
4

Program Transformations for
Optimization of Parsing Algorithms and
Other Weighted Logic Programs
J E J B

Abstract
Dynamic programming algorithms in statistical natural language processing can be

easily described as weighted logic programs. We give a notation and semantics for such
programs. We then describe several source-to-source transformations that affect a pro-
gram’s efficiency, primarily by rearranging computations for better reuse or by changing
the search strategy.

Keywords , , -
,

4.1 Introduction
In this paper, we show how some efficiency tricks used in the natural lan-
guage processing (NLP) community, particularly for parsing, can be regarded
as specific instances of transformations on weighted logic programming al-
gorithms.

We define weighted logic programs and sketch the general formof the
transformations, enabling their application to new programs in NLP and other
domains. Several of the transformations (folding, unfolding, magic templates)
have been known in the logic programming community, but are generalized
here to our weighted framework and applied to NLP algorithms. We also
present a powerful generalization of folding—speculation—which appears
new and is able to derive some important parsing algorithms.Finally, our
formalization of these transformations has been simplifiedby our use of “gap

39

FG-2006.
Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright c© 2006, CSLI Publications.

40 / J E J B

passing” ideas from categorial grammar and non-ground terms from logic
programming.

The framework that we use for specifying the weighted logic programs is
roughly based on that of Dyna (Eisner et al., 2005), an implemented system
that can compile such specifications into efficient C++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an implemented
probabilistic Prolog.

It is especially useful to have general optimization techniques for dy-
namic programming algorithms (a special case in our framework), because
NLP researchers regularly propose new such algorithms. Dynamic program-
ming is used to parse many different grammar formalisms. It is also used in
stack decoding, grammar induction, finite-state methods, and syntax-based
approaches to machine translation and language modeling.

One might select program transformations either manually or automati-
cally. Our goal here is simply to illustrate the search spaceof semantically
equivalent programs. We do not address the practical question of searching
this space—that is, the question of where and when to apply the transfor-
mations. For some programs and their typical inputs, a transformation will
speed a program up; in other cases, it will slow it down. The actual effect can
of course be determined empirically by running the transformed program (or
in some cases, predicted more quickly by profiling theuntransformedpro-
gram as it runs on typical inputs). Thus, at least in principle, one could apply
automatic local search methods.

4.2 Our Formalism

4.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running example. Recall that one
can write a logic program for CKY recognition (Younger, 1967) as follows,
whereconstit(X,I,K) is provable iff the grammar, starting at nonterminalX, can
generate the input substring from positionI to positionK.

constit(X,I,K) :- rewrite(X,W), word(W,I,K).
constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), constit(Z,J,K).
goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,”Dumbo”).
rewrite(np,”flies”).
rewrite(vp,”flies”).

word(”Dumbo”,0,1). % tiny input sentence
word(”flies”,1,2).
length(2).

T W L P / 41

We say that this logic program is adynamic program because it satis-
fies a simple restriction: allvariables (capitalized) in a rule’s left-hand side
(rule head) also appear on its right-hand side (rulebody). Logic programs
restricted in this way correspond to the “grammatical deduction systems” dis-
cussed by Shieber et al. (1995). They can be evaluated by a simple agenda-
based, bottom-up dynamic programming algorithm.1

This paper, however, deals with general logic programs without this re-
striction. For example, one may wish to assert the availability of an “epsilon”
word ateverypositionK in the sentence:word(epsilon,K,K). We emphasize this
because it is convenient for some of our transformations to introduce new
non-dynamic rules. One can often eliminate non-dynamic rules (in particular,
the ones we introduce) to obtain a semantically equivalent dynamic program,
but we do not here explore transformations for doing so systematically.

4.2.2 Weighted Logic Programs

We now define our notion ofweightedlogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs discussed by Good-
man (1999) and Eisner et al. (2005). See the latter paper for adiscussion of
relevant work on deductive databases with aggregation (e.g., Fitting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

Our running example is the inside algorithm for context-free parsing:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s→ np vp | s)
rewrite(np,”Dumbo”) = 0.6. % p(np→ ”Dumbo” | np)
rewrite(np,”flies”) = 0.4. % p(vp→ ”flies” | vp)
rewrite(vp,”flies”) = 1. % p(vp→ ”flies” | vp)

word(”Dumbo”,0,1) = 1. % 1 for all words in the sentence
word(”flies”,1,2) = 1.
length(2) = 1.

This looks just like the unweighted logic program in section4.2.1, except
that now the body of each rule is an arbitraryexpression, and the:- operator
is replaced by an “aggregation operator” such as+= or max=. Since line 2 can
be instantiated for example asconstit(s,0,2) += rewrite(s,np,vp) * constit(np,0,1)
* constit(vp,1,2), the value ofrewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2) (if
any) is used as a summand (i.e., an operand of+=) in the value ofconstit(s,0,2).

1This is superior to a Prolog-style backtracking algorithm.It runs in polynomial time, rather
than wasting exponential time re-deriving the same constituents in different contexts, or failing
to terminate if the grammar is left-recursive.

42 / J E J B

We will formalize this in section 4.2.3 below.
The result—for this program—is that the computed value ofconstit(s,0,2)

will be the inside probabilityβs(0, 2) for a particular input sentence and gram-
mar.2 In practice one might wait until runtime to provide the description of
the sentence (the rules forword andlength) and perhaps even of the grammar
(therewrite axioms). In this case our transformations would typically be used
only on the part of the program specified at compile time. But for simplicity,
we suppose in this paper that the whole program is specified atcompile time.

If the left-hand sides of two rules unify, then the rules mustuse the same
aggregation operator, to guarantee that each item is aggregated in a consistent
way. Eachconstit(. . .) item above is aggregated with+=.

4.2.3 Semantics of Weighted Logic Programs

In an unweighted logic program, the semantics is the set of provable items.
For weightedlogic programs, the semantics is a partial function that maps
each provable itemr to a valueJrK. All items in our example take values in
R. However, one could use values of any type or types.

The domain of theJ·K function is the set of items for which there exist
finite proofs under theunweightedversion of the program. We extendJ·K in
the obvious way to expressions on provable items: for example, Jx * yK

def
=

JxK * JyK.
For each provable ground itemr, letP(r) be the non-empty multiset of all

ground expressionsE on provable items such thatr ⊕r= E instantiates some
rule ofP. Here⊕r= denotes the single aggregation operator shared by all those
rules.

We now interpret the weighted rules as a set of simultaneous equations
that constrain theJ·K function. If ⊕r = is +=, then we require that

JrK =
∑

E∈P(r)

JEK

(puttingJrK = ∞ if the sum diverges). More generally, we require that

JrK = JE1K ⊕r JE2K ⊕r . . .

whereP(r) = {E1,E2, . . .}. For this to be well-defined,⊕r must be associative
and commutative. If⊕r = is the special operator=, as in the final rules of our
example, then we setJrK = JE1K if P(r) is a singleton set{E1}, and generate
an error otherwise.

In the terminology of the logic programming community, thisdefinition
is equivalent to saying that the valuation functionJ·K is a fixed point of the
monotone consequence operator.3

2However, unlike probabilistic programming languages (Zhou and Sato, 2003), we do not
enforce that values be reals in [0, 1] or have probabilistic interpretations.

3Such a fixed point need not be unique, and there is a rich line ofresearch into attempting

T W L P / 43

Example. In the example of section 4.2.2, this means that for any particular
X, I ,K for which constit(X,I ,K) is provable,Jconstit(X, I ,K)K equals

∑
J,Y,ZJrewrite(X,Y,Z)K ∗ Jconstit(Y,I ,J)K ∗ Jconstit(Z,J,K)K

+
∑

WJrewrite(X,W)K ∗ Jword(W,I ,J)K

where, for example, the first summation ranges over term triples J,Y,Z such
that the summand has a value. We sum overJ,Y,Z because they do not appear
in the rule’s headconstit(X,I,J), which is being defined.

Notation. We will henceforth adopt a convention of underlining any vari-
ables that appear only in a rule’s body, to more clearly indicate the range of
the summation. We will also underline variables that appearonly in the rule’s
head; these indicate that the rule is not a dynamic programming rule.

Discussion. Substitutingmax= for += throughout the program would find
Viterbi probabilities (best derivation) rather than inside probabilities (sum
over derivations). Similarly, we can obtain the unweightedrecognizer of sec-
tion 4.2.1 by writing expressions over boolean values:4

constit(X,I,K) |= rewrite(X,Y,Z) & constit(Y,I,J) & constit(Z,J,K).

In general, this framework subsumes the practically usefulcase of Good-
man (1999), which requires all values to fall in a single semiring and all rules
to use only the semiring operations.5

Definition. A program transformationT : P → P′ is defined to be
semantics-preservingif for every item r which is provable byP, r is also
provable byP′ and

JrKP = JrKP′

4.2.4 Computing Semantics by Forward-Chaining

A basic strategy for computing the semantics is “forward chaining.” The idea
is to maintain current values for all proved items, and to propagate updates to
these values, from the right-hand side of a rule to its left-hand side, until all
the equations are satisfied. (This might not halt: even an unweighted dynamic
program can encode an arbitrary Turing machine.)

to more precisely characterize the intuitive semantics of logic programs with negation or ag-
gregation. The interested reader should refer to Fitting (2002), or to, for example, Van Gelder
(1992) or Ross and Sagiv (1992) for a discussion of the semantics of aggregate logic programs.
In practice, one may obtain some single fixpoint by running the forward-chaining algorithm of
the section 4.2.4 below and hoping that it converges.

4Using | for “or” and & for “and.” The aggregation operators|= and&= can be regarded as
implementing existential and universal quantification.

5Dropping these requirements allows our framework to handleneural networks, game trees,
and other interesting systems of equations. Note that Goodman’s “side conditions” can be easily
handled in our framework (see Eisner et al., 2005).

44 / J E J B

As already noted in section 4.2.1, Shieber et al. (1995) gavea forward
chaining algorithm (elsewhere called “semi-naive bottom-up evaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle
the semiring-weighted case. Goodman (1999) gave a mixed algorithm.

Dealing with our full class of weighted logic programs—not just semiring-
weighted dynamic programs—is a substantial generalization. The algorithm
must propagate arbitrary updates, derive values for non-ground items, and
obtain the value offoo(3,3), if not explicitly derived, from (e.g.) the derived
value of foo(X,X) or foo(X,3) in preference to the less specificfoo(X,Y). Fur-
thermore, certain aggregation operators, but not all, permit optimizations that
are important for efficiency. We defer these algorithmic details to a separate
paper.

4.3 Folding

Weighted dynamic programs are schemata that define systems of simultane-
ous equations. Such systems can often be rearranged withoutaffecting their
solutions. In the same way, weighted dynamic programs can betransformed
to obtain new programs with better runtime.

For a first example, consider our previous rule from section 4.2.2,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

If the grammar hasN nonterminals, and the input is ann-word sentence
or ann-state lattice, then the above rule can be instantiated in only O(N3 · n3)
different ways. For this—and the other parsing programs we consider here—
it turns out the runtime of forward chaining can be kept down to O(1) time
per instantiation.6 Thus the runtime isO(N3 · n3).

However, the following pair of rules is equivalent:

temp(X,Y,Z,I,J) = rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp(X,Y,Z,I,J) * constit(Z,J,K).

We have just performed a weighted version of the classicalfolding trans-
formation for logic programs (Tamaki and Sato, 1984). The original body
expression would be explicitly parenthesized as(rewrite(X,Y,Z) * constit(Y,I,J))
* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the result of the parenthe-
sized subexpression, then “folded” that temporary item into the computation

6Assuming that the grammar is acyclic (in that it has no unary rule cycles) and so is the in-
put lattice. Even without such assumptions, a meta-theoremof McAllester (1999) allows one to
derive asymptotic runtimes of appropriately-indexed forward chaining from the number of in-
stantiations. However, that meta-theorem applies only to unweighted dynamic programs. Similar
results in the weighted case require acyclicity. Then one can use the two-phase method of Good-
man (1999), which begins with a run of McAllester’s method onan unweighted version of the
program.

T W L P / 45

of constit. The temporary item mentions all the capitalized variablesin the
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the second rule’s body sums
over the (underlined) free variables,J, Y, andZ. However,Y appears only
in the temp item. We could therefore have summed over values ofY before
multiplying by constit(Z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,I,J) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp2(X,Z,I,J) * constit(Z,J,K).

This version of the transformation is permitted only because + distributes
over *.7 By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N3 · n3) to O(N3 · n2 + N2 · n3).

Using the distributive law to improve runtime is a well-known technique.
Aji and McEliece (2000) present an algorithm inspired by thejunction-tree
algorithm for probabilistic inference in graphical modelswhich they call the
“generalized distributive law,” which is equivalent to repeated application of
the folding transformation, and which they demonstrate to be useful on a
broad class of weighted logic programs.
A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,Z,I,J) can be regarded as a categorial grammar con-
stituent: an incompleteX missing a subconstituentZ at its right (i.e., anX/Z)
that spans the substring fromI to J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,I,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += constit(X,I,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar forslash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is meant tosuggestdivision: as the
second rule shows,A/B is an item which, if multiplied byB, yields a summand
of A. In effect, the first rule above is derived from the original rule at the
start of this section by dividing both sides byconstit(Z,J,K). The second rule
multiplies the missing factorconstit(Z,J,K) back in, now that the first rule has
summed overY.

Notice thatK appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actuallyprovablein this program are
non-ground terms such asconstit(s,0,K)/constit(n,1,K). That is, they have the
form constit(X,I,K)/constit(Z,J,K) whereX,I,J are ground variables butK remains
free. The equality of the twoK arguments (by internal unification) indicates
that the missingZ is always at theright of theX, while their freeness means

7Since all semirings enforce a similar distributive property, the trick can be applied equally
well to Viterbi parsing and unweighted recognition (section 4.2.3).

46 / J E J B

that the right edge of the fullX and missingZ are still unknown (and will
remain unknown until the second rule fills in a particularZ). Thus, the first
rule performs a computation once forall possibleK—the source of folding’s
efficiency. Our earlier program withtemp2 could have been obtained by a
further automatic transformation that replaced allconstit(X,I,K)/constit(Z,J,K)
having freeK with the more compactly storedtemp2(X,Z,I,J).

We emphasize that although our slashed items are inspired bycategorial
grammars, they can be used to describe folding inany weighted logic pro-
gram. Section 4.5 will further exploit the analogy to obtaina novel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the literature. Eisner and Satta (1999) speed up parsing
with bilexical context-free grammars fromO(n5) to O(n4), using precisely
the above trick (see section 4.4 below). Huang et al. (2005) employ the same
“hook trick” to improve the complexity of syntax-based MT with ann-gram
language model.

Another parsing application is the common “dotted rule” trick (Earley,
1970). If one’s CFG contains ternary rulesX → Y1 Y2 Y3, the naive CKY-
like algorithm takesO(N4 · n4) time:

constit(X,I,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J))
* constit(Y2,J,K)) * constit(Y3,K,L).

Fortunately, folding allows one to sum first overY1 before summing sepa-
rately overY2 andJ, and then overY3 andK:

temp(X,Y2,Y3,I,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J).
temp2(X,Y3,I,K) += temp(X,Y2,Y3,I,J) * constit(Y2,J,K).
constit(X,I,L) += temp2(X,Y3,I,K) * constit(Y3,K,L).

This restoresO(n3) runtime (more precisely,O(N4 ·n2+N3 ·n3+N2 ·n3))8 by
reducing the number of nested loops. Even if we had declined to sum overY1
andY2 in the first two rules, then the summation overJ would already have
obtainedO(n3) runtime, in effect by binarizing the ternary rule. For exam-
ple, temp2(X,Y1,Y2,Y3,I,K) would have corresponded to a partial constituent
matching thedottedrule X→ Y1 Y2 . Y3. The additional summations overY1
andY2 result in a more efficient dotted rule that “forgets” the names of the
nonterminals matched so far,X → ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with+=) that will behave the
same in subsequent computation.

The variable elimination algorithm for undirected graphical models can be
viewed as repeated folding. An undirected graphical model expresses a joint

8For a dense grammar, which may have up toN4 ternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

T W L P / 47

probability distribution overP,Q by marginalizing (summing) over a product
of clique potentials:

marginal(P,Q) += p1(. . .) * p2(. . .) * · · · * pn(. . .).

where a function such asp5(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random variablesQ,X,Y. Assume without loss of
generality that variableX appears as an argument only topk+1, pk+2, . . . , pn.
We mayeliminatevariableX by transforming to

temp(. . .) += pk+1(. . . , X, . . .) * · · · * pn(. . . , X, . . .).
marginal(P,Q)+= p1(. . .) * · · · * pk(. . .) * temp(. . .).

The first line no longer mentionsX because the second line sums over it. The
variable elimination algorithm applies this procedure repeatedly to the last
line to eliminate the remaining variables.9

Common subexpression elimination.Folding can also be used multiple
times to eliminate common subexpressions. Consider the following code for
bilexicalCKY parsing:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,I,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar forntlex(X,H), meaning a nonterminalX lexicalized
at head wordH. The program effectively has two types of rewrite rule, which
pass the head word to the left or right child, respectively.

We could fold together the last two factors of the first rule toobtain

temp(Y:H,Z:H2,I,K) += constit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,I,J) * constit(Z:H,J,K).

We canreusethis definition of thetemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo variable renaming.
(Below, for clarity, we explicitly and harmlessly swap the names ofH2 andH
inthe temp rule.)

temp(Y:H2,Z:H,I,K) += constit(Y:H2,I,J) * constit(Z:H,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) * temp(Y:H2,Z:H,I,K).

Using the sametemp rule (modulo variable renaming) in both folding
transformations, rather than introducing a new temporary item for each fold,
gives us a constant-factor improvement in time and space.

9Determining the optimal elimination order is NP-complete.

48 / J E J B

Definition of folding. Our definition allows an additional use of the distribu-
tive law. The original program may define the value of itemr by aggregating
values not only over free variables in the body of one rule, but also across
n rules. Thus, when defining the temp items, we also allow it to aggregate
acrossn rules. In ordinary mathematical notation, we are performing a gen-
eralized version of the following substitution:

Before After
r =

∑
i (Ei ∗ F) ⇒ r = s∗ F

s=
∑

i Ei ⇒ s=
∑

i Ei

given the distributive property
∑

i(Ei ∗F) =
(∑

i Ei
)
∗F. The common context

in the original rules is the function “multiply by expression F,” so the temp
item s plays the role ofr/F. We will generalize by allowing this common
context to be an arbitrary functionF.

We require that the rules defining the temp item,s =
∑

i Ei , be in the
programalreadybefore folding occurs. If necessary, their presence may be
arranged by a trivialdefinition introduction transformation that addsr/F =∑

i Ei . (Explicitly using the slashed itemr/F for s will ensure that the vari-
able occurrence requirement below is met.) We claim withoutproof that all
transformations in this paper are semantics-preserving inthe sense of sec-
tion 4.2.3.

Below and throughout the paper, we use the notationF[X] to denote the
literal substitution of expressionX for all instances ofµ in an expressionF
over items, even ifX contains variables that appear inF or elsewhere in the
rule containingF[X]. We assume thatµ is a distinguished item name, of the
same value type asX, and does not appear elsewhere.

Algorithm 4.3.1 (Folding transformation)

Given n distinct rules R1, . . . ,Rn in P, where each Ri has the form
r ⊕= F[Ei]. Given also a term s that unifies with the heads of exactly n
rules in the program, all of which are distinct from the Ri , and which re-
spectively take the form s⊙= Ei after this unification.
Then the folding transformation deletes the rules R1, . . . ,Rn, replacing
them with a new rule r⊕= F[s], provided that

.Any variable that occurs in any of the Ei which also occurs in either F
or r must also occur in s.10

.Either⊕= or ⊙= is simply=,11or else the distributive propertyJF[x ⊙ y]K =
JF[x]K ⊕ JF[y]K holds for all assignments of terms to variables and all val-
uation functionsJ·K.12

T W L P / 49

As a tricky example, one can replacer += p(I,J) * log(q(J,K)) with r += p(I,J)
* log(s(J)) in the presence ofs(J) *= q(J,K). HereE1 is q(J,K), andF[x] is p(I,J)
* log(x).

4.4 Unfolding

In general, a folding transformation leaves the asymptoticruntime alone, or
may improve it when combined with the distributive law.13 Thus, the inverse
of the folding transformation, calledunfolding, makes the asymptotic time
complexity the same or worse. However, unfolding may be advantageous as
a precursor to some other transformation that improves runtime. It also saves
space. Sometimes we can improve both time and space complexity by unfold-
ing and then transforming the program further.

For example, recall the bilexical CKY parser given near the end of sec-
tion 4.3. The first rule originally shown there has runtimeO(N3 · n5), since
there areN possibilities for each ofX,Y,Z and n possibilities for each of
I,J,K,H,H2. Suppose that instead of that slow rule, the original programmer
had written the following folded version:

temp3(X:H,Z:H2,I,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I,J).
constit(X:H,I,K) += temp3(X:H,Z:H2,I,J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeO
(
N3 · n4 + N2 · n5

)
and needs

O
(
N2 · n4

)
space to store the items (rule heads) it derives.

By unfolding thetemp3 item—that is, substituting its definition in place
each time it is used, which uses unification and relies on distributivity—and
then trimming away its now-unneeded definition, we recover the first rule of
the original program:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

This worsens the time complexity toO
(
N3 · n5

)
, but by eliminating storage

of the temp items, it improves the space complexity toO
(
N · n3

)
. The payoff

is that now we can refold this rule differently—either as in section 4.3, or
alternatively as follows (Eisner and Satta, 1999, which misses the chance to
eliminate common subexpressions):

10This ensures thats does not sum over any variables that must remain visible in the revisedr
rule.

11For instance, in the very first example of section 4.3, thetemp item was defined using=
and therefore performed no summation. No distributivity was needed.

12That is, all valuation functions over the space of items, including dummy itemsx andy,
when extended over expressions in the usual way.

13It may either help or hurt theactual runtime, and it certainly increases the space needed to
store items’ values.

50 / J E J B

temp4(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,I,K) += temp4(X:H,Y:H,J,K) * constit(Y:H,I,J).

Either way, the time complexity is nowO
(
N3 · n4 + N2 · n4

)
—better than the

original programmer’s version—while the space complexityhas increased
only back to the original programmer’sO

(
N2 · n4

)
.

Unfolding resembles inlining of a subroutine call. Section4.5 will show
how it can thus be used for program specialization—improving efficiency
by a constant factor and also enabling further transformations that improve
asymptotic efficiency.

4.5 Speculation
We now generalize folding to handle recursive rules. Thisspeculationtrans-
formation, which is novel as far as we know, is reminiscent ofgap-passing in
categorial grammar. It has many uses; we limit ourselves to two examples.

Split head-automaton grammars. We consider a restricted kind of bilexi-
cal CFG in which a head word combines with all of its right children before
any of its left children (Eisner and Satta, 1999). The “inside algorithm” be-
low14 builds uprconstit items by starting with a word and successively adding
0 or more child constituents to the right, then builds upconstit items by adding
0 or more child constituents to the left of this.

rconstit(X:H,I,K) += word(H,I,K). % 0 right children so far
rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,I,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

This algorithm has runtimeO(N3 · n5) (dominated by line 4). We now
exploit the conditional independence of left children fromright children. In-
stead of building up aconstit from a particular, existingrconstit (line 3) and
then adding left children (line 4), we transform the programso it builds up the
constit item speculatively, waiting until the end to fill in each of the various
rconstit items that could have spawned it. Replace lines 3–4 with

lconstit(X0:H0,X0,J0,J0) += 1 needed only if rconstit(X0:H0,J0,K0).
lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).
needed only if rconstit(X0:H0,J0,K0).

constit(X:H0,I,K0) += lconstit(X:H0,X0,I,J0) * rconstit(X0:H0,J0,K0).

14For simplicity, this code ignores the cost of starting, “flipping,” or stopping in different non-
terminal states.

T W L P / 51

The new temp itemlconstit(X:H0,X0,I,J0) represents theleft half of a con-
stituent. We can regard it in the categorial terms of section4.3: as the last
line illustrates, it is just a more compact notation for aconstit missing its
rconstit right half—namelyconstit(X:H0,I,K0)/rconstit(X0:H0,J0,K0), whereK0
is always a free variable, so thatlconstit need not specify any particular value
for K0.

The first lconstit rule introduces an empty left half, equivalent tocon-
stit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0). This is extended with its left children
by recursing through the secondlconstit rule, allowingX andI to diverge from
X0 andJ0 respectively. Finally, the last rule finally fills in the missing right
half rconstit.

The special filter clausesneeded only if rconstit(X0:H0,J0,K0) are added
solely for efficiency. They say that it is not necessary to build “useless” left
halves purely speculatively, but only when there is some right half for them
to combine with. Their semantics are sketched below.

In this case, the filter clause on the second rule manages to ensure that in
any lconstit(X:H, X0,I,J0) that we need to build,J0 will be the start position
of the head wordH. (Such a constraint is already true forrconstits; an empty
lconstit inherits it from therconstit filter, and passes it along to successively
wider lconstit.) Since the temp item records only this redundant position and
not K (the right boundary of the unknownrconstit), runtime falls fromO

(
n5

)

to O
(
n4

)
.

As a bonus, we can now obtain theO
(
n3

)
algorithm of Eisner and Satta

(1999). Simply unfold the instances ofconstit in the rconstit and temp rules
(i.e., replacing them withlconstit * rconstit per our new definition). Then refold
those rules differently.15

Filter clauses. Our approach to filtering is novel. Ourneeded only if clauses
may be regarded as “relaxed” versions of side conditions (Goodman, 1999).
In the denotational semantics (section 4.2.3), they relax the restrictions on
the J·K function, allowing more possible semantics (all of which, however,
preserve the semantics of the original program).

Specifically, when constructingP(r) to determine whether a ground item
r is provable and what its value is, we mayoptionally omit an instantiated
rule r ⊕r= E if it has a filter clauseneeded only if C such that no consistent
instantiation ofC has been proved. (The “consistent” instantiations are those
where variables ofC that are shared withr or E are instantiated accordingly.
Other variables, such asK0 in the example above, may have any instantiation.)

How does this help operationally, in the forward chaining algorithm?

15In each case, use arewrite to combine arconstit with an lconstit to its right (first folding the
rewrite with whichever one does not contribute the head word).

52 / J E J B

When a rule triggers an update to a groundor non-ground item, but carries
a (partly instantiated) filter clause that does not unify with any proved item,
then the update has infinitely low priority and need not be placed on the
forward-chaining agenda. The update must still be carried out if the filter
clause is proved later.16

In the example above, forward chaining on the firstlconstit rule produces
an “zero-width”lconstit(X0:H0,X0,J0,J0) in which all variables are free.17 This
lconstit can be used anywhere; in particular, it can combine with anyrconstit,
so the filter clause says it is needed as soon asany rconstit has been proved.
The real filtering power comes when the second rule tries to build further
from the zero-widthlconstit using the second rule. ThenX0, H0, andJ0 in-
directly become bound to values in therewrite andconstit items of that rule
(because of the internal unification in the zero-widthlconstit(X0:H0,X0,J0,J0)).
Thus, the filter clause is now better instantiated, e.g.,needed only if rcon-
stit(vp:”flies”,1,K0). Only if such anrconstit has been derived (for someK0) are
we required to consider updating the clause head, e.g.,lconstit(s:”flies”,vp,0,1).

Unary rule closure. Before formalizing speculation, we informally show
another instructive application: precomputing unary ruleclosure in a CFG.
We start with a version of the inside algorithm that allows nonterminal unary
rules:

program fragment P0:
constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y) * constit(Y,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar rules include, among others,

program fragment P0: (continued)
rewrite(np1,np3) = 0.1.
rewrite(np3,np2) = 0.2.
rewrite(np2,np3) = 0.3.
rewrite(np3,det,n)= 0.4. . . .

We canunfoldthe grammar into the program to get rules such as

program fragment P1:
constit(np1,I,K) += 0.1 * constit(np3, I, K).
constit(np3,I,K) += 0.2 * constit(np2, I, K).
constit(np2,I,K) += 0.3 * constit(np3, I, K).

16Sometimes a filter is true, causing the update, but later becomes false. For instance,rcon-
stit(vp:”flies”,1,K0) may no longer be provable after sentence-specificword(. . .) axioms are re-
tracted. Because the update is now optional, the algorithm is not required to retract the update
(at least not on that basis), although it is free to do so in order to reclaim memory. This optional-
ity is useful in some of our examples below: entries will be filled into the unary-rule-closure and
left-corner tables only as needed, but need not be retractedafter each sentence and then rederived.

17As well as adding 1 to any other items that specialize and override this one.

T W L P / 53

constit(np3,I,K) += 0.4 * constit(det, I, J) * constit(n, J, K). . . .

This amounts to program specialization. If we have unfolded(at least)
the unary rewrite rules into the program, we can now apply speculation to
eliminate them “offline”:

program fragment P2:
temp(X0,X0) += 1 needed only if constit(X0,I0,K0).
temp(np1,X0) += 0.1 * temp(np3,X0).
temp(np3,X0) += 0.2 * temp(np2,X0).
temp(np2,X0) += 0.3 * temp(np3,X0).
constit(X,I0,K0) += temp(X,X0) * other(constit(X0,I0,K0)).
other(constit(np3,I,K)) += 0.4 * constit(det,I,J) * constit(n,J,K). . . .

For any nonterminalsX andY, our temporary itemtemp(X,X0) is just com-
pact notation forconstit(X,I0,K0)/constit(X0,I0,K0): the inside probability of de-
riving a constit(X,I0,K0) by a sequence of 0 or more unary rules from acon-
stit(X0,I0,K0) that covers the same spanI0–K0. In other words, it is the total
probability of all (possibly empty) unary-rewrite chainsX→∗ X0.

The final two rules recover unslashedconstit items.other(constit(X,I,K)) is
any constit(X0,I,K) whose derivation doesnot begin with a unary rule. The
next-to-last rule builds this intoconstit(X,I,J) through a sequence of 0 or more
unary rules.

Crucially, thetemp(X,X0) items have values that areindependent ofI and
K. So they need not be computed separately for every span in every sentence.
For each nonterminalX0, all temp(X,X0) values will be computed once and for
all (the very first time aconstit(X0,I,K) constituent is built) by iterating the first
three rules below to convergence. These values will then remain static while
the grammar does, even if the sentence changes (see footnote16).

Definition of speculation. In general, the value of a slashed item is afunc-
tion, just like the semantics of a slashed constituent in categorial grammar.
Also as in categorial grammar, gaps are introduced with the identity function,
passed with function composition, and eliminated with function application.
Fortunately, in commutative semiring-weighted programs like the ones above,
all functions have the form “multiply byx” for some weightx. We can rep-
resent such a function simply asx, using semiring 1 for the identity function,
semiring multiplication for both composition and application, and semiring
addition for pointwise addition.

Algorithm 4.5.1 (Speculation transformation)

54 / J E J B

Let a be an item to slash out, where any variables in a do not occur else-
where inP. Let slash andother be functors that do not already appear in
P. Let R1, . . . ,Rn be distinct rules inP, where each Ri is ri ⊕i= Fi [ti], and
• For i ≤ k, ti does not unify with a.
• For i > k, ti unifies with a; more strongly, it matches a non-empty subset
of the ground terms that a does.18

• Certain conditions on distributivity (satisfied by semiring programs).
Then the speculation transformation constructs the following new pro-
gram, in which the values ofslash items are functions,⊕i is extended to
sum functions pointwise,◦ denotes function composition, and F[x] denotes
function application.
• slash(a,a) ⊕a= (λx. x) needed only if a.
• (∀1 ≤ i ≤ n) slash(r i ,a) ⊕i= Fi ◦ slash(ti ,a) needed only if a.
• (∀1 ≤ i ≤ k) other(r i) ⊕i= Fi [other(ti)].
• (∀ rulesp ⊕= q not among the Ri) other(p) ⊕= q.19

• X ⊕X= other(X) unless X is an instance of a.
• X ⊕X= (slash(X,a))[other(a)].20

Intuitively, other(X) accumulates ways of buildingX other than instantia-
tions ofFi1[Fi2[· · ·Fi j [a]]] for j > 0.slash(X,a) aggregates all instantiations of
the functionλx.Fi1[Fi2[· · · Fi j [x]]] for j ≥ 0. This pointwise sum of functions
is only applied toother(. . .) items, to prevent double-counting (analogous to
spurious ambiguity in a categorial grammar).

To apply this formal transformation in the unary-rule elimination exam-
ple, takea=constit(X0,I0,K0), and theRi to be the “unary”constit rules, where
eachti is the last item in the body ofRi . Herek = 0. The resulting slashed
items have the formslash(constit(X,I,K), constit(X0,I0,K0)), but the rules would
only derive instances whereI=I0 and K=K0. All such rules are filtered by
needed only if constit(X0,I0,K0).21

To apply the transformation in the split head-automaton example, take
a=constit(X0:H0,J0,K0), theRi to be the two rules definingconstit, eachti to
be the last item in the body ofRi , andk = 1.22

18By adding side conditions, any rule can be split into ani ≤ k rule, ani > k rule, and a rule
not among theRi .

19Typically, many of theother(. . .) items can be unfolded and then their defining rules re-
moved. This is why few or none remained in the informal examples above.

20In the final two rules,X ranges over the entire universe of terms. Recall that⊕X is the
aggregation operator forX. One could construct separate rules for items aggregated with different
operators.

21In this example, the efficiency filters are redundant on rules after the first. Runtimeanalysis
or (perhaps) static analysis would show that they have no actual filtering effect, allowing us to
eliminate them.

22In this program,all constits are built fromrconstits usingR1 andR2, soother(constit(. . .))
has no derivations. Concretely, the single rule that the transformation generates to define

T W L P / 55

4.6 Converting bottom-up to top-down
4.6.1 Magic Templates

Finally, we give an important transformation that explainsand generalizes the
way that speculation introducedneeded only if filters.

The bottom-up “forward-chaining” execution strategy mentioned in sec-
tion 4.2.4 will compute the values for all provable items. Many of these items
may, however, be irrelevant in the sense that they do not contribute directly
or indirectly to the value ofgoal. (In parsing, they are legal constituents that
do not lead to a complete parse.) We can avoid generation of these irrele-
vant items by employing the magic templates transformation(Ramakrishnan,
1991), which prevents an item from being built unless it willhelp lead to a
“desired” item.

We need the value of a theoremfoo if it occurs in in the body of a rule
where (1) we need the value of the rule’s head and (2) we have already derived
the items precedingfoo in the rule’s body.23 For example, in the CKY parsing
rule

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

we needconstit(Y,I,J) (for a particularY,I,J) if we needconstit(X,I,K) (for some
X,K) and we already know thatrewrite(X,Y,Z) is provable (for someZ), which
we denote?rewrite(X,Y,Z).24 Hence

magic(constit(Y,I,J)) | = magic(constit(X,I,K)) & ?rewrite(X,Y,Z).

For example, the above rule may derivemagic(constit(vp,1,J)) as true. That
means it is worthwhile to look forvp objectsstartingat position 1. Theend-
ing positionJ is unspecified—a free variable. Ramakrishnan (1991)’s original
presentation drops such superfluous variables to obtain a dynamic program-
ming version:

magic constit(Y,I)) | = magic(constit(X,I,K)) & ?rewrite(X,Y,Z).

Ramakrishnan’s move is not necessary for the present section, but it improves
efficiency, and will simplify section 4.6.2.

Here are all the magic rules for CKY parsing (section 4.2.2):

magic goal | = true.
magic constit(s,0) | = magic goal.

other(constit(. . .)) depends onother(constit(. . .)) itself, so it can never be derived from the ax-
ioms (and may be trimmed away as useless).

23This left-to-right order within a rule is traditional, but any order would do.
24It would not be appropriate to writeneeded only if rewrite(X,Y,Z). Therewrite item is part

of the definition of whether the magic item should be true or false—not simply a condition on
whether a more lenient definition of magic (which would serveas a less effective filter) is worth
deriving. As a concrete consequence, usingneeded only if rewrite(X,Y,Z) below would derive a
magic item in whichY remained a free variable, a lenient definition that would license the main
program to derive many uselessconstit items.

56 / J E J B

magic constit(Y,I) | = magic constit(X,I,K)) & ?rewrite(X,Y,Z).
magic constit(Z,J) | = magic constit(X,I)

& ?rewrite(X,Y,Z) & ?constit(Y,I,J).

Then, we modify the rules of the original program, addingmagic foo as a
filter on the derivation offoo:

constit(X,I,K) + = rewrite(X,W) * word(W,I,K)
needed only if magic constit(X,I).

constit(X,I,K) + = rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K)
needed only if magic constit(X,I).

goal + = constit(s,0,N) * length(N) needed only if magic goal.

This transformed program uses forward chaining to simulatebackward chain-
ing (though perhaps a breadth-first version of backward chaining). Since we
ultimately want the value ofgoal (or derivations ofgoal), we setmagic goal=true.
That causes us to derivemagic constit facts at the start of the sentence, which
license the building of actualconstit items with values, which let us derive
magic constit facts later in the sentence, and so on. Remarkably, as previously
noticed by Minnen (1996), the operation of this transformedprogram is the
same as Earley’s algorithm (Earley, 1970): constituents are predicted top-
down, and built bottom-up only if they have a “customer” to the immediate
left.

Shieber et al. (1995), specifying CKY and Earley’s algorithm, remark that
“proofs of soundness and completeness [for the Earley’s case] are somewhat
more complex . . . and are directly related to the corresponding proofs for
Earley’s original algorithm.” In our perspective, the correctness of Earley’s
emerges directly from the correctness of CKY and the semantics-preserving
nature of the magic templates transformation.

Another application is “on-the-fly” intersection of weighted finite-state au-
tomata, which recalls the left-to-right nature of Earley’salgorithm. Intersec-

tion of arcsQ
X
→ R in machinesM1 andM2, bearing the same symbolX, is

accomplished by multiplying their weights:

arc(M1:M2,Q1:Q2,R1:R2,X) += arc(M1,Q1,R1,W) * arc(M2,Q2,R2,X).

But this pairs all compatible arcs in all known machines (including the new
machineM1:M2, leading to infinite regress). A magic templates transforma-
tion can restrict to arcs that actually need to be derived in the service of some
larger goal (e.g., summing over selected paths from a specified paired start
stateQ1:Q2).

4.6.2 Second-order magic

Using magic templates to change to a top-down computation order will still
allow some irrelevant items to be derived. Not all items we “need” to derive a
value forgoal, according to a top-down search fromgoal, will actually turn out

T W L P / 57

to be provable bottom-up. This may lead to too much top-down exploration:
Earley’s algorithm may predict many categories such asvp at position 1 (i.e.,
derivemagic(constit(vp,1,J))) when there is not even a possible verb at position
1.

We can therefore apply the magic templates transformation asecond time,
to the rules that defined the first-order magic items. This yields second-order
magic items of the formmagic magic foo, meaning “we need to realize that
we need to buildfoo”:

magic magic goal | = magic magic constit(s,0).
magic magic constit(X,I) | = magic magic constit(Y,I) & ?rewrite(X,Y,Z).
magic magic constit(X,I) | = magic magic constit(Z,J)

& ?rewrite(X,Y,Z) & ?constit(Y,I,J).

They can be added asneeded only if filter clauses that limit Earley’s “predict”
rules (i.e., the rules that derive the first-ordermagic items). As before,K re-
mains free. Consider in particular the second rule above, which says that if
Earley’s can wisely predictY at positionI, it can also wisely predictX and
(by recursion) any other nonterminal of whichY is a left corner. (Using spec-
ulation to abstract away from the sentence positionI, we could build up a left
corner table offline.)

The base case of this left-corner computation comes from enchanting one
of the rules thatusesrather thandefinesa first-order magic item,25

constit(X,I,K) + = rewrite(X,W) * word(W,I,K)
needed only if magic constit(X,I).

to obtain

magic magic constit(X,I) | = ?rewrite(X,W) & ?word(W,I,K).

Thus, the second-order predicates will constrain top-downprediction at
position I to predict only nonterminals that are left-corner compatible with
the wordW at I. In short, we have derived the left-corner filter on Earley’sal-
gorithm, by repeating the same transformation that derivedEarley’s algorithm
in the first place!

4.7 Conclusions

We introduced a weighted logic programming formalism for describing a
wide range of useful algorithms. After sketching its denotational and opera-
tional semantics, we outlined a number of fundamental techniques—program
transformations—for rearranging a weighted logic programto make it more
efficient.

25We do not show the enchantments of the other such rules, as they do not add any further
power.

58 / J E J B

In addition to exploiting several known logic programming transforma-
tions, we described a weighted extension of folding and unfolding, and pre-
sented the speculation transformation, a substantial generalization of folding.

We showed that each technique was connected to ideas in both logic pro-
gramming and in parsing, and had multiple uses in NLP algorithms. We re-
covered several known parsing optimizations by applying reusable transfor-
mations: for example, Earley’s algorithm, the left-cornerfilter, parser special-
ization, offline unary rule cycle elimination, and the bilexical parsingtech-
niques from (Eisner and Satta, 1999).

We noted throughout how program transformations could be simplified by
allowing the resulting programs to derive non-ground items. One important
tool was our proposedneeded only if filter.

The paradigm and techniques presented here may be directly useful to
algorithm designers as well as to those who are interested informalisms for
specifying and manipulating algorithms.

References
Aji, S. and R. McEliece. 2000. The generalized distributivelaw. IEEE Transactions

on Information Theory46(2):325–343.

Earley, J. 1970. An efficient context-free parsing algorithm.Comm. ACM13(2):94–
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling comp ling: Weighted dy-
namic programming and the Dyna language. InProc of HLT/EMNLP.

Eisner, J. and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and
head-automaton grammars. InProc. of ACL, pages 457–464.

Fitting, M. 2002. Fixpoint semantics for logic programminga survey. TCS278(1-
2):25–51.

Goodman, J. 1999. Semiring parsing.Computational Linguistics25(4):573–605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine translation as lexicalized parsing
with hooks. InProc. of IWPT, pages 65–73.

McAllester, D. 1999. On the complexity analysis of static analyses. InProc of 6th
Internat. Static Analysis Symposium.

Minnen, G. 1996. Magic for filter optimization in dynamic bottom-up processing. In
Proc 34th ACL, pages 247–254.

Ramakrishnan, R. 1991. Magic templates: a spellbinding approach to logic programs.
J. Log. Prog.11(3-4):189–216.

R / 59

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in deductive databases. In
PODS ’92, pages 114–126.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Principlesand implementation of
deductive parsing.J. Logic Prog.24(1–2):3–36.

Tamaki, H. and T. Sato. 1984. Unfold/fold transformation of logic programs. InProc
2nd ICLP, pages 127–138.

Van Gelder, A. 1992. The well-founded semantics of aggregation. In PODS ’92,
pages 127–138. New York, NY, USA: ACM Press. ISBN 0-89791-519-4.

Younger, D. H. 1967. Recognition and parsing of context-free languages in timen3.
Info. and Control10(2):189–208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performance system for symbolic and
statistical modeling. InProc of IJCAI Workshop on Learning Stat. Models from
Relational Data.

