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Abstract

We study unsupervised methods for learn-
ing refinements of the nonterminals in
a treebank. Following Matsuzaki et al.
(2005) and Prescher (2005), we may for
example splitNPwithout supervision into
NP[0] andNP[1], which behave differently.
We first propose to learn a PCFG that adds
such features to nonterminals in such a
way that they respect patterns of linguis-
tic feature passing: each node’s nontermi-
nal features are either identical to, or inde-
pendent of, those of its parent. This lin-
guistic constraint reduces runtime and the
number of parameters to be learned. How-
ever, it did not yield improvements when
training on the Penn Treebank. An orthog-
onal strategy was more successful: to im-
prove the performance of the EM learner
by treebank preprocessing and by anneal-
ing methods that split nonterminals selec-
tively. Using these methods, we can main-
tain high parsing accuracy while dramati-
cally reducing the model size.

1 Introduction

Treebanks never contain enough information; thus
PCFGs estimated straightforwardly from the Penn
Treebank (Bies et al., 1995) work only moderately
well (Charniak, 1996). To address this problem,
researchers have used heuristics to add more infor-
mation. Eisner (1996), Charniak (1997), Collins
(1997), and many subsequent researchers1 anno-
tated every node with lexical features passed up
from its “head child,” in order to more precisely re-
flect the node’s “inside” contents. Charniak (1997)
and Johnson (1998) annotated each node with its
parent and grandparent nonterminals, to more pre-
cisely reflect its “outside” context. Collins (1996)
split the sentence labelS into two versions, repre-
senting sentences with and without subjects. He

1Not to mention earliernon-PCFG lexicalized statistical
parsers, notably Magerman (1995) for the Penn Treebank.

also modified the treebank to contain different la-
bels for standard and for base noun phrases. Klein
and Manning (2003) identified nonterminals that
could valuably be split into fine-grained ones us-
ing hand-written linguistic rules. Their unlexical-
ized parser combined several such heuristics with
rule markovization and reached a performance
similar to early lexicalized parsers.

In all these cases, choosing which nonterminals
to split, and how, was a matter of art. Ideally
such splits would be learned automatically from
the given treebank itself. This would be less costly
and more portable to treebanks for new domains
and languages. One might also hope that the auto-
matically learned splits would be more effective.

Matsuzaki et al. (2005) introduced a model for
such learning: PCFG-LA.2 They used EM to in-
duce fine-grained versions of a given treebank’s
nonterminals and rules. We present models that
similarly learn to propagate fine-grained features
through the tree, but only in certain linguistically
motivated ways. Our models therefore allocate
a supply of free parameters differently, allow-
ing more fine-grained nonterminals but less fine-
grained control over the probabilities of rewriting
them. We also present simple methods for decid-
ing selectively (during training) which nontermi-
nals to split and how.

Section 2 describes previous work in finding
hidden information in treebanks. Section 3 de-
scribes automatically induced feature grammars.
We start by describing the PCFG-LA model, then
introduce new models that use specific agreement
patterns to propagate features through the tree.
Section 4 describes annealing-like procedures for
training latent-annotation models. Section 5 de-
scribes the motivation and results of our experi-
ments. We finish by discussing future work and
conclusions in sections 6–7.

2Probabilistic context-free grammar with latent annota-
tions.
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Citation Observed data Hidden data

Collins (1997) Treebank tree with head child an-
notated on each nonterminal

No hidden data. Degenerate EM
case.

Lari and Young (1990) Words Parse tree
Pereira and Schabes (1992) Words and partial brackets Parse tree
Klein and Manning (2001) Part-of-speech tags Parse tree
Chiang and Bikel (2002) Treebank tree Head child on each nonterminal
Matsuzaki et al. (2005) Treebank tree Integer feature on each nontermi-

nal
INHERIT model (this paper) Treebank tree and head child

heuristics
Integer feature on each nontermi-
nal

Table 1: Observed and hidden data in PCFG grammar learning.

2 Partially supervised EM learning

The parameters of a PCFG can be learned with
or without supervision. In the supervised case,
the complete tree is observed, and the rewrite rule
probabilities can be estimated directly from the
observed rule counts. In the unsupervised case,
only the words are observed, and the learning
method must induce the whole structure above
them. (See Table 1.)

In the partially supervised case we will con-
sider, some part of the tree is observed, and
the remaining information has to be induced.
Pereira and Schabes (1992) estimate PCFG pa-
rameters from partially bracketed sentences, using
the inside-outside algorithm to induce the miss-
ing brackets and the missing node labels. Some
authors define a complete tree as one that speci-
fies not only a label but also a “head child” for
each node. Chiang and Bikel (2002) induces the
missing head-child information; Prescher (2005)
induces both the head-child information and the
latent annotations we will now discuss.

3 Feature Grammars

3.1 ThePCFG-LA Model

Staying in the partially supervised paradigm, the
PCFG-LA model described in Matsuzaki et al.
(2005) observe whole treebank trees, but learn
an “annotation” on each nonterminal token—an
unspecified and uninterpreted integer that distin-
guishes otherwise identical nonterminals. Just as
Collins manually split theS nonterminal label into
S andSGfor sentences with and without subjects,
Matsuzaki et al. (2005) splitS into S[1], S[2], . . . ,
S[L] whereL is a predefined number—but they do
it automatically and systematically, and not only

for S but for every nonterminal. Their partially
supervised learning procedure observes trees that
are fully bracketed and fully labeled, except for
the integer subscript used to annotate each node.
After automatically inducing the annotations with
EM, their resulting parser performs just as well as
one learned from a treebank whose nonterminals
were manually refined through linguistic and error
analysis (Klein and Manning, 2003).

In Matsuzaki’s PCFG-LA model, rewrite rules
take the form

X[α] → Y [β] Z[γ] (1)

in the binary case, and

X[α] → w (2)

in the lexical case. The probability of a tree con-
sisting of rulesr1, r2, . . . is given by the probabil-
ity of its root symbol times the conditional prob-
abilities of the rules. The annotated treeT1 in
Fig. 1, for example, has the following probability:

P (T1) = P (ROOT→ S[2])
×P (S[2] → NP[1] VP[3])
×P (NP[1] →∗ He)
×P (VP[3] →∗ loves cookies )

where, to simplify the notation, we use
P (X → Y Z) to denote the conditional probabil-
ity P (Y Z | X) that a given node with labelX
will have childrenY Z.

Degrees of freedom. We will want to compare
models that have about the same size. Models with
more free parameters have an inherent advantage
on modeling copious data because of their greater
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Figure 1: Treebank tree with annotations.

expressiveness. Models with fewer free parame-
ters are easier to train accurately on sparse data,
as well as being more efficient in space and often
in time. Our question is therefore what can be ac-
complished with a given number of parameters.

How many free parameters in a PCFG-LA

model? Such a model is created by annotating
the nonterminals of a standard PCFG (extracted
from the given treebank) with the various integers
from 1 toL. If the original, “backbone” grammar
hasR3 binary rules of the formX → Y Z, then
the resulting PCFG-LA model hasL3 × R3 such
rules: X[1] → Y [1] Z[1], X[1] → Y [1] Z[2],
X[1] → Y [2] Z[1], . . . ,X[L] → Y [L] Z[L]. Sim-
ilarly, if the backbone grammar hasR2 rules of
the formX → Y the PCFG-LA model hasL2 ×
R2 such rules.3 The number ofR1 terminal rules
X → w is just multiplied byL.

The PCFG-LA has as many parameters to learn
as rules: one probability per rule. However, not
all these parameters are free, as there areL × N
sum-to-one constraints, whereN is the number of
backbone nonterminals. Thus we have

L3R3 + L2R2 + LR1 − LN (3)

degrees of freedom.
We note that Goodman (1997) mentioned possi-

ble ways to factor the probability 1, making inde-
pendence assumptions in order to reduce the num-
ber of parameters.

Runtime. Assuming there are no unary rule cy-
cles in the backbone grammar, bottom-up chart
parsing of a length-n sentence at test time takes
time proportional ton3L3R3 + n2L2R2 + nLR1,
by attempting to apply each rule everywhere in the
sentence. (The dominating term comes from equa-
tion (4) of Table 2: we must loop over alln3 triples
i, j, k and allR3 backbone rulesX → Y Z and all

3We use unary rules of this form (e.g. the Treebank’sS→
NP) in our reimplementation of Matsuzaki’s algorithm.

L3 triplesα, β, γ.) As a function ofn andL only,
this isO(n3L3).

At training time, to induce the annotations on
a given backbone tree withn nodes, one can run
a constrained version of this algorithm that loops
over only then triples i, j, k that are consistent
with the given tree (and considers only the single
consistent backbone rule for each one). This takes
time O(nL3), as does the inside-outside version
we actually use to collect expected PCFG-LA rule
counts for EM training.

We now introduce a model that is smaller, and
has a lower runtime complexity, because it adheres
to specified ways of propagating features through
the tree.

3.2 Feature Passing: TheINHERIT Model

Many linguistic theories assume that features get
passed from the mother node to their children or
some of their children. In many cases it is the
head child that gets passed its feature value from
its mother (e.g., Kaplan and Bresnan (1982), Pol-
lard and Sag (1994)). In some cases the feature is
passed to both the head and the non-head child, or
perhaps even to the non-head alone.

Figure 2: Features are passed to different children
at different positions in the tree.

In the example in Fig. 2, the tense feature (pres)
is always passed to the head child (underlined).
How the number feature (sg/pl) is passed depends
on the rewrite rule:S → NP VPpasses it to both
children, to enforce subject-verb agreement, while
VP→ V NPonly passes it to the head child, since
the objectNPis free not to agree with the verb.

A feature grammar can incorporate such pat-
terns of feature passing. We introduce additional
parameters that define the probability of passing a
feature to certain children. The head child of each
node is given deterministically by the head rules
of (Collins, 1996).
Under the INHERIT model that we propose, the
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Model Runtime and d.f. Simplified equation for inside probabilities (ignores unary rules)

Matsuzaki
et al. (2005)

test:O(n3L3)
train: O(nL3)
d.f.: L3R3 +
L2R2 +LR1−LN

BX[α](i, k) =
X

Y,β,Z,γ,j

P (X[α] → Y [β] Z[γ]) (4)

×BY [β](i, j)×BZ[γ](j, k)

INHERIT
model
(this paper)

test:O(n3L)
train: O(nL)
d.f.: L(R3 + R2 +
R1) + 3R3 −N

BX[α](i, k) =
X

Y,Z,j

P (X[α] → Y Z) (5)

×

0B@ P (neither | X, Y, Z) × BY (i, j) × BZ(j, k))
+ P (left | X, Y, Z) × BY [α](i, j) × BZ(j, k))
+ P (right | X, Y, Z) × BY (i, j) × BZ[α](j, k))
+ P (both | X, Y, Z) × BY [α]Y (i, j) × BZ[α](j, k))

1CA
BX(i, j) =

X
α

Pann(α | X)×BX[α](i, j) (6)

P (left | X, Y, Z) =


P (head | X, Y, Z) if Y headsX → Y Z
P (nonhead| X, Y, Z) otherwise (7)

P (right | X, Y, Z) =


P (head | X, Y, Z) if Z headsX → Y Z
P (nonhead| X, Y, Z) otherwise (8)

Table 2: Comparison of the PCFG-LA model with the INHERIT model proposed in this paper. “d.f.”
stands for “degrees of freedom” (i.e., free parameters). TheB terms are inside probabilities; to compute
Viterbi parse probabilities instead, replace summation by maximization. Note the use of the intermediate
quantityBX(i, j) to improve runtime complexity by moving some summations out of the inner loop;
this is an instance of a “folding transformation” (Blatz and Eisner, 2006).

Figure 3: Two passpatterns. Left:T2. The feature
is passed to the head child (underlined). Right:T3.
The feature is passed to both children.

probabilities of treeT2 in Fig. 3 are calculated as
follows, with Pann(1 | NP ) being the probability
of annotating an NP with feature 1 if it doesnot
inherit its parent’s feature. TheVP is boldfaced to
indicate that it is the head child of this rule.

P (T2) = P (ROOT→ S[2])
×P (S[2] → NPVP)
×P (pass to head| S→ NPVP)
×Pann(1 | NP)× P (NP[1] →∗ He)
×P (VP[2] →∗ loves cookies )

TreeT3 in Fig. 3 has the following probability:

P (T3) = P (ROOT→ S[2])
×P (S[2] → NPVP)
×P (pass to both| S→ NPVP)
×P (NP[2] →∗ He)
×P (VP[2] →∗ loves cookies )

In T2, the subjectNPchose feature 1 or 2 indepen-
dent of its parentS, according to the distribution
Pann(· | NP). In T3, it was constrained to inherit
its parent’s feature 2.

Degrees of freedom. The INHERIT model may
be regarded as containing all the same rules
(see (1)) as the PCFG-LA model. However, these
rules’ probabilities are now collectively deter-
mined by a smaller set of shared parameters.4 That
is because the distribution of the child featuresβ
andγ no longer depends arbitrarily on the rest of
the rule.β is either equal toα, or chosen indepen-
dently of everything butY .

The model needs probabilities forL × R3

binary-rule parameters likeP (S[2] → NPVP)
above, as well asL × R2 unary-rule andL × R1

lexical-rule parameters. None of these consider
the annotations on the children. They are subject
to L×N sum-to-one constraints.

The model also needs4×R3 passpattern prob-
abilities likeP (pass to head| X → Y Z) above,
with R3 sum-to-one constraints, andL × N non-
inherited annotation parametersPann(α|X), with
N sum-to-one constraints.

Adding these up and canceling the twoL × N

4The reader may find it useful to write out the probability
P (X[α] → Y [β] Z[γ]) in terms of the parameters described
below. Like equation (5), it isP (X[α] → Y Z) times a sum
of up to 4 products, corresponding to the 4 passpattern cases.
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terms, the INHERIT model has

L(R3 + R2 + R1) + 3R3 −N (9)

degrees of freedom. Thus for a typical grammar
whereR3 dominates, we have reduced the number
of free parameters from aboutL3R3 to only about
LR3.

Runtime. We may likewise reduce anL3 factor
to L in the runtime. Table 2 shows dynamic pro-
gramming equations for the INHERIT model. By
exercising care, they are able to avoid summing
over all possible values ofβ andγ within the in-
ner loop. This is possible because when they are
not inherited, they do not depend onX, Y, Z, or α.

3.3 Multiple Features

The INHERIT model described above is linguisti-
cally naive in several ways. One problem (see sec-
tion 6 for others) is that each nonterminal has only
a single feature to pass. Linguists, however, usu-
ally annotate each phrase with multiple features.
Our example tree in Fig. 2 was annotated with both
tense and number features, with different inheri-
tance patterns.

As a step up from INHERIT, we propose an
INHERIT2 model where each nonterminal carries
two features. Thus, we will haveL6R3 binary
rules instead ofL3R3. However, we assume that
the two features choose their passpatterns inde-
pendently, and that when a feature is not inher-
ited, it is chosen independently of the other fea-
ture. This keeps the number of parameters down.
In effect, we are defining

P (X[α][ρ] → Y [β][σ] Z[γ][τ ])
= P (X[α][ρ] → Y Z)

×P1(β, γ | X[α] → Y Z)
×P2(σ, τ | X[ρ] → Y Z)

whereP1 andP2 choose child features as if they
were separate single-feature INHERIT models.

We omit discussion of dynamic programming
speedups for INHERIT2. Empirically, the hope is
that the two features when learned with the EM
algorithm will pick out different linguistic proper-
ties of the constituents in the treebank tree.

4 Annealing-Like Training Approaches

Training latent PCFG models, like training most
other unsupervised models, requires non-convex
optimization. To find good parameter values, it
is often helpful to train a simpler model first and
use its parameters to derive a starting guess for the
harder optimization problem. A well-known ex-
ample is the training of the IBM models for statis-
tical machine translation (Berger et al., 1994).

In this vein, we did an experiment in which we
gradually increasedL during EM training of the
PCFG-LA and INHERIT models. Whenever the
training likelihood began to converge, weman-
ually and globally increasedL, simply doubling
or tripling it (see “clone all” in Table 3 and
Fig. 5). The probability ofX[α] → Y [β]Z[γ]
under the new model was initialized to be pro-
portional to the probability ofX[α mod L] →
Y [β mod L]Z[γ mod L] (whereL refers to the
old L),5 times a random ”jitter” to break symme-
try.

In a second annealing experiment (“clone
some”) we addressed a weakness of the PCFG-
LA and INHERIT models: They give every non-
terminal the same number of latent annotations.
It would seem that different coarse-grained non-
terminals in the original Penn Treebank have dif-
ferent degrees of impurity (Klein and Manning,
2003). There are linguistically many kinds of
NP, which are differentially selected for by vari-
ous contexts and hence are worth distinguishing.
By contrast,-LRB- is almost always realized as
a left parenthesis and may not need further refine-
ment. Our “clone some” annealing starts by train-
ing a model withL=2 to convergence. Then, in-
stead of cloning all nonterminals as in the previ-
ous annealing experiments, we clone only those
that have seemed to benefit most from their previ-
ous refinement. This benefit is measured by the
Jensen-Shannon divergence of the two distribu-
tions P (X[0] → · · · ) and P (X[1] → · · · ). The

5Notice that as well as cloningX[α], this procedure mul-
tiplies by 4, 2, and 1 the number of binary, unary, and lex-
ical rules that rewriteX[α]. To leave the backbone gram-
mar unchanged, we should have scaled down the probabili-
ties of such rules by 1/4, 1/2, and 1 respectively. Instead, we
simply scaled them all down by the same proportion. While
this temporarily changes the balance of probability among the
three kinds of rules, EM immediately corrects this balance on
the next training iteration to match the observed balance on
the treebank trees—hence the one-iteration downtick in Fig-
ure 5).
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Jensen-Shannon divergence is defined as

D(q, r) =
1
2

(
D

(
q || q + r

2

)
+ D

(
r || q + r

2

))
These experiments are a kind of “poor man’s

version” of the deterministic annealing cluster-
ing algorithm (Pereira et al., 1993; Rose, 1998),
which gradually increases the number of clus-
ters during the clustering process. In determinis-
tic annealing, one starts in principle with a very
large number of clusters, but maximizes likeli-
hood only under a constraint that the joint distri-
butionp(point , cluster) must have very high en-
tropy. This drives all of the cluster centroids to co-
incide exactly, redundantly representing just one
effective cluster. As the entropy is permitted to de-
crease, some of the cluster centroids find it worth-
while to drift apart.6 In future work, we would
like to apply this technique to split nonterminals
gradually, by initially requiring high-entropy parse
forests on the training data and slowly relaxing this
constraint.

5 Experiments

5.1 Setup

We ran several experiments to compare the IN-
HERIT with the PCFG-LA model and look into the
effect of different Treebank preprocessing and the
annealing-like procedures.

We used sections 2–20 of the Penn Treebank 2
Wall Street Journal corpus (Marcus et al., 1993)
for training, section 22 as development set and
section 23 for testing. Following Matsuzaki et al.
(2005), words occurring fewer than 4 times in the
training corpus were replaced by unknown-word
symbols that encoded certain suffix and capitaliza-
tion information.

All experiments used simple add-lambda
smoothing (λ=0.1) during the reestimation step
(M step) of training.

Binarization and Markovization. Before ex-
tracting the backbone PCFG and running the con-
strained inside-outside (EM) training algorithm,
we preprocessed the Treebank using center-parent
binarization Matsuzaki et al. (2005). Besides mak-
ing the rules at most binary, this preprocessing also
helpfully enriched the backbone nonterminals. For

6In practice, each very large group of centroids (effective
cluster) is represented by just two, until such time as those
two drift apart to represent separate effective clusters—then
each is cloned.

all but the first (“Basic”) experiments, we also
enriched the nonterminals with order-1 horizon-
tal and order-2 vertical markovization (Klein and
Manning, 2003).7 Figure 4 shows what a multiple-
child structureX → A B H C D looks like
after binarization and markovization. The bina-
rization process starts at the head of the sentence
and moves to the right, inserting an auxiliary node
for each picked up child, then moving to the left.
Each auxiliary node consists of the parent label,
the direction (L or R) and the label of the child
just picked up.

Figure 4: Horizontal and vertical markovization
and center-parent binarization of the ruleX →
A B H C D whereH is the head child.

Initialization. The backbone PCFG grammar
was read off the altered Treebank, and the initial
annotated grammar was created by creating sev-
eral versions of every rewrite rule. The proba-
bilities of these newly created rules are uniform
and proportional to the original rule, multiplied by
a random epsilon factor uniformly sampled from
[.9999,1.0001] to break symmetry.

5.2 Decoding

To test the PCFG learned by a given method,
we attempted to recover theunannotatedparse
of each sentence in the development set. We
then scored these parses by debinarizing or de-
markovizing them, then measuring their precision
and recall of the labeled constituents from the
gold-standard Treebank parses.

7The vertical markovization was appliedbeforebinariza-
tion. – Matsuzaki et al. (2005) used a markovized grammar
to get a better unannotated parse forest during decoding, but
they did not markovize the training data.
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Figure 5: Loge-likelihood during training. The
two “anneal” curves use the “clone all” method.
We increasedL after iteration 50 and, for the IN-
HERIT model, iteration 110. The downward spikes
in the two annealed cases are due to perturbation
of the model parameters (footnote 5).

An unannotated parse’s probability is the total
probability, under our learned PCFG, of all of its
annotated refinements. This total can be efficiently
computed by the constrained version of the inside
algorithm in Table 2.

How do we obtain the unannotated parse whose
total probability is greatest? It does not suffice to
find the single best annotated parse and then strip
off the annotations. Matsuzaki et al. (2005) note
that the best annotated parse is in fact NP-hard to
find. We use their reranking approximation. A
1000-best list for each sentence in the decoding
set was created by parsing with our markovized
unannotated grammar and extracting the 1000 best
parses using thek-best algorithm 3 described in
Huang and Chiang (2005). Then we chose the
most probable of these 1000 unannotated parses
under our PCFG, first finding the total probability
of each by using the the constrained inside algo-
rithm as explained above.8

5.3 Results and Discussion

Table 3 summarizes the results on development
and test data.9 Figure 5 shows the training log-
likelihoods.

First, markovization of the Treebank leads to

8For the first set of experiments, in which the models were
trained on a simple non-markovized grammar, the 1000-best
trees had to be “demarkovized” before our PCFG was able to
rescore them.

9All results are reported on sentences of 40 words or less.

striking improvements. The “Basic” block of ex-
periments in Table 3 used non-markovized gram-
mars, as in Matsuzaki et al. (2005). The next block
of experiments, introducing markovized gram-
mars, shows a considerable improvement. This
is not simply because markovization increases the
number of parameters: markovization withL = 2
already beats basic models that have much higher
L and far more parameters.

Evidently, markovization pre-splits the labels
in the trees in a reasonable way, so EM has less
work to do. This is not to say that markovization
eliminates the need for hidden annotations: with
markovization, going fromL=1 to L=2 increases
the parsing accuracy even more than without it.

Second, our “clone all” training technique
(shown in the next block of Table 3) did not
help performance and may even have hurt slightly.
Here we initialized theL=2x2 model with the
trainedL=2 model for PCFG-LA, and theL=3x3
model with theL=3 and theL=3x3x3 model with
theL=3x3 model.

Third, our “clone some” training technique ap-
peared to work. On PCFG-LA, the L<2x2 con-
dition (i.e., train withL=2 and then clone some)
matched the performance ofL=4 with 30% fewer
parameters. On INHERIT, L<2x2 beatL=4 with
8% fewer parameters. In these experiments, we
used the average divergence as a threshold:X[0]
andX[1] are split again if the divergence of their
rewrite distributions is higher than average.

Fourth, our INHERIT model was a disappoint-
ment. It generally performed slightly worse than
PCFG-LA when given about as many degrees
of freedom. This was also the case on some
cursory experiments on smaller training corpora.
It is tempting to conclude that INHERIT simply
adopted overly strong linguistic constraints, but
relaxing those constraints by moving to the IN-
HERIT2 model did not seem to help. In our
one experiment with INHERIT2 (not shown in Ta-
ble 3), using 2 features that can each takeL=2
values (d.f.: 212,707) obtains anF1 score of only
83.67—worse than 1 feature takingL=4 values.

5.4 Analysis: What was learned byINHERIT?

INHERIT did seem to discover “linguistic” fea-
tures, as intended, even though this did not im-
prove parse accuracy. We trained INHERIT and
PCFG-LA models (bothL=2, non-markovized)
and noticed the following.
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PCFG-LA INHERIT

L d.f. LP LR F1 L d.f. LP LR F1

B
as

ic 1 24,226 76.99 74.51 75.73 1 35,956 76.99 74.51 75.73
2 72,392 81.22 80.67 80.94 2 60,902 79.42 77.58 78.49
4 334,384 83.53 83.39 83.46 12 303,162 82.41 81.55 81.98
8 2,177,888 85.43 85.05 85.24 80 1,959,053 83.99 83.02 83.50

M
ar

ko
v. 1 41,027 79.95 78.43 79.18 1 88,385 79.95 78.43 79.18

2 132,371 83.85 82.23 83.03
2 178,264 85.70 84.37 85.03 3 176,357 85.04 83.60 84.31

4 220,343 85.30 84.06 84.68
3 506,427 86.44 85.19 85.81 9 440,273 86.16 85.12 85.64
4 1,120,232 87.09 85.71 86.39 26 1,188,035 86.55 85.55 86.05

C
lo

ne
al

l

2 178,264 85.70 84.37 85.03 3 176,357 85.04 83.60 84.31
3x3 440,273 85.99 84.88 85.43

2x2 1,120,232 87.06 85.49 86.27 3x3x3 1,232,021 86.65 85.70 86.17

C
l.s

om
e

2 178,264 85.70 84.37 85.03 2 132,371 83.85 82.23 83.03
<2x2 789,279 87.17 85.71 86.43 <2x2 203,673 85.49 84.45 84.97

<2x2x2 314,999 85.57 84.60 85.08

Table 3: Results on the development set: labeled precision (LP), labeled recall (LR), and their harmonic
mean (F1). “Basic” models are trained on a non-markovized treebank (as in Matsuzaki et al. (2005)); all
others are trained on a markovized treebank. The best model (PCFG-LA with “clone some” annealing,
F1=86.43) has also been decoded on the final test set, reaching P/R=86.94/85.40 (F1=86.17).

We used both models to assign the most-
probable annotations to the gold parses of the de-
velopment set. Under the INHERIT model,NP[0]
vs. NP[1] constituents were 21% plural vs. 41%
plural. Under PCFG-LA this effect was weaker
(30% vs. 39%), although it was significant in both
(Fisher’s exact test,p < 0.001). Strikingly, un-
der the INHERIT model, theNP’s were 10 times
more likely to pass this feature to both children
(Fisher’s,p < 0.001)—just as we would expect
for a number feature, since the determiner and
head noun of anNPmust agree.

The INHERIT model also learned to use feature
value 1 for “tensed auxiliary.” TheVP[1] nonter-
minal was far more likely thanVP[0] to expand as
V VP, whereV represents any of the tensed verb
preterminalsVBZ, VBG, VBN, VBD, VBP. Further-
more, these expansion rules had a very strong pref-
erence for “pass to head,” so that the left child
would also be annotated as a tensed auxiliary, typ-
ically causing it to expand as a form ofbe , have ,
or do . In short, the feature ensured that it was gen-
uine auxiliary verbs that subcategorized forVP′s.

(The PCFG-LA model actually arranged the
same behavior, e.g. similarly preferringVBZ[1] in
the auxiliary expansion ruleVP→ VBZ VP. The

difference is that the PCFG-LA model was able
to express this preference directly without prop-
agating the[1] up to theVPparent. Hence neither
VP[0] nor VP[1] became strongly associated with
the auxiliary rule.)

Many things are equally learned by both mod-
els: They learn the difference between subordinat-
ing conjunctions (while, if) and prepositions (un-
der, after), putting them in distinct groups of the
original IN tag, which typically combine with sen-
tences and noun phrases, respectively. Both mod-
els also split the conjunctionCCinto two distinct
groups: a group of conjunctions starting with an
upper-case letter at the beginning of the sentence
and a group containing all other conjunctions.

6 Future Work: Log-Linear Modeling

Our approach in the INHERIT model made certain
strict independence assumptions, with no backoff.
The choice of a particular passpattern, for exam-
ple, depends on all and only the three nontermi-
nalsX, Y, Z. However, given sparse training data,
sometimes it is advantageous to back off to smaller
amounts of contextual information; the nontermi-
nalX or Y might alone be sufficient to predict the
passpattern.
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A very reasonable framework for handling this
issue is to modelP (X[α] → Y [β] Z[γ]) with
a log-linear model.10 Feature functions would
consider the values of variously sized, over-
lapping subsets ofX, Y, Z, α, β, γ. For exam-
ple, a certain feature might fire whenX[α] =
NP[1] and Z[γ] = N[2]. This approach can be ex-
tended to the multi-feature case, as in INHERIT2.

Inheritance as in the INHERIT model can then
be expressed by features likeα = β, or α =
β and X = VP. During early iterations, we could
use a prior to encourage a strong positive weight
on these inheritance features, and gradually re-
lax this bias—akin to the “structural annealing” of
(Smith and Eisner, 2006).

When modeling the lexical ruleP (X[α] → w),
we could use features that consider the spelling
of the wordw in conjunction with the value of
α. Thus, we might learn thatV [1] is particularly
likely to rewrite as a word ending in-s . Spelling
features that are predictable from string context
are important clues to the existence and behavior
of the hidden annotations we wish to induce.

A final remark is that “inheritance” does not
necessarily have to mean thatα = β. It is enough
that α and β should have high mutual informa-
tion, so that one can be predicted from the other;
they do not actually have to be represented by the
same integer. More broadly, we might likeα to
have high mutual information with the pair(β, γ).
One might try using this sort of intuition directly
in an unsupervised learning procedure (Elidan and
Friedman, 2003).

7 Conclusions

We have discussed “informed” techniques for in-
ducing latent syntactic features. Our INHERIT

model tries to constrain the way in which features
are passed through the tree. The motivation for
this approach is twofold: First, we wanted to cap-
ture the linguistic insight that features follow cer-
tain patterns in propagating through the tree. Sec-
ond, we wanted to make it statistically feasible and
computationally tractable to increaseL to higher
values than in the PCFG-LA model. The hope was
that the learning process could then make finer dis-
tinctions and learn more fine-grained information.
However, it turned out that the higher values of
L did not compensate for the perhaps overly con-

10This affects EM training only by requiring a convex op-
timization at the M step (Riezler, 1998).

strained model. The results on English parsing
rather suggest that it is the similarity in degrees of
freedom (e.g., INHERIT with L=3x3x3 and PCFG-
LA with L=2x2) that produces comparable results.

Substantial gains were achieved by using
markovization and splitting only selected nonter-
minals. With these techniques we reach a pars-
ing accuracy similar to Matsuzaki et al. (2005),
but with an order of magnitude less parameters,
resulting in more efficient parsing. We hope to
get more wins in future by using more sophisti-
cated annealing techniques and log-linear model-
ing techniques.
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