,1,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J).

temp2(X,Y3,1,K) +=temp(X,Y2,Y3,,J) *constit(Y2,J,K).

constit(X,l,L) += temp2(X,Y3,1,K) * constit(Y3,K,L).

This restore©(n®) runtime (more precisel(N*-n? + N3-n3+ N?.n%))8 by
reducing the number of nested loops. Even if we had declimedrn oveiy1
andY2 in the first two rules, then the summation overould already have
obtainedO(n®) runtime, in éfect by binarizing the ternary rule. For exam-
ple, temp2(X,Y1,Y2,Y3,1,K) would have corresponded to a partial constituent
matching thedottedrule X — Y1 Y2 . Y3. The additional summations ovet
andY2 result in a more &icient dotted rule that “forgets” the names of the
nonterminals matched so fat,— ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with) that will behave the
same in subsequent computation.

The variable elimination algorithm for undirected gragtimodels can be
viewed as repeated folding. An undirected graphical moxetesses a joint

8For a dense grammar, which may have upNtbternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.
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probability distribution over,Q by marginalizing (summing) over a product
of clique potentials:

marginal(P,Q) += p1(...) *p2(...)*--- *pn(...).

where a function such g(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random varialgdesy. Assume without loss of
generality that variabl& appears as an argument onlypiQ1, px:2, - - -» Pn-
We mayeliminatevariableX by transforming to

temp(...) = pPkeal X ) T e, X L),
marginal(P.Q)}+= pa(...) () *temp(.....).

The first line no longer mentionsbecause the second line sums over it. The
variable elimination algorithm applies this procedureeaedly to the last
line to eliminate the remaining variabl@s.

Common subexpression elimination. Folding can also be used multiple
times to eliminate common subexpressions. Consider thaafinlg code for
bilexical CKY parsing:
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,l,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,1,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar fattlex(X,H), meaning a nonterminallexicalized
at head wordH. The program fectively has two types of rewrite rule, which
pass the head word to the left or right child, respectively.

We could fold together the last two factors of the first rulekbdain

temp(Y:H,Z:H2,1,K) += constit(Y:H,I,J) * constit(Z:H2,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,1,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,1,J) * constit(Z:H,J,K).

We canreusethis definition of theeemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo blrieenaming.
(Below, for clarity, we explicitly and harmlessly swap thenmes of+2 andH
inthetemp rule.)

temp(Y:H2,Z:H,1,K) += constit(Y:H2,1,J) * constit(Z:H,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,|,K).

constit(X:H,l,K) +=rewrite(X:H,Y:H2,Z:H) * temp(Y:H2,Z:H,1,K).

Using the sameemp rule (modulo variable renaming) in both folding
transformations, rather than introducing a new tempottam ifor each fold,
gives us a constant-factor improvement in time and space.

9Determining the optimal elimination order is NP-complete.
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Definition of folding. Our definition allows an additional use of the distribu-
tive law. The original program may define the value of iteby aggregating
values not only over free variables in the body of one rulé,abso across
n rules. Thus, when defining the temp itesrwe also allow it to aggregate
acrosan rules. In ordinary mathematical notation, we are perfogrargen-
eralized version of the following substitution:

Before After
r=>(E=*F) = r=sxF
s= 2, Ei = s=3iE

given the distributive property,;(E; = F) = (3; E) * F. The common context
in the original rules is the function “multiply by expressi&,” so the temp
item s plays the role off /F. We will generalize by allowing this common
context to be an arbitrary functids.

We require that the rules defining the temp itesn= > Ej, be in the
programalreadybefore folding occurs. If necessary, their presence may be
arranged by a triviadlefinition introduction transformation that addgF =
> Ei. (Explicitly using the slashed itemyF for s will ensure that the vari-
able occurrence requirement below is met.) We claim witlpoaof that all
transformations in this paper are semantics-preservirtbarsense of sec-
tion 4.2.3.

Below and throughout the paper, we use the notafipK] to denote the
literal substitution of expressioX for all instances of: in an expressiofr
over items, even iX contains variables that appearknor elsewhere in the
rule containing=[X]. We assume that is a distinguished item name, of the
same value type a%, and does not appear elsewhere.

Algorithm 4.3.1 (Folding transformation)

Given n distinct rules R...,R, in £, where each Rhas the forni
r o= F[E;]. Given also a term s that unifies with the heads of exactly n
rules in the program, all of which are distinct from the, Bnd which re
spectively take the formes= E; after this unification.

Then the folding transformation deletes the rules.R, R,, replacing
them with a new rule &= F[g], provided that

*Any variable that occurs in any of theg Bhich also occurs in either
or r must also occur in §°

«Eithere= or o= is simply=,*1or else the distributive properfiF[x o y]] =
[FIx1] & [FLv]] holds for all assignments of terms to variables and all yal-
uation functiong-].1?
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As a tricky example, one can replace= p(1,J) * log(q(J,K)) with r += p(1,J)
*log(s(J)) in the presence af(J) *= q(J,K). HereE; is q(J,K), andF[x] is p(l,J)
*log(x).

4.4 Unfolding

In general, a folding transformation leaves the asymptuintime alone, or
may improve it when combined with the distributive I&WThus, the inverse
of the folding transformation, callednfolding, makes the asymptotic time
complexity the same or worse. However, unfolding may be athgeous as
a precursor to some other transformation that improvesmentt also saves
space. Sometimes we can improve both time and space comygdgxinfold-
ing and then transforming the program further.

For example, recall the bilexical CKY parser given near thd ef sec-
tion 4.3. The first rule originally shown there has runti@e\® - n®), since
there areN possibilities for each oi,Y,z and n possibilities for each of
1,J,K,H,H2. Suppose that instead of that slow rule, the original pnogner
had written the following folded version:

temp3(X:H,Z:H2,1,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,1,J).

constit(X:H,l,K) +=temp3(X:H,Z:H2,1,J) * constit(Z:H2,J,K).

This partial program has asymptotic runti|t'fle§N3 -+ N2 n5) and needs

O(NZ - n*) space to store the items (rule heads) it derives.

By unfolding thetemp3 item—that is, substituting its definition in place
each time it is used, which uses unification and relies omilligivity—and
then trimming away its now-unneeded definition, we recolerfirst rule of
the original program:

constit(X:H,l,K) += rewrite(X:H,Y:H,Z:H2)

* constit(Y:H,l,J) * constit(Z:H2,J,K).

This worsens the time complexity ID(N3 . n5), but by eliminating storage

of thetemp items, it improves the space complexityGI(N . n3). The payd
is that now we can refold this rule fiérently—either as in section 4.3, or
alternatively as follows (Eisner and Satta, 1999, whichsessthe chance to
eliminate common subexpressions):

10This ensures thatdoes not sum over any variables that must remain visiblesimetised
rule.

For instance, in the very first example of section 4.3,tém@p item was defined using
and therefore performed no summation. No distributivityswwaeded.

12That s, all valuation functions over the space of items|uiding dummy itemsx andy,
when extended over expressions in the usual way.

131t may either help or hurt thactual runtime, and it certainly increases the space needed to
store items’ values.
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temp4(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,I,K) += temp4(X:H,Y:H,J,K) * constit(Y:H,1,J).

Either way, the time complexity is no®(N3 n*+ N2 n4)—better than the
original programmer’s version—while the space complekias increased
only back to the original programmeiG(N? - n?).

Unfolding resembles inlining of a subroutine call. SectibB will show
how it can thus be used for program specialization—imprg\éfiiciency
by a constant factor and also enabling further transfoonatthat improve
asymptotic iciency.

4.5 Speculation

We now generalize folding to handle recursive rules. Bpisculationtrans-
formation, which is novel as far as we know, is reminiscerga-passing in
categorial grammar. It has many uses; we limit ourselvesdoeixamples.

Split head-automaton grammars. We consider a restricted kind of bilexi-
cal CFG in which a head word combines with all of its right dréin before
any of its left children (Eisner and Satta, 1999). The “iesadgorithm” be-
low!* builds uprconstit items by starting with a word and successively adding
0 or more child constituents to the right, then buildsoistit items by adding
0 or more child constituents to the left of this.
rconstit(X:H,l,K) += word(H,1,K). % 0 right children so far
rconstit(X:H,l,K) += rewrite(X:H,Y:H,Z:H2) % add right child
* rconstit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rconstit(X:H,|,K). % O left children so far
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) % add left child
* constit(Y:H2,1,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

This algorithm has runtim@®(N® - n°) (dominated by line 4). We now
exploit the conditional independence of left children fraght children. In-
stead of building up &onstit from a particular, existingconstit (line 3) and
then adding left children (line 4), we transform the progsamit builds up the
constit item speculativelywaiting until the end to fill in each of the various
rconstit items that could have spawned it. Replace lines 3—4 with

Iconstit(X0:HO0,X0,J0,J0) += 1 needed-only.if rconstit(X0:H0,J0,KO0).

Iconstit(X:H0,X0,1,J0)  += rewrite(X:HO0,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:H0,X0,J,J0).
needed_only_if rconstit(X0:H0,J0,KO0).
constit(X:HO,l,K0) += Iconstit(X:H0,X0,1,J0) * rconstit(X0:HO,J0,KO0).

14For simplicity, this code ignores the cost of starting, ‘ffiipg,” or stopping in diferent non-
terminal states.
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The new temp itemconstit(X:H0,X0,1,J0) represents théeft half of a con-
stituent. We can regard it in the categorial terms of secdiéh as the last
line illustrates, it is just a more compact notation fotamstit missing its
rconstit right half—namelyconstit(X:HO,1,K0)/rconstit(X0:H0,J0,K0), whereko

is always a free variable, so thabnstit need not specify any particular value
for Ko.

The firsticonstit rule introduces an empty left half, equivalent den-
stit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0). This is extended with its left children
by recursing through the seconrdnstit rule, allowingx andi to diverge from
X0 andJo respectively. Finally, the last rule finally fills in the miisg right
half rconstit.

The special filter clauseseeded_only.if rconstit(X0:H0,J0,K0) are added
solely for dficiency. They say that it is not necessary to build “useles&” |
halves purely speculatively, but only when there is sombtrilf for them
to combine with. Their semantics are sketched below.

In this case, the filter clause on the second rule managestoesthat in
any lconstit(X:H, X0,1,J0) that we need to buildjo will be the start position
of the head wordH. (Such a constraint is already true foonstits; an empty
Iconstit inherits it from therconstit filter, and passes it along to successively
wider Iconstit.) Since the temp item records only this redundant positiah a
notK (the right boundary of the unknowwonstit), runtime falls fromO(n5)
to O(n?).

As a bonus, we can now obtain tlﬁh(n3) algorithm of Eisner and Satta
(1999). Simply unfold the instances oénstit in the rconstit andtemp rules

(i.e., replacing them witkeonstit * rconstit per our new definition). Then refold
those rules dferently?®

Filter clauses. Our approach to filtering is novel. Ougeded_only_if clauses
may be regarded as “relaxed” versions of side condition®{&wan, 1999).
In the denotational semantics (section 4.2.3), they redaxréstrictions on
the [-] function, allowing more possible semantics (all of whiclhwever,
preserve the semantics of the original program).
Specifically, when constructing(r) to determine whether a ground item
r is provable and what its value is, we mapgtionally omit an instantiated
rule r = E if it has a filter clauseeeded_only_if C such that no consistent
instantiation ofC has been proved. (The “consistent” instantiations aresthos
where variables of that are shared withor E are instantiated accordingly.
Other variables, such &8 in the example above, may have any instantiation.)
How does this help operationally, in the forward chainingoaithm?

15|n each case, userawrite to combine aconstit with anlconstit to its right (first folding the
rewrite with whichever one does not contribute the head yvord
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When a rule triggers an update to a growmchon-ground item, but carries
a (partly instantiated) filter clause that does not unifyhvahy proved item,
then the update has infinitely low priority and need not begdaon the
forward-chaining agenda. The update must still be carrigtdifothe filter
clause is proved latéf.

In the example above, forward chaining on the figststit rule produces
an “zero-width”iconstit(X0:H0,X0,J0,J0) in which all variables are fre¥.This
Iconstit can be used anywhere; in particular, it can combine withresmstit,
so the filter clause says it is needed as sooargsconstit has been proved.
The real filtering power comes when the second rule tries ttl turther
from the zero-widthconstit using the second rule. Thet, Ho, andJo in-
directly become bound to values in thsvrite and constit items of that rule
(because of the internal unification in the zero-widtnstit(X0:H0,X0,J0,J0)).
Thus, the filter clause is now better instantiated, engeded_only_if rcon-
stit(vp:"flies”,1,K0). Only if such anrconstit has been derived (for sonk@) are
we required to consider updating the clause head,leogstit(s:"flies”,vp,0,1).

Unary rule closure. Before formalizing speculation, we informally show
another instructive application: precomputing unary mltessure in a CFG.
We start with a version of the inside algorithm that allowsit@eminal unary
rules:

program fragment Pq:

constit(X,1,K) += rewrite(X,W) * word(W,I,K).

constit(X,l,K) += rewrite(X,Y) * constit(Y,I,K).

constit(X,1,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

Suppose that the grammar rules include, among others,

program fragment Py (continued)
rewrite(npl,np3) =0.1.
rewrite(np3,np2) =0.2.
rewrite(np2,np3) =0.3.
rewrite(np3,det,n)=0.4. ...
We canunfoldthe grammar into the program to get rules such as
program fragment P1:
constit(npl,l,K) += 0.1 * constit(np3, I, K).
constit(np3,1,K) += 0.2 * constit(np2, I, K).
constit(np2,1,K) += 0.3 * constit(np3, 1, K).

165ometimes a filter is true, causing the update, but laterrbesdalse. For instance;on-
stit(vp:“flies”,1,K0) may no longer be provable after sentence-speuiticd(. . .) axioms are re-
tracted. Because the update is now optional, the algorithnoi required to retract the update
(at least not on that basis), although it is free to do so irot reclaim memory. This optional-
ity is useful in some of our examples below: entries will ble€ilinto the unary-rule-closure and
left-corner tables only as needed, but need not be retraftiedeach sentence and then rederived.
17As well as adding 1 to any other items that specialize andrioleethis one.
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constit(np3,1,K) += 0.4 * constit(det, |, J) * constit(n, J, K). ...

This amounts to program specialization. If we have unfol(deast)
the unary rewrite rules into the program, we can now applyesia¢ion to
eliminate them “dline”:

program fragment P-:

temp(X0,X0) +=1 needed_only_if constit(X0,10,K0).
temp(np1,X0) +=0.1*temp(np3,X0).

temp(np3,X0) +=0.2 * temp(np2,X0).

temp(np2,X0) += 0.3 * temp(np3,X0).

constit(X,10,K0) += temp(X,X0) * other(constit(X0,10,K0)).
other(constit(np3,1,K)) += 0.4 * constit(det,l,J) * constit(n,J,K). ...

For any nonterminalX andY, our temporary itememp(X,X0) is just com-
pact notation foronstit(X,10,K0)/constit(X0,10,K0): the inside probability of de-
riving a constit(X,10,K0) by a sequence of O or more unary rules frorpa:
stit(X0,10,K0) that covers the same sp&aKo. In other words, it is the total
probability of all (possibly empty) unary-rewrite chaiks-* X0.

The final two rules recover unslasheshstit items. other(constit(X,1,K)) is
any constit(X0,1,K) whose derivation doesot begin with a unary rule. The
next-to-last rule builds this inteonstit(X,1,J) through a sequence of 0 or more
unary rules.

Crucially, thetemp(X,X0) items have values that aiedependent of and
K. So they need not be computed separately for every spaniin e»etence.
For each nonterminao, all temp(X,X0) values will be computed once and for
all (the very first time &onstit(X0,1,K) constituent is built) by iterating the first
three rules below to convergence. These values will therairestatic while
the grammar does, even if the sentence changes (see fodf)ote

Definition of speculation. In general, the value of a slashed item i&iac-
tion, just like the semantics of a slashed constituent in catalggrammar.
Also as in categorial grammar, gaps are introduced withdaaetity function,
passed with function composition, and eliminated with tiorcapplication.
Fortunately, in commutative semiring-weighted prograkesthe ones above,
all functions have the form “multiply bx” for some weightx. We can rep-
resent such a function simply asusing semiring 1 for the identity function,
semiring multiplication for both composition and applioat and semiring
addition for pointwise addition.

Algorithm 4.5.1 (Speculation transformation)
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Let a be an item to slash out, where any variables in a do notioelse-
where inP. Let slash and other be functors that do not already appear
P.LetR,..., R, bedistinct rules irP, where each Rs r; &= Fi[ti], and
e Fori <k, t does not unify with a.

e Fori > Kk, t unifies with a; more strongly, it matches a non-empty subset
of the ground terms that a doé%.

e Certain conditions on distributivity (satisfied by semgriprograms).
Then the speculation transformation constructs the fdligwnew pro-
gram, in which the values afash items are functionsp; is extended to
sum functions pointwise,denotes function composition, an{dF denotes
function application.

e slash(a,a) &z (AX. X) needed_only_if a.

e (Y1 <i < n)slash(ri,a) &= F; o slash(t;, a) needed_only.if a.

o (V1 <i <K) other(r;) &= F;i[other(t;)].

o (Y rulesp e= qnotamong the R other(p) = q.*°

o X @x= other(X) unless X is an instance of a.

o X @x= (slash(X,a))[other(a)].2°

n

Intuitively, other(X) accumulates ways of building other than instantia-
tions of F; [Fi,[- - - Fi;[a]]] for j > O.slash(X,a) aggregates all instantiations of
the functionax.Fi,[Fi,[- - - F;,[X]]] for j > 0. This pointwise sum of functions
is only applied toother(...) items, to prevent double-counting (analogous to
spurious ambiguity in a categorial grammar).

To apply this formal transformation in the unary-rule elaiion exam-
ple, takea=consitit(X0,10,K0), and theR; to be the “unary’constit rules, where
eacht; is the last item in the body d®. Herek = 0. The resulting slashed
items have the formlash(constit(X,1,K), constit(X0,10,K0)), but the rules would
only derive instances wherelo and K=K0. All such rules are filtered by
needed_only_if r:onstit(XO,IO,KO).21

To apply the transformation in the split head-automatornga, take
a=constit(X0:H0,J0,K0), the R to be the two rules definingonstit, eacht; to
be the last item in the body &, andk = 1.22

18y adding side conditions, any rule can be split intd ank rule, ani > k rule, and a rule
not among the;.

9Typically, many of theother(. ..) items can be unfolded and then their defining rules re-
moved. This is why few or none remained in the informal exasjlbove.

20|n the final two rules X ranges over the entire universe of terms. Recall @hatis the
aggregation operator fo¢. One could construct separate rules for items aggregatediifierent
operators.

21| this example, theficiency filters are redundant on rules after the first. Runtimaysis
or (perhaps) static analysis would show that they have neahfittering dfect, allowing us to
eliminate them.

22| this programall constits are built fromrconstits usingR; andR», soother(constit(. . . ))
has no derivations. Concretely, the single rule that thasframation generates to define
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4.6 Converting bottom-up to top-down
4.6.1 Magic Templates

Finally, we give an important transformation that explans generalizes the
way that speculation introducededed only if filters.

The bottom-up “forward-chaining” execution strategy niem¢d in sec-
tion 4.2.4 will compute the values for all provable items.niyaf these items
may, however, be irrelevant in the sense that they do notiboite directly
or indirectly to the value ofoal. (In parsing, they are legal constituents that
do not lead to a complete parse.) We can avoid generationesethrele-
vant items by employing the magic templates transformg&®amakrishnan,
1991), which prevents an item from being built unless it \Wilp lead to a
“desired” item.

We need the value of a theoreno if it occurs in in the body of a rule
where (1) we need the value of the rule’s head and (2) we hesad derived
the items precedingo in the rule’s body® For example, in the CKY parsing
rule

constit(X,1,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

we needtonstit(Y,1,J) (for a particulary,l,J) if we needconstit(X,,K) (for some
X,K) and we already know thagwrite(X,Y,Z) is provable (for some), which
we denoterrewrite(X,Y,2).2* Hence

magic(constit(Y,1,J)) | = magic(constit(X,l,K)) & ?rewrite(X,Y,2).

For example, the above rule may derivweagic(constit(vp,1,J)) as true. That
means it is worthwhile to look fovp objectsstarting at position 1. Theend-
ing positionJ is unspecified—a free variable. Ramakrishnan (1991) srailg
presentation drops such superfluous variables to obtaimandiz program-
ming version:

magic_constit(Y,1)) | = magic(constit(X,l,K)) & ?rewrite(X,Y,2).

Ramakrishnan’s move is not necessary for the present sgbtibit improves
efficiency, and will simplify section 4.6.2.
Here are all the magic rules for CKY parsing (section 4.2.2):
magic_goal | = true.
magic_constit(s,0) | = magic_goal.

other(constit(. . . )) depends omther(constit(. . .)) itself, so it can never be derived from the ax-
ioms (and may be trimmed away as useless).

23This left-to-right order within a rule is traditional, butyorder would do.

241t would not be appropriate to writeeeded_only_if rewrite(X,Y,Z). Therewrite item is part
of the definition of whether the magic item should be true &ea-not simply a condition on
whether a more lenient definition of magic (which would sease less féective filter) is worth
deriving. As a concrete consequence, usiagded_only.if rewrite(X,Y,Z) below would derive a
magic item in whichY remained a free variable, a lenient definition that wouldrige the main
program to derive many uselessnstit items.
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magic_constit(Y,l) | = magic_constit(X,1,K)) & ?rewrite(X,Y,Z).
magic_constit(Z,J) | = magic_constit(X,)
& ?rewrite(X,Y,Z) & ?constit(Y,1,J).
Then, we modify the rules of the original program, addimgic_foo as a
filter on the derivation ofoo:

constit(X,1,K) + = rewrite(X,W) * word(W,I,K)

needed_only_if magic_constit(X,l).
constit(X,1,K) + = rewrite(X,Y,2) * constit(Y,1,J) * constit(Z,J,K)

needed_only_if magic_constit(X,).
goal + = constit(s,0,N) * length(N) needed_only_if magic_goal.

This transformed program uses forward chaining to simidat&ward chain-
ing (though perhaps a breadth-first version of backwardnihg). Since we
ultimately want the value gfoal (or derivations ofjoal), we setnagic_goal=true.
That causes us to deriweagic_constit facts at the start of the sentence, which
license the building of actualbnstit items with values, which let us derive
magic_constit facts later in the sentence, and so on. Remarkably, as pisdyio
noticed by Minnen (1996), the operation of this transforrpeagram is the
same as Earley’s algorithm (Earley, 1970): constituenéspedicted top-
down, and built bottom-up only if they have a “customer” te immediate
left.

Shieber et al. (1995), specifying CKY and Earley’s algaritliemark that
“proofs of soundness and completeness [for the Earleyis| e somewhat
more complex ...and are directly related to the correspungroofs for
Earley’s original algorithm.” In our perspective, the @uiness of Earley’s
emerges directly from the correctness of CKY and the semmsiptieserving
nature of the magic templates transformation.

Another application is “on-the-fly” intersection of weiglttfinite-state au-
tomata, which recalls the left-to-right nature of Earlegfgorithm. Intersec-
tion of arcsQ X Rin machinesM; and M, bearing the same symbxl is
accomplished by multiplying their weights:

arc(M1:M2,Q1:Q2,R1:R2,X) += arc(M1,Q1,R1,W) * arc(M2,Q2,R2,X).

But this pairs all compatible arcs in all known machinesl@iding the new
machineM1:M2, leading to infinite regress). A magic templates transferma
tion can restrict to arcs that actually need to be derivetérservice of some
larger goal (e.g., summing over selected paths from a spdqgifaired start
stateQ1:Q2).

4.6.2 Second-order magic

Using magic templates to change to a top-down computatiderawill still
allow some irrelevant items to be derived. Not all items weéd” to derive a
value forgoal, according to a top-down search frawoal, will actually turn out
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to be provable bottom-up. This may lead to too much top-doxphogation:
Earley’s algorithm may predict many categories suctpeat position 1 (i.e.,
derivemagic(constit(vp,1,J))) when there is not even a possible verb at position
1.

We can therefore apply the magic templates transformatsmtand time,
to the rules that defined the first-order magic items. Thikigisecond-order
magic items of the fornmagic_magic_foo, meaning “we need to realize that
we need to buildoo”™

magic_magic_goal | = magic_magic_constit(s,0).

magic_magic_constit(X,l) | = magic_magic_constit(Y,l) & ?rewrite(X,Y,Z).

magic-magic_constit(X,l) | = magic_magic_constit(Z,J)

& ?rewrite(X,Y,Z) & ?constit(Y,l,J).
They can be added aseded_only_if filter clauses that limit Earley’s “predict”
rules (i.e., the rules that derive the first-ordexgic items). As beforek re-
mains free. Consider in particular the second rule abovechwéays that if
Earley’s can wisely predict at positionl, it can also wisely predick and
(by recursion) any other nonterminal of whighs a left corner. (Using spec-
ulation to abstract away from the sentence positiove could build up a left
corner table iline.)

The base case of this left-corner computation comes frorhatting one
of the rules thatisesrather thardefinesa first-order magic iterd®

constit(X,l,K) + = rewrite(X,W) * word(W,1,K)

needed_only_if magic_constit(X,1).

to obtain
magic_magic_constit(X,l) | = ?rewrite(X,W) & ?word(W,1,K).

Thus, the second-order predicates will constrain top-dpvediction at
position| to predict only nonterminals that are left-corner comgatibith
the wordw atl. In short, we have derived the left-corner filter on Earle)’s
gorithm, by repeating the same transformation that defagtey’s algorithm
in the first place!

4.7 Conclusions

We introduced a weighted logic programming formalism fosa#ing a
wide range of useful algorithms. After sketching its detioteal and opera-
tional semantics, we outlined a number of fundamental tecles—program
transformations—for rearranging a weighted logic progtarmake it more
efficient.

25We do not show the enchantments of the other such rules, gsitheot add any further
power.
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In addition to exploiting several known logic programmimgrtsforma-
tions, we described a weighted extension of folding and ldirig, and pre-
sented the speculation transformation, a substantiargkregion of folding.

We showed that each technique was connected to ideas indgpthpro-
gramming and in parsing, and had multiple uses in NLP algorit We re-
covered several known parsing optimizations by applyingable transfor-
mations: for example, Earley’s algorithm, the left-corfiker, parser special-
ization, dfline unary rule cycle elimination, and the bilexical parstagh-
niques from (Eisner and Satta, 1999).

We noted throughout how program transformations couldinglied by
allowing the resulting programs to derive non-ground ite@se important
tool was our proposegkeded_only_if filter.

The paradigm and techniques presented here may be diresetfyluo
algorithm designers as well as to those who are interestéatrmalisms for
specifying and manipulating algorithms.
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