
600.465 — Intro to NLP

Assignment 5: Tagging with a Hidden Markov Model

Prof. J. Eisner — Fall 2004
Due date: Monday 6 December, 2 pm

Absolute late deadline: Sunday 12 December, 2 pm
Final exam: Thursday 16 December, 9am–noon

In this assignment, you will build a Hidden Markov Model and use it to tag words
with their parts of speech. At the risk of making this handout too long, I have added lots
of specific directions and hints so that you won’t get stuck. Don’t be intimidated—your
program will be a lot shorter than this handout! Just read carefully.

In the first part of the assignment, you will do supervised learning, estimating the
parameters p(tag | previous tag) and p(word | tag) from a training set of already-tagged
text. Some smoothing is necessary. You will then evaluate the learned model by finding
the Viterbi tagging (i.e., best tag sequence) for some test data and measuring how many
tags were correct.

In the second part of the assignment, you will try to improve your supervised parameters
by reestimating them on additional “raw” (untagged) data, using the full forward-backward
algorithm. This yields a partially supervised model, which you will again evaluate by
finding the Viterbi tagging on the test data. Note that you’ll use the Viterbi approximation
for testing but not for training.

For speed and simplicity, you will use relatively small datasets, and a bigram model
instead of a trigram model. You will also ignore the spelling of words (useful for tagging
unknown words). All these simplifications hurt accuracy.1 So overall, your percentage of
correct tags will be in the low 90’s instead of the high 90’s that I mentioned in class.

Programming language: As usual, your choice, but pick a language in which you
can program quickly and well, and that supports hash tables. My final program was about
250 lines in Perl. Running on barley, it handled problem 2 in about 1.5 minutes and 20M
memory, and problem 3 (three iterations) in about 65 minutes and 100M memory.

How to hand in your work: The procedure will be similar to previous assignments.
Again, specific instructions will be announced before the due date. You must test that

1But another factor helps your accuracy measurement: you will also use a smaller-than-usual set of tags.
The motivation is speed, but it has the side effect that your tagger won’t have to make fine distinctions.



your programs run on barley with no problems before submitting them. You may prefer
to develop them on barley in the first place, since that’s where the data files are stored.

Data: There are three datasets, available in /usr/local/data/cs465/hw5/data on
barley (or at http://cs.jhu.edu/~jason/465/hw5/data). They are as follows:

• ic: Ice cream cone sequences with 1-character tags (C, H). Start with this easy dataset.

• en: English word sequences with 1-character tags (documented in Figure 1).

• cz: Czech word sequences with 2-character tags. (If you want to see the accented
characters more-or-less correctly, look at the files in Emacs.)

You only need to hand in results on the en dataset. The others are just for your convenience
in testing your code, and for the extra credit problem.

Each dataset consists of three files:

• train: tagged data for supervised training (en provides 4,000–100,000 words)

• test: tagged data for testing (25,000 words for en); your tagger should ignore the
tags in this file except when measuring the accuracy of its tagging

• raw: untagged data for reestimating parameters (100,000 words for en)

The file format is quite simple. Each line has a single word/tag pair separated by the /
character. (In the raw file, only the word appears.) Punctuation marks count as words.
The special word ### is used for sentence boundaries, and is always tagged with ###.

Notation: In the discussion and in Figures 2–3, I’ll use the following notation. You
might want to use the same notation in your program.

• Whichever string is being discussed (whether it is from train, test, or raw) consists
of n + 1 words, w0, w1, . . . wn.

• The corresponding tags are t0, t1, . . . tn. We have wi/ti = ###/### for i = 0, for i = n,
and probably also for some other values of i.

• I’ll use “tt” to name tag-to-tag transition probabilities, as in ptt(ti | ti−1).

• I’ll use “tw” to name tag-to-word emission probabilities, as in ptw(wi | ti).

Spreadsheets: You are strongly encouraged to test your code using the artificial ic
dataset. This dataset is small and should run fast. More important, it is designed so you
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C Coordinating conjunction or Cardinal number
D Determiner
E Existential there
F Foreign word
I Preposition or subordinating conjunction
J Adjective
L List item marker (a., b., c., . . . ) (rare)
M Modal (could, would, must, can, might . . . )
N Noun
P Pronoun or Possessive ending (’s) or Predeterminer
R Adverb or Particle
S Symbol, mathematical (rare)
T The word to
U Interjection (rare)
V Verb
W wh-word (question word)

### Boundary between sentences
, Comma
. Period
: Colon, semicolon, or dash
- Parenthesis
’ Quotation mark
$ Currency symbol

Figure 1: Tags in the en dataset. These are the preterminals from wallstreet.gr in assignment
3, but stripped down to their first letters. For example, all kinds of nouns (formerly NN, NNS, NNP,
NNPS) are simply tagged as N in this assignment. Using only the first letters reduces the number of
tags, speeding things up. (However, it results in a couple of unnatural categories, C and P.)
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can check your work: when you run the forward-backward algorithm, the initial parame-
ters, intermediate results, and perplexities should all agree exactly with the results on the
spreadsheet we used in class.

That spreadsheet is at http://www.cs.jhu.edu/~jason/465/hw5/lect24-hmm.xls.
It is appropriate for problem 3. There also exists a Viterbi version that you can use for
problems 1 and 2: http://www.cs.jhu.edu/~jason/465/hw5/lect24-hmm-viterbi.xls.
Excel 2000 and Excel 97 display these spreadsheets correctly. The experiments we did in
class are described at http://www.cs.jhu.edu/~jason/papers/eisner.tnlp02.pdf.

This is a long handout. By way of summary, a suggested work plan:

0. (a) Read the overview material above.

(b) Briefly look at the data files.

(c) Play with the spreadsheets from class, and study Figures 2–3. Repeat until you
understand the algorithms.

1. (a) Read problem 1 carefully.

(b) Implement the unsmoothed Viterbi tagger vtag for problem 1. Follow Figure 2
and the implementation suggestions.

(c) Run vtag on the ic (ice cream) dataset. Check your that your tagging accuracy
and perplexity match the numbers provided. Check your tag sequence against
the Viterbi spreadsheet as described.

2. (a) Read problem 2’s smoothing method carefully.

(b) Improve vtag to do smoothing.

(c) Run vtag with smoothing on the en (English) dataset. Answer the questions at
the end of problem 2.

3. (a) Read problem 3 carefully.

(b) Implement vtagem, starting with a copy of vtag. Follow Figure 3

(c) Run vtagem on the ic dataset, and check its behavior against the forward-
backward spreadsheet as described.

(d) Run vtagem on the en dataset. Answer the questions at the end of problem 3.

4. (a) Try out vtag or vtagem on the cz dataset if you are curious.

(b) Try problem 4 (extra credit) if you are so inclined.
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1. Write a bigram Viterbi tagger that can be run as follows:

vtag ictrain ictest

You may want to review the slides on Hidden Markov Model tagging, and the handout
by Allen. For now, you should use naive unsmoothed estimates (i.e., maximum-
likelihood estimates).

Your program must print two lines summarizing its performance on the test set, in
the following format:

Tagging accuracy: 92.48% (known: 95.99% novel: 56.07%)
Perplexity per tagged test word: 1577.499

You are also free to print out whatever other information is useful to you, including
the tags your program picks, its accuracy as it goes along, various probabilities, etc. A
common trick, to give yourself something to stare at, is to print a period to standard
error (stderr or cerr) every 100 words.

In the required output illustrated above, each accuracy number considers some subset
of the test tokens and asks what percentage of them received the correct tag:

• The overall accuracy (e.g., 92.48%) considers all word tokens, other than the
sentence boundary markers ###.2

• The known-word accuracy (e.g., 95.99%) considers only tokens of words (other
than ###) that also appeared in train.

• The novel-word accuracy (e.g., 56.07%) considers only tokens of words that did
not also appear in train. (These are very hard to tag, since context is the only
clue to the correct tag. But they constitute about 9% of all tokens in entest,
so it is important to tag them as accurately as possible.)

The perplexity per tagged test word (e.g., 1577.499) is defined as3

exp
(
− log p(w1, t1, . . . wn, tn | w0, t0)

n

)
2No one in NLP tries to take credit for tagging ### correctly with ###!
3The wi, ti notation was discussed above and refers here to test data. Why are we computing the

perplexity with exp and log base e instead of base 2? It doesn’t matter, as the two bases cancel each other
out: e−(log x)/n = 2−(log2 x)/n, so this really is perplexity as we’ve defined it. Why is the corpus probability
in the formula conditioned on w0, t0? Because you knew in advance that the tagged test corpus would start
with ###/###—your model is only predicting the rest of that corpus. (The model has no parameter that
would even tell you p(w0, t0). Instead, Figure 2, line 2, explicitly hard-codes your prior knowledge that
t0 =###.)
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where t0, t1, t2, . . . tn is the winning tag sequence that your tagger assigns to test
data (with t0 = tn = w0 = wn = ###). The perplexity is high because it considers
the model’s uncertainty about predicting both the word and its tag. (We are not
computing perplexity per word, or per tag, but rather per tagged word.)

Some suggestions that will make your life easier (read carefully!):

• Make sure you really understand the algorithm before you start coding! Write
pseudocode before you write the details. Work out an example on paper if that
helps. Play with the spreadsheet. Review the reading or the slides. Read this
handout more than once, and ask questions. Coding should be a few straightfor-
ward hours of work if you really understand everything and can avoid careless
bugs.

• Your program should go through the following steps:

(a) Read the train data and store the counts in global tables. (Your functions
for computing probabilities on demand, such as ptw, should access these
tables. In problem 2, you will modify those functions to do smoothing.)

(b) Read the test data ~w into memory.
(c) Follow the Viterbi algorithm pseudocode in Figure 2 to find the tag sequence

~t that maximizes p(~t, ~w).
(d) Compute and print the accuracy and perplexity of the tagging. (You can

compute the accuracy at the same time as you extract the tag sequence
while following backpointers.)

• Don’t bother to train on each sentence separately, or to tag each sentence sepa-
rately. Just treat the train file as one long string that happens to contain some
### words. Similarly for the test file.
Tagging sentences separately would save you memory, since then you could throw
away each sentence (and its tag probabilities and backpointers) when you were
done with it. But why bother if you seem to have enough memory? Just pretend
it’s one long sentence. Worked for me.

• Figure 2 refers to a “tag dictionary” that stores all the possible tags for each
word. As long as you only use the ic dataset, the tag dictionary is so simple that
you can specify it directly in the code: tag dict(###) = {###}, and tag dict(w) =
{C, H} for any other word w. In the next problem, you’ll generalize this to derive
the tag dictionary from training data.

• Before you start coding, make a list of the data structures you will need to
maintain, and choose names for those data structures as well as their access
methods.
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1. (* find best µ values from left to right by dynamic programming; they are initially 0 *)

2. µ###(0) := 1
3. for i := 1 to n (* ranges over test data *)

4. for ti ∈ tag dict(wi) (* a set of possible tags for wi *)

5. for ti−1 ∈ tag dict(wi−1)
6. p := ptt(ti | ti−1) · ptw(wi | ti) (* arc probability *)

7. µ := µti−1(i− 1) · p (* prob of best sequence that ends in ti−1, ti *)

8. if µ > µti
(i) (* but is it the best sequence (so far) that ends in ti at time i? *)

9. µti
(i) = µ (* if it’s the best, remember it *)

10. backpointerti
(i) = ti−1 (* and remember ti’s predecessor in that sequence *)

11. (* follow backpointers to find the best tag sequence that ends at the final state (### at time n) *)

12. tn := ###
13. for i := n downto 1
14. ti−1 :=backpointerti

(i)
Not all details are shown above. In particular, be sure to initialize vari-
ables in an appropriate way.

Figure 2: Sketch of the Viterbi tagging algorithm. µt(i) is the probability of the best path
from the start state (### at time 0) to state t at time i. In other words, it maximizes
p(t1, w1, t2, w2, . . . ti, wi | t0, w0) over all possible choices of t1, . . . ti such that ti = t.

For example, you will have to look up certain values of c(· · ·). So write down,
for example, that you will store the count c(ti−1, ti) in a table count tt whose
elements have names like count tt("D","N"). When you read the training data
you will increment these elements.

• You will need some multidimensional tables, indexed by strings and/or integers,
to store the training counts and the path probabilities. (E.g., count tt("D","N")
above, and µD(5) in Figure 2.) There are various easy ways to implement these:

– a hash table indexed by a single string that happens to have two parts, such
as "D/N" or "5/D". This works well, and is especially memory-efficient since
no space is wasted on nonexistent entries.

– a hash table of arrays. This wastes a little more space.
– an ordinary multidimensional array (or array of arrays). This means you

have to convert strings (words or tags) to integers and use those integers
as array indices. But this conversion is a simple matter of lookup in a
hash table. (High-speed NLP packages do all their internal processing using
integers, converting to and from strings only during I/O.)

– Warning: You should avoid an array of hash tables or a hash table of hash
tables. It is slow and wasteful of memory to have many small hash tables.
Better to combine them into one big hash table as described in the first
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bullet point above.

• Small probabilities should be stored in memory as log-probabilities. This is
actually crucial to prevent underflow.4

– This assignment will talk in terms of probabilities, but when you see some-
thing like p := p ·q you should implement it as something like lp = lp+log q,
where lp is a variable storing log p.

– Tricky bit: If p is 0, what should you store in lp? How can you represent
that value in your program? (You are welcome to use any trick or hack that
works.)

– Suggestion: I recommend that you use natural logarithms (loge) because
they are simpler, slightly faster, and less error-prone than log2. (Although
it is conventional to report log-probability using log2, you can use what-
ever representation you like internally, and convert it later with the formula
log2 x = loge x/ loge 2. Anyway, you are not required to report any log-
probabilities for this assignment. See footnote 3 on calculating perplexity
from a natural logarithm.)

Check your work as follows. vtag ictrain ictest should yield a tagging accuracy
of 87.88%, with no novel words and a perplexity per tagged word of 3.620.5 You
can use the Viterbi version of the spreadsheet to check your µ probabilities and your
tagging:6

• ictrain has been designed so that your initial supervised training on it will
yield the initial parameters from the spreadsheet (transition and emission prob-
abilities).

• ictest has exactly the data from the spreadsheet. Running your Viterbi tagger
on these data should produce the same values as the spreadsheet’s iteration 0:7

4At least, if you are tagging the test set as one long sentence (see above). Conceivably you might be
able to get away without logs if you are tagging one sentence at a time.

5A uniform probability distribution over the 7 possible tagged words (###/###, 1/C, 1/H, 2/C, 2/H, 3/C,
3/H) would give a perplexity of 7, so 3.620 is an improvement.

6The Viterbi version of the spreadsheet is almost identical to the forward-backward version. However,
it substitutes “max” for “+”, so instead of computing the forward probability α, it computes the Viterbi
approximation µ.

7To check your work, you only have to look at iteration 0, at the left of the spreadsheet. But for your
interest, the spreadsheet does do reestimation. It is just like the forward-backward spreadsheet, but uses
the Viterbi approximation. Interestingly, this approximation prevents it from really learning the pattern
in the ice cream data, especially when you start it off with bad parameters. Instead of making gradual
adjustments that converge to a good model, it jumps right to a model based on the Viterbi tag sequence.
This sequence tends never to change again, so we have convergence to a mediocre model after one iteration.
This is not surprising. The forward-backward algorithm is biased toward interpreting the world in terms of
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– µ probabilities for each day
– weather tag for each day (shown on the graph)8

– perplexity per tagged word: see upper right corner of spreadsheet

You don’t have to hand anything in for this problem.

2. Now, you will improve your tagger so that you can run it on real data:

vtag entrain entest

This means using a proper tag dictionary (for speed) and smoothed probabilities (for
accuracy).9 Your tagger should beat the following “baseline” result:

Tagging accuracy: 92.48% (known: 95.99% novel: 56.07%)
Perplexity per tagged test word: 1577.499

This baseline result came from a stupid unigram tagger (which just tagged every
known word with its most common part of speech from training data, ignoring context,
and tagged all novel words with N). This baseline tagger does pretty well because most
words are easy to tag. To justify using a bigram tagger, you must show it can do
better!

You are required to use a “tag dictionary”—otherwise your tagger will be much too
slow. Each word has a list of allowed tags, and you should consider only those tags.
That is, don’t consider tag sequences that are incompatible with the dictionary, even
if they have positive smoothed probability. See the pseudocode in Figure 2.

Derive your tag dictionary from the training data. For a known word, allow only the
tags that it appeared with in the training set. For an unknown word, allow all tags
except ###. (Hint: During training, before you add an observed tag t to tag dict(w)
(and before incrementing c(t, w)), check whether c(t, w) > 0 already. This lets you
avoid adding duplicates.)

its stereotypes and then uses those interpretations to update its stereotypes. But the Viterbi approximation
turns it into a blinkered fanatic that is absolutely positive that its stereotypes are correct, and therefore
can’t learn much from experience.

8You won’t be able to check your backpointers directly. Backpointers would be clumsy to implement in
Excel, so to find the best path, the Viterbi spreadsheet instead uses µ and ν probabilities, which are the
Viterbi approximations to the forward and backward probabilities α and β. This trick makes it resemble the
original spreadsheet more. But backpointers are conceptually simpler, and in a conventional programming
language they are both faster and easier for you to implement.

9On the ic dataset, you were able to get away without smoothing because you didn’t have sparse data.
You had actually observed all possible “words” and “tags” in ictrain.
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How about smoothing? Just to get the program working on the en dataset, you could
use some very simple form of smoothing at first. For example, add-one smoothing
on ptw will take care of the novel words in entest, and you could get away with no
smoothing at all on ptt.

However, the version of the program that you submit should use the following type
of smoothing. It is basically just add-λ smoothing with backoff, but λ is set higher
in contexts with a lot of “singletons”—words that have only occurred once—because
such contexts are likely to have novel words in test data. This is called “one-count”
smoothing.10

First let us define our backoff estimates:

• Let
ptt-backoff(ti | ti−1) = pt-unsmoothed(ti) =

c(ti)
n

Do you see why it’s okay to back off to this totally unsmoothed, maximum
likelihood estimate?11 I’ll explain below why the denominator is n rather than
n + 1, even though there are n + 1 tokens t0, t1, . . . tn.

• Let
ptw-backoff(wi | ti) = pw-addone(wi) =

c(wi) + 1
n + V

This backoff estimate uses add-one-smoothing. n and V denote the number of
word tokens and types, respectively, that were observed in training data. (In
addition, V includes an oov type. Again, I’ll explain below why the token count
is taken to be n even though there are n + 1 tokens t0, t1, . . . tn.)
Notice that according to this formula, any novel word has count 0 and backoff
probability pw-addone = 1

n+V . In effect, we are following assignment 2 and treating
all novel words as if they had been replaced in the input by a single special word
oov. That way we can pretend that the vocabulary is limited to exactly V
types, one of which is the unobserved oov.

10Many smoothing methods use the probability of singletons to estimate the probability of novel words,
as in Good-Turing smoothing and in one of the extra-credit problems on HW2. The “one-count” method
is due to Chen and Goodman, who actually give it in a more general form where λ is a linear function
of the number of singletons. This allows some smoothing to occur (λ > 0) even if there are no singletons
(sing = 0). Chen and Goodman recommend using held-out data to choose the slope and intercept of the
linear function.

11It’s because tags are not observed in the test data, so we can safely treat novel tag unigrams as impossible
(probability 0). This just means that we will never guess a tag that we didn’t see in training data—which
is reasonable. By contrast, it would not be safe to assign 0 probability to novel words, because words are
actually observed in the test data: if any novel words showed up there, we’d end up computing p(~t, ~w) = 0
probability for every tagging ~t of the test corpus ~w. So we will have to smooth ptw-backoff(wi | ti) below; it
is only ptt-backoff(ti | ti−1) that can safely rule out novel events.
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Now for the smoothed estimates:

• Define a function sing that counts singletons. Let

singtt(· | ti−1) = number of tag types t such that c(ti−1, t) = 1
singtw(· | ti) = number of word types w such that c(ti, w) = 1

There is an easy way to accumulate these singleton counts during training.
Whenever you increment c(t, w) or c(t, t), check whether it is now 1 or 2. If
it is now 1, you have just found a new singleton and you should increment the
appropriate singleton count. If it is now 2, you have just lost a singleton and
you should decrement the appropriate singleton count.

• Notice that singtw(· | N) will be high because many nouns only appeared once.
This suggests that the class of nouns is open to accepting new members and it
is reasonable to tag new words with N too. By contrast, singtw(· | D) will be 0
or very small because the class of determiners is pretty much closed—suggesting
that novel words should not be tagged with D. We will now take advantage of
these suggestions.

• Let

ptt(ti | ti−1) =
c(ti−1, ti) + λ · ptt-backoff(ti | ti−1)

c(ti−1) + λ
where λ = singtt(· | ti−1)

ptw(wi | ti) =
c(ti, wi) + λ · ptw-backoff(wi | ti)

c(ti) + λ
where λ = singtw(· | ti)

Note that λ will be higher for ptw(· | N) than for ptw(· | D). Hence ptw(· | N)
allows more backoff, other things equal, and so assigns a higher probability to
novel words.
If one doesn’t pay respect to the difference betwen open and closed classes, then
novel words will often get tagged as D (for example) in order to make neighboring
words happy. Such a tagger does worse than the baseline tagger (which simply
tags all novel words with the most common singleton tag, N)!

• If λ = 0 because there are no singletons, some probabilities can still work out
to 0/0. A trick to avoid this is to add a very small number, like 1e-100, to λ
before using it. Then in the 0/0 case you will get the backoff probability.12

Note: The ic dataset happens to have no singletons at all, so you will always
back off to the unsmoothed estimate on this dataset. Therefore, your results on
the ic dataset should not change from problem 1.

12If you want to be anal-retentive, the ptw routine should specially force λ = 0 for the tag ### in order
to prevent any smoothing of ptw(· | ###): it is a fact of nature that ptw(### | ###) = 1 exactly.
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• If you want to be careful and obtain precisely the sample results provided in this
assignment, you should ignore the training file’s very first or very last ###/###
when you accumulate counts during training. So there are only n word/tag
tokens, not n + 1. This counting procedure also slightly affects c(t), c(w), and
c(t, w).
Why count this way? Because doing so makes the smoothed (or unsmoothed)
probabilities sum to 1 as required.13

When reestimating counts using raw data in problem 3, you should similarly
ignore the initial or final ###/### in the raw data.

Turn in the source code for your smoothing version of vtag. In README give your
observations and results, including the output from running vtag entrain entest
(or at least the required lines from that output). How much did your tagger improve
on the accuracy and perplexity of the baseline tagger (see page 9)?

3. Write an improved version of vtag, called vtagem, that extends vtag to reestimate
the HMM parameters on raw (untagged) data. You should be able to run it as

vtagem entrain25k entest enraw

entrain25k is a shorter version of entrain. In other words, let’s suppose that you
don’t have much supervised data, so your tagger does badly and you need to use the
unsupervised data in enraw to improve it.

Your program will alternately tag the test data (using Viterbi) and modify the train-
ing counts (using EM). So you will be able to see how successive steps of EM help or
hurt the performance on test data. See pseudocode in Figure 3.

The program should run at least 3 iterations of EM. Its output format should be as
shown in Figure 4.

13The root of the problem is that there are n + 1 tagged words but only n tag-tag pairs. Omitting one of
the boundaries arranges that

∑
t
c(t),

∑
w

c(w), and
∑

t,w
c(t, w) all equal n, just as

∑
t,t′ c(t, t′) = n.

To see how this works out in practice, consider the unsmoothed estimate ptt(ti | ti−1) = c(ti−1, ti)/c(ti−1):
i can only range from 1 to n in the numerator (i 6= 0), so for consistency it should only be allowed to range
from 1 to n in the denominator c(ti−1) and in the numerator of the backoff estimate c(ti)/n. Hence the
stored count c(t) should only count n of the n + 1 tags, omitting one of the boundary tags ### (it doesn’t
matter which boundary since they are identical). Now notice that c(t) is also used in the denominator of
ptw(wi | ti); since we have just decided that this count will only consider i from 1 to n in the denominator,
we have to count the numerator c(ti, wi) and the numerator of the backoff estimate c(wi)/n in the same
way, for consistency.
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1. (* build α values from left to right by dynamic programming; they are initially 0 *)

2. α###(0) := 1
3. for i := 1 to n (* ranges over raw data *)o
4. for ti ∈tag dict(wi)
5. for ti−1 ∈tag dict(wi−1)
6. p := ptt(ti | ti−1) · ptw(wi | ti) (* arc probability *)

7. αti
(i) := αti

(i) + αti−1(i− 1) · p (* add prob of all paths ending in ti−1, ti *)

8. S := α###(n) (* total prob of all complete paths (from ###,0 to ###,n) *)

9. (* build β values from right to left by dynamic programming; they are initially 0 *)

10. β###(n) := 1
11. for i := n downto 1
12. for ti ∈tag dict(wi)
13. cnew(ti, wi) := cnew(ti, wi) + (αti

(i) · βti
(i)/S) (* can now compute prob of ti at time i *)

14. for ti−1 ∈tag dict(wi−1)
15. p := ptt(ti | ti−1) · ptw(wi | ti) (* arc probability *)

16. βti−1(i− 1) := βti−1(i− 1) + p · βti(i) (* add prob of all paths starting with ti−1, ti *)

17. cnew(ti−1, ti) := cnew(ti−1, ti) +
(
αti−1(i− 1) · p · βti(i)/S

)
(* prob of arc at time i *)

Only some of the necessary cnew updates are shown above! If you have
other count tables, make sure to update those too; your distributions
must sum to 1. Also remember to initialize variables appropriately.

Figure 3: Sketch of the forward-backward (EM) algorithm (one iteration). αt(i) is the total
probability of all paths from the start state (### at time 0) to state t at time i. βt(i) is the
total probability of all paths from state t at time i to the final state (### at time n). cnew

accumulates expected counts given the entire observed sequence w0, . . . wn.
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[read train]
[read test]
[read raw]
[Viterbi tagging on test]

Tagging accuracy: ... (known: ...% seen: ...% novel: ...%)
Perplexity per tagged test word: ...

[compute new counts via forward-backward algorithm on raw]
Iteration 0: Perplexity per untagged raw word: ...

[switch to using the new counts]
[new Viterbi tagging on test]

Tagging accuracy: ... (known: ...% seen: ...% novel: ...%)
Perplexity per tagged test word: ...

[compute new counts via forward-backward algorithm on raw]
Iteration 1: Perplexity per untagged raw word: ...

[switch to using the new counts]
[new Viterbi tagging on test]

Tagging accuracy: ... (known: ...% seen: ...% novel: ...%)
Perplexity per tagged test word: ...

[compute new counts via forward-backward algorithm on raw]
Iteration 2: Perplexity per untagged raw word: ...

[switch to using the new counts]
[new Viterbi tagging on test]

Tagging accuracy: ... (known: ...% seen: ...% novel: ...%)
Perplexity per tagged test word: ...

[compute new counts via forward-backward algorithm on raw]
Iteration 3: Perplexity per untagged raw word: ...

[switch to using the new counts]

Figure 4: Output format for vtagem. Your program should include the lines shown in
this font and any other output that you find helpful. The material in [brackets] is not
necessarily part of the output; it just indicates what your program would be doing at each
stage.
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Note that vtagem’s output must distinguish three kinds of accuracy rather than two:

known: accuracy on test tokens that also appeared in train (so we know their
possible parts of speech)

seen: accuracy on test tokens that did not appear in train, but did appear in raw
(so we’ve tried to infer their parts of speech from context)

novel: accuracy on test tokens that appeared in neither train nor raw

vtagem’s output must also include the perplexity per untagged raw word. This is
defined on raw data ~w as

exp
log p(w1, . . . wn | w0)

n

Note that this does not mention the tags for raw data, which we don’t even know.
It is easy to compute, since you found p(w1, . . . wn | w0) while running the forward-
backward algorithm. It is the total probability of all paths (tag sequences compatible
with the dictionary) that generate the raw word sequence.

Some things you must do:

• Do not try to reestimate the singleton counts sing during the forward-backward
algorithm. (It wouldn’t make sense: forward-backward yields counts c that aren’t
even integers!) Just continue using the singleton counts that you derived from
train in the first place. They are a sufficiently good indication of which tags
are open-class vs. closed-class.

• Remember that ptw-backoff is defined in terms of the number of word types, V
(including oov). Your definition of V should now include all types that were
observed in train ∪ raw. As in homework 2 (see discussion before questions
5–6), you should use the same vocabulary size V for all your computations, so
that your perplexity results will be comparable to one another; so you need to
compute it before you Viterbi-tag test the first time (even though you have not
used raw yet in any other way).

• The forward-backward algorithm requires you to add probabilities, as in p :=
p + q. But you are probably storing these probabilities p and q as their logs, lp
and lq.
You might try to write lp := log(exp lp + exp lq), but the exp operation will
probably underflow—that is why you are using logs in the first place!
Instead you need to write lp := logadd(lp, lq), where

logadd(x, y) def=

{
x + log(1 + exp(y − x)) if y ≤ x
y + log(1 + exp(x− y)) otherwise
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You can check for yourself that this equals log(expx + exp y). If you are using
C/C++, note that log(1 + z) can be computed more quickly and accurately by
the specialized function log1p(z).
Make sure to handle the special case where p = 0 or q = 0 (see page 8).14

• Suppose accounts/N appeared 2 times in train and the forward-backward al-
gorithm thinks it also appeared 7.8 times in raw. Then you should update
c(N, accounts) from 2 to 9.8, since you believe you have seen it a total of 9.8
times. (Why ignore the 2 supervised counts that you’re sure of?)
If on the next iteration the forward-backward algorithm thinks it appears 7.9
times in raw, then you will need to remember the 2 and update the count to
9.9.
To make this work, you will need to have three versions of the c(t, w) table.
Indeed, every count table c(· · ·) in vtag, as well as the token count n,15 will
have to be replaced by three versions in vtagem!
original: counts derived from train only (e.g., 2)
current: counts being used on the current iteration (e.g., 9.8)
new: counts we are accumulating for the next iteration (e.g., 9.9)
Here’s how to use them:

– The functions that compute smoothed probabilities on demand, like ptw(),
use only the counts in current.

– As you read the training data at the start of your program, you should
accumulate its counts into current. When you are done reading the training
data, save a copy for later: original := current.

– Each time you run an iteration of the forward-backward algorithm, you
should first set new := original. The forward-backward algorithm should
then add expected raw counts into new, which therefore ends up holding
train + raw counts.

– Once an iteration of the forward-backward algorithm has completed, it is
finally safe to set current := new.

14If you want to be slick, you might consider implementing a Probability class for all of this. It should
support binary operations *, +, and max. Also, it should have a constructor that turns a real into a
Probability, and a method for getting the real value of a Probability.

Internally, the Probability class stores p as log p, which enables it to represent very small probabilities. It
has some other, special way of storing p = 0. The implementations of *, +, max need to pay attention to
this special case.

You’re not required to write a class (or even to use an object-oriented language). You may prefer just to
inline these simple methods. But even so, the above is a good way of thinking about what you’re doing.

15Will n really change? Yes: it will differ depending on whether you are using probabilities estimated from
just train (as on the first iteration) or from train ∪ raw. This should happen naturally if you maintain n
just like the other counts (i.e., do n++ for every new word you read, and keep 3 copies).
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As noted before, you can run vtagem ictrain ictest icraw (the ice cream exam-
ple) to check whether your program is working correctly. Details (there is a catch!):

• icraw (like ictest) has exactly the data from the spreadsheet. Running the
forward-backward algorithm on icraw should compute exactly the same values
as the spreadsheet does:

– α and β probabilities
– perplexity per untagged raw word (i.e., perplexity per observation: see upper

right corner of spreadsheet)

• The spreadsheet does not use any supervised training data. To make your code
match the spreadsheet, you should temporarily modify it to initialize original
:= 0 instead of original := current. Then the training set will only be used
to find the initial parameters (iteration 0). On subsequent iterations it will be
ignored.
With this change, your code should compute the same new transition and emis-
sion counts on every iteration as the spreadsheet does. The new parameters
(transition and emission probabilities) will match as well.16 After a few itera-
tions, you should get 100% tagging accuracy on the test set.
Don’t forget to change the code back so you can run it on the the en dataset
and hand it in!

Turn in the source code for vtagem. In README, include the output from running
vtagem entrain25k entest enraw (or at least the required lines from that output).
Your README should also answer the following questions:

(a) Why does Figure 3 initialize α###(0) and β###(n) to 1?

(b) Why is the perplexity per tagged test word so much higher than the perplexity
per untagged raw word? Which perplexity do you think is more important and
why?

(c) V counts the word types from train and raw. Why not from test as well?

(d) Did the iterations of EM help or hurt overall tagging accuracy? How about
tagging accuracy on known, seen, and novel words (respectively)?

(e) Explain in a few clear sentences why you think the EM reestimation procedure
helped where it did. How did it get additional value out of the rawem file?

(f) Suggest at least two reasons to explain why EM didn’t always help.
16The spreadsheet does not do any smoothing when it computes these probabilities, so in principle you

need to match this by turning off smoothing in your code. But in practice, ictrain happens to contain no
singletons, as already noted on page 11, so that your code just happens not to smooth it.
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(g) What is the maximum amount of ice cream you have ever eaten in one day?
Why? Did you get sick?

4. Extra credit: vtagem will be quite slow on the cz dataset. Why? Czech is a morpho-
logically complex language: each word contains several morphemes. Since its words
are more complicated, more of them are unknown (50% instead of 9%) and we need
more tags (66 instead of 25).17 So there are (66/25)2 ≈ 7 times as many tag bigrams
. . . and the worst case of two unknown words in a row (which forces us to consider all
those tag bigrams) occurs far more often.

Speed up vtagem by implementing some kind of tag pruning during the computations
of µ, α, and β. (Feel free to talk to me about your ideas.) Submit your improved
source code, and answer the following questions in your README:

(a) Using your sped-up program, what accuracy and perplexity do you obtain for
the cz dataset?

(b) Estimate your speedup on the en and cz datasets.

(c) But how seriously does pruning hurt your accuracy and perplexity? Estimate
this by testing on the en dataset with and without pruning.

(d) How else could you cope with tagging a morphologically complex language like
Czech? You can assume that you have a morphological analyzer for the language.

For comparison, my Perl tagger on barley had the following times for Viterbi tagging
(not EM training):

entest cztest
no pruning 60 sec. 105 min.

light pruning 43 sec. 60 min.
aggressive pruning 32 sec. 15 min.

17Although both tagsets have been simplified for this homework. The Czech tags were originally 6 letters
long, and were stripped down to 2 letters. The simplification of the English tags was already described in
the caption to Figure 1.
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