
600.465 — Intro to NLP

Assignment 3: Parsing and Semantics

Prof. J. Eisner — Fall 2006
Due date: Monday 13 November, 2 pm

Now’s your chance to try out some parsing algorithms! In this assignment, you will
build a working Earley parser—not just a recognizer, but an actual probabilistic parser.

In the second half of the assignment, you will run your parses through a post-processing
script that computes their features, including semantic features. You will be asked to
understand and tweak the grammar that assigns the features.

Dividing the assignment into these two halves is largely a matter of convenience. It
would obviously improve accuracy for your parser to compute constituents’ features during
parsing, as humans probably do. Then the parser could rule out some constituents, or
give them lower probabilities, on the basis of feature mismatch (e.g., you can’t combine a
singular subject with a plural verb). In general the parser could use the features to help
compute less biased probabilities. However, it is easier for you to write a faster parser that
doesn’t have to worry about features at all.1

All the files you need can be found in http://cs.jhu.edu/∼jason/465/hw3. You can
download the files individually as you need them, or download a zip archive that contains
all of them. Read Figure 1 for a guide to the files.

You should actually look inside each file as you prepare to use it! For the scripts, you
don’t have to understand the code, but do read the introductory comments at the beginning
of each script.

Programming language: You may write your parser in any programming language
you choose (except Dyna), so long as the graders can run it on barley. I happened to use
LISP, where it was 130–150 lines or about 3 pages of code (plus a 1-line parse script to
invoke LISP from the command line).

1And it may even be good engineering. You might be interested to know that most modern probabilistic
English parsers compute little more than the head feature while parsing. Conditioning the probabilities
on the head feature makes them substantially more accurate, and this accuracy is useful. But syntactic
features such as agreement rarely help for choosing among probable parses. The more detailed semantics
we will consider here could help in principle, but only in a system that can reason about the semantics and
relate it to a database of knowledge about the world in order to decide whether a constituent is plausible.

http://cs.jhu.edu/~jason/465/hw3


*.grf full grammar with rule frequencies, features, comments
*.gr simple grammar with rule weights, no features, no comments

delfeats script to convert .grf −→ .gr
*.sen collection of sample sentences (one per line)
*.par collection of sample parses

checkvocab script to detect words in .sen that are missing from the grammar .gr
parse program that you will write to convert .sen

.gr−→ .par
prettyprint script to reformat .par more readably

buildfeats script to convert .par
.grf−→ a feature assignment

parsefeats simple script to convert .sen
.grf−→ a feature assignment (calls

checkvocab, parse, and buildfeats)
simplify script that lets you experiment with lambda terms

Figure 1: Files available to you for this project.

As always, it will take far more code if your language doesn’t have good support for
debugging, string processing, file I/O, lists, arrays, hash tables, etc. Choose a language in
which you can get the job done quickly and well.

If you use a slow language, you may regret it. Leave plenty of time to run the
program. For example, my compiled LISP program—with the predict and left-corner
speedups in problem 2—took 75 minutes on barley to get through the nine sentences in
wallstreet.sen. For many programs, C/C++ will run a few times faster than compiled
LISP. Java will run slightly faster than LISP. But interpreted languages like Perl will run
several times slower. So if you want to use Perl, think twice and start extra early.

Java hint: By default, a Java program can only use 64 megabytes of memory by default.
To let your program claim more memory, for example 128 megabytes, run it as java
-Xmx128m parse .... But don’t let the program take more memory than the machine
has free, or it will spill over onto disk and be very slow.

C++ hint: Don’t try this assignment in C++ without taking advantage of the data
structures in the Standard Template Library: http://www.sgi.com/tech/stl/.

On getting programming help: Same policy as on assignment 2. (Roughly, feel free
to ask anyone for help on how to use the features of the programming language and its
libraries. However, for issues directly related to NLP or this assignment, you should only
ask the course staff for help.)

How to hand in your work: As usual. As for the previous assignments, put every-
thing in a single submission directory. Besides the comments you embed in your source
files and your modified .grf files, put all answers, notes, etc. in a README file. Depending

2

http://www.sgi.com/tech/stl/


on the programming language you choose, your submission directory should also include
your commented source files, which you may name and organize as you wish. If you use
a compiled language, provide either a Makefile or a HOW-TO file in which you give precise
instructions for building the executables from source. The graders must then be able to
run your parser by typing parse arith.gr arith.sen and parse2 arith.gr arith.sen
in your submission directory on barley.

1. Write an Earley parser that can be run as

parse foo.gr foo.sen

where

• each line of foo.sen is either blank (and should be skipped) or contains an input
sentence whose words are separated by whitespace

• foo.gr is a grammar file in homework 1’s format, except that

– the number preceding rule X → Y Z is the rule’s weight, − log2 Pr(X →
Y Z | X).
(By contrast, in homework 1 it was the rule’s frequency, i.e., a number that
is proportional to Pr(X → Y Z | X) and is typically the number of times
the rule was observed in training data.)

– you can assume that the file format is simple and rigid; predictable whites-
pace and no comments. (See the sample .gr files for examples.) The as-
sumption is safe because the .gr file will be produced automatically by
delfeats.

– you can assume that every rule has at least one element on the right-hand
side. So X → Y is a possible rule, but X → or X → ε is not. This restriction
will make your parsing job easier.

• These files are case-sensitive; for example, DT→ The and DT→ the have different
probabilities in wallstreet.gr.

As in homework 1, the grammar’s start node is called ROOT. For each input sentence,
your parser should print the single lowest-weight parse tree followed by its weight, or
the word NONE if the grammar allows no parse. When you print a parse, use the same
format as in your randsent -t program from homework 1.

(The required output format is illustrated by arith.par. As in homework 1, you will
probably want to pipe your output through prettyprint to make the spacing look
good. If you wish your parser to print useful information besides the required output,
you can make it print comment lines starting with #, which prettyprint will delete.)

3



The weight of any tree is the total weight of all its rules. Since each rule’s weight is
− log2 p(rule | X), where X is the rule’s left-hand-side nonterminal, it follows that the
total weight of a tree with root R is − log2 p(tree | R).2 (Think about why.) Thus, the
highest-probability parse tree will be the lowest-weight tree with root ROOT, which is
exactly what you are supposed to print.

Not everything you need to write this parser was covered in detail in class! You will
have to work out some of the details. Please explain briefly (in your README file) how
you solved the following problems:

(a) Make sure not to do anything that will make your algorithm take more than
O(n2) space or O(n3) time. For example, before adding an entry to the parse
table, you must check in O(1) time whether another copy is already there.

(b) Similarly, you only have O(1) time to add the entry if it is new, so you must be
able to find the bottom of the appropriate column quickly. (This may be trivial,
depending on your programming language.)

(c) For each entry in the parse table, you must keep track of that entry’s current
best parse and the total weight of that best parse. Note that these values may
have to be updated if you find a better parse for that entry.

You need not handle rules of the form A → ε. (Such rules are a little trickier because
a complete entry from 5 to 5 could be used to extend other entries in column 5, some
of which have not even been added to column 5 yet! For example, consider the case
A → XY , X → ε, Y → X.)

Hints on data structures:

• If you want to make your parser efficient (which you’ll have to do for the next
question anyway), here’s the key design principle. Just think about every time
you will need to look something up during the algorithm. Make sure that any-
thing you need to look up is already stored in some data structure that will let
you find it fast.

• Represent the rule A → WXY Z as a list (A,WX, Y, Z) or maybe (W,X, Y, Z, A).

• Represent the dotted rule A → WX.Y Z as a pair (2, R), where 2 represents the
position of the dot and R is the rule or maybe just a pointer to it.
(Another reasonable representation is just (A, Y, Z) or (Y, Z, A), which lists only
the elements that have not yet been matched; you can throw W and X away
after matching them. As discussed in class, this keeps your parse table a little
smaller so it is more efficient.)

2Where p(tree | R) denotes the probability that if randsent started from nonterminal R as its root, it
would happen to generate tree.

4



• Represent each column in the parse table as some kind of extensible vector, or
a linked list with a tail pointer.

• The duplicate check discussed in (a) above could be handled by various means—
dividing each column up into rows by start position (like CKY), using a hash
table, etc. I strongly recommend a hash table because you will want something
fast for problem 2.

• Use a few big hash tables, not lots of little hash tables. In particular, try to avoid
arrays of hash tables, or hash tables of hash tables. Why? Each hash table has
considerable memory overhead, e.g., lots of empty cells for future entries.
In general, think about memory efficiency a bit. You’ll need that in problem 2,
when you’ll deal with big grammars and parse tables.

• It can be wasteful to store multiple separate copies of a rule or entry. It is more
economical to store multiple pointers to a single shared copy. In object-oriented
terms, you want to avoid having several equal instances of an object—it’s enough
to have one instance and store it in several places.

• You might start out by building a weighted recognizer, which only finds the
weight of the best parse, without finding the parse itself. Each entry in the
parse table must store a weight.
If the entry is a dotted rule R, should the weight of its best parse include the
weight of R itself? Doesn’t matter, as long as the weight of R gets counted by
the time you complete the rule. (All that really matters in the end is the weight
of the whole-sentence parse tree . . . )

• To figure out how to print the best parse as well, as discussed in (c) above. you
might want to review the slides from the “Probabilistic Parsing” lecture. The
Earley technique is quite similar to the CKY technique. If you are clever, each
entry only has to store two backpointers along with a weight. The backpointers
must suffice for you to extract the parse at the end.
Remember the idea of parsing: anything in the parse table got there for a reason.
It has an ancestry that explains how it got there, and the parse tree is just a
way of printing out that ancestry. So each entry in the parse table can point to
its ”progenitors” (i.e., the entries that combined to produce it), which in turn
point to their progenitors, and so on.
Hint: It turns out that entries added by a predict step (such as (3, A → .BCD))
don’t actually need to point to anything. They don’t have any substructure to
remember, because they don’t cover any words yet.3

3If you still find that surprising, let’s do a thought experiment to understand the role of these entries.
Suppose you built a version of the Earley parser where every column was initialized to contain every rule

5



Hints for avoiding some common pitfalls:

• Think in advance about the data structures you will need. Don’t implement
them until you’re pretty sure they will work! Otherwise, you can waste a lot of
time going down the garden path. :-)
So draw your data structures and variables on paper first. Hand-simulate exam-
ples to make sure you’ve got all your bases covered. Try the example from the
lecture slide. For example, you will need pointers or indices to locate the current
(blue) rule; to move down the column to the next rule; to jump to column i
to look for (purple) customers; etc. All of these basic operations should be fast
(constant time).
You are welcome to run your design by the course staff at office hours.

• Make sure you check for duplicates whenever you add an entry to a column, no
matter how that entry got created.

• What does “duplicate” mean in practice? Duplicates are entries that are totally
interchangeable except for having different weights. Then if you kill off the
heavier one, the lighter one can play its role exactly the same, but more cheaply.
So why not kill the heavier one? (It’s like the plot of a bad political conspiracy
thriller.)
If two entries have different starting positions, or different ending positions (col-
umn), or different dot positions, then they’re not duplicates. Both have to be
kept alive because they can combine with different things. If you killed one off,
the other one might not be enough to build a parse of the whole sentence.

• Suppose you are processing the entry

(i,NP → Det N .)

in column j. This newly completed NP spans the input substring from i to j.
You should look only in column i for “customers” to attach this new NP to.
(Remember, column i contains entries whose dot has advanced up to position i
in the input.) The parse table is organized into columns specifically to facilitate
this search.

with a dot at the start. For example, column i would contain the pair (i, X → .Y Z) for every rule X → Y Z,
on the theory that there is defintely an empty string from i to i that matches the part before the dot. This
would be a perfectly accurate parser! It would just be slower than the real Earley’s algorithm, because (like
CKY) it would build whatever it could at position i without paying attention to the left context.

In this version, clearly entries with a dot at the start wouldn’t need backpointers: they are spun out of
thin air. And in the real Earley’s algorithm, we can also regard such entries as spun out of thin air. It’s
just that to save time, we don’t let them into the chart unless they have a “customer” looking for them.
Nothing will point back to the customer until we have actually completed the constituent and attached it
to the customer.

6



• Remember that a scan action may have to apply to a dotted rule like

NP → NP . and NP

where the thing after the dot is the terminal symbol “and.” Make sure that your
backpointers are general enough to handle this case. scan is actually very much
like attach—you are advancing the dot in a dotted rule; so, like attach, it
should result in a dotted rule with two backpointers.

• Use a recursive print entry function to print the parse. When you write a
recursive function and tell it to call itself, you should assume that that recursive
call will “do the right thing.” Concentrate on making the function itself do the
right thing assuming that it can trust the recursive call.
You should be able to call print entry function on any entry in the parse
table. You know what is the “right thing” for print entry to do on a complete
entry, such as PP → P NP .: print a parse tree for that PP. But this should be
accomplished, in part, by recursively calling print entry on the two things that
the entry points to. One of these will be a dotted entry. From this, you should
be able to deduce what is the “right thing” for print entry to do on a dotted
entry.

• If you’re using C++, the STL will work well. One thing to watch out for: you
may want to iterate over the columns, but you can’t use an STL iterator over a
vector that changes during the iteration. (Just iterate with your own index.)

Allowed bug / extra credit: There is one subtle bug that you are allowed to have.
Sometimes, after attaching a completed constituent Z to its customer(s) Y to get
X, you might end up building a lower-weight duplicate of Z. But oops—you already
processed the higher-weight version of Z! Correctness demands that you re-process Z,
which will attach it again to Y to get a lower-weight duplicate of X. Unfortunately,
if you have to process entries lots of times, your runtime can be worse than O(n3).
So you have 3 options:

(a) Ignore the bug – don’t re-process Z. This gives you an O(n3) algorithm that
might occasionally find something other than the lowest-weight parse. You’ll get
full credit for this; the assignment is plenty hard already.

(b) Detect this case and re-process Z. This gives you a correct algorithm that no
longer runs in O(n3).

(c) Find a way to fix the bug and still be O(n3) or close to it. This gets extra credit!
I can think of two O(n3) solutions and one O(n3 log n) solution . . .

7



To help check your program: For grading, your program will be tested on new gram-
mars and sentences that you haven’t seen. You should therefore make sure it behaves
correctly in all circumstances. To help you check, some simple .gr and .sen files are
provided for you:

• Under permissive.*, every column of the parse table should contain all (start
position, dotted rule) entries that are possible for that column. Column n will
contain O(n) entries.

• Under papa.*, your program should exactly mimic the Earley animation slides
from the “Context-Free Parsing” lecture. Compare and contrast!

• We give you a file arith.par that you can check your output against. Under
arith.*, your output (if piped through prettyprint) should exactly match
arith.par.

• You might also try english.*.4

• You might try writing some very small nonsense grammars, where you think you
know what the right behavior is, and running the parser on those.

Submit your parse program (as well as answers to the questions above). It might be
fun to try it on the grammars that you wrote for assignment 1.

2. It’s always good to work with real data. In class we discussed the Penn Treebank, a
collection of manually built parses covering about a million words (40,000 sentences)
of Wall Street Journal text. A great deal of parsing research since 1995 has been
based on this corpus. And the parser you just wrote will actually get rather decent
results on real English text by exploiting it, albeit with a few goofs here and there.

The rules in wallstreet.gr, and their probabilities, have been derived from about
half of the Treebank5 by reading off the rules that were actually used by the human
annotators. To keep the size more manageable, a rule was included in wallstreet.gr
only if it showed up at least 5 times in the Treebank (this sadly kills off many useful
vocabulary rules, among others). This is nonetheless a large grammar and you are
going to feel its wrath.

Some carelessly chosen sample sentences are in wallstreet.sen. I made up the first
three; the rest are taken from a recent Wall Street Journal, with minor edits in order
to change vocabulary that does not appear in the grammar.

You must hand in your parser’s output (i.e., the lowest-weight parse—if any—and its
weight) for each sentence in wallstreet.sen. Submit this as a file wallstreet.par.

4To produce english.gr from english.grf, use the delfeats script.
5Specifically, the sentences not containing conjunction, for reasons not worth going into here.

8



S Sentence or clause.
SBAR Clause introduced by a (pos-

sibly empty) subordinating
conjunction.

SBARQ Direct question introduced
by a wh-word or wh-phrase.

SINV Inverted declarative sen-
tence.

SQ Inverted yes/no question,
or main clause of a wh-
question.

ADJP Adjective Phrase.
ADVP Adverb Phrase.
CONJP Conjunction Phrase.
FRAG Fragment.
INTJ Interjection.
LST List marker. Includes sur-

rounding punctuation.
NAC Not A Constituent; used

within an NP.
NP Noun Phrase.
NX Used within certain complex

NPs to mark the head.
PP Prepositional Phrase.
PRN Parenthetical.
PRT Particle.
QP Quantity Phrase (i.e.,

complex measure/amount)
within NP.

RRC Reduced Relative Clause.
UCP Unlike Coordinated Phrase.
VP Verb Phrase.
WHADJP Wh-adjective Phrase, as in

how hot .
WHADVP Wh-adverb Phrase.
WHNP Wh-noun Phrase, e.g. who,

which book , whose daughter ,
none of which, or how many
leopards.

WHPP Wh-prepositional Phrase,
e.g., of which or by whose
authority .

X Unknown, uncertain, or un-
bracketable.

-ADV Constituent is used adverbially
-LOC Constituent indicates event location
-PRD Constituent serves as a sentence’s predi-

cate but is not a VP
-NOM Constituent is used as a noun, e.g., what

I really like is chocolate
-TMP Constituent indicates when, how often,

how long
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol (mathematical)
TO The word to
UH Interjection
VB Verb, stem
VBD Verb, past tense
VBG Verb, present participle
VBN Verb, past participle
VBP Verb, present but not VBZ
VBP Verb, present, 3rd-person sing.
WDT wh-determiner
WP wh-pronoun
WP$ Possessive wh-pronoun
WRB wh-adverb

Figure 2: Nonterminals in wallstreet.gr (from Marcus, Santorini and Marcinkiewicz 1993).
Preterminals are shown separately, omitting punctuation-mark preterminals, which are trivial.

9



In your README file, comment on any problems you see in the parses; you may find
Figure 2 and the prettyprint script helpful.

If you try running

parse wallstreet.gr wallstreet.sen

you will get results, but they will take a long time even for the first sentence (“John
is happy .”) and a looooong time for the longer sentences. The problem is that
there are a great many rules, especially vocabulary rules. You want to keep the parser
from even thinking about most of those rules!

So you will have to implement a speedup method from the “parsing tricks” lecture.
Using the first method listed below plus one other is probably enough to make it
through wallstreet.sen. But you can improve performance (and maybe get extra
credit) by combining more methods.

Some possibilities for speedups:

• (Strongly recommended.) Keep track of which categories have already been
predicted for the current column. If you’re about to predict a batch of several
hundred NP rules (all rules of the form NP → . blah blah), then it should be a
quick check to discover whether you’ve already added that batch to the current
column.6

• Figure out which words are the terminals, and temporarily delete rules for ter-
minals that aren’t in the sentence.

• A pruning strategy (or better, an agenda-based, “best-first” strategy) lets you
ignore low-probability rules or low-probability entries unless you turn out to
really need them. This approach is indispensable in the real world, where one
wants to parse hundreds of sentences per minute. If you try an unsafe form of
pruning, try to examine the effect on parse accuracy.

• Build a trie that allows you to represent everything of the form (3, A → B.C · · ·)
as a single entry in the parse table.
Once you advance the dot to (j, A → BC. · · ·), you will have to find all D such
that the grammar allows the dotted rule A → BC.D · · ·. You might additionally
require D to be a left ancestor of the next word, wj (in the terminology below).
As we saw in class, you can do even better by merging all the NP rules (for
example) into a single finite-state automaton, and representing a dotted NP rule
as a state in this automaton.

6Without this speedup, you would try to add all the rules in the batch, checking each individually (see
1a) to discover whether it was already there. This takes constant time but it’s a big constant.

10



• You will often have to search column i for all entries with X after the dot (for
some i and X). If you store column i as a single indiscriminate list, this requires
examining every entry in column i. Can you design a better way of storing or
indexing column i, so that you can quickly find just the entries with X after the
dot?

• Some kind of left-corner method. I can confirm from direct experience that the
following version7 suffices to make parsing time tolerable (though still slow) for
this problem:
Represent the grammar in memory as a pair of hash tables, which your parser
can construct as it reads the .gr file:

– The prefix table R: R(A,B) stores the set of all grammar rules of the form
A → B · · ·.

– The left parent table P : P (B) stores the set of all A such that there is
at least one grammar rule of the form A → B · · ·. (B is said to be the “left
child” of A, so we may as well call A a “left parent”of B.)

When you read a grammar rule of the form A → B · · ·, simply add A to P (B)
iff R(A,B) = ∅ (this test avoids duplicates in P (B)) and then add the rule itself
to R(A,B).
Let wj be the word that starts at position j. Before you begin to process entries
on column j, construct a third hash table that will only be used during processing
of that column:

– The left ancestor pair table Sj : Sj(A) stores the set of all B such that
A is a left parent of B and B is a left ancestor of wj . (That is, A ∈ P (B),
and either B = wj or B ∈ P (wj) or B ∈ P (P (wj)) or . . . )

It is reasonably straightforward and very fast to compute Sj by depth-first search.
The basic step is to “process” some Y (initially wj itself) by adding Y to Sj(X)
for each X ∈ P (Y ). Where this was the first addition to Sj(X), recursively
process X.8

Now, when you are processing column j, you will use Sj to constrain the predict
operation that starts new rules. When you need to add A → · · · rules to the
table, you should add exactly the rules in R(A,B) for each B ∈ Sj(A). (A
further trick is that once you have added these rules, you can set Sj(A) = ∅. Do
you see why this is okay and how it helps?)

7Which would not work in quite this form if A → ε rules were allowed; but fortunately we’re not allowing
them for this problem.

8Why only on the first addition? Because you mustn’t process any symbol more than once. If you did,
you might end up adding duplicates to Sj(X), or even looping forever, e.g. if X is its own left grandparent.

11



Notice that wj itself was the only terminal you considered during this whole
process—you were not bogged down by the rest of the vocabulary.9

Some of you may not have previously been in classes where your programs take hours
to run. Some comments about how to deal with this:

• Why will your program be slow? wallstreet.gr is a large, permissive grammar
with many long rules (e.g., have a look at the set of NP rules). So the Earley
table will be quite large. And the undergrad machines are not especially fast.

• Leave time to compute, and recognize that you will be competing for the same
processors. barley has 4 processors, so basically only 4 of you can run intensive
jobs on it at once. If 8 jobs are running at once, then they all run less than half
as fast: there is added overhead as the OS juggles the jobs.

• Fortunately, you can also use the machines ugrad1 through ugrad18, which have
one processor each. These machines share a file system with barley and should
behave identically, except that they will run out of memory sooner. As far as I
can tell, they also run at about the same speed.

• If you have access to other machines (CS research network, your own computer,
etc.), you are free to use them so long as the final program you submit will run
on barley.

• For most debugging, you’ll want to use smaller grammars or shorter sentences
where things run fast.

9Here’s an example of the left-corner method. Suppose wj is the word lead, which could be either a
noun or a verb. Then P (wj) = {N,V}. Moreover, suppose the grammar is such that

P (N) = {NP}
P (V) = {VP}
P (NP) = {NP,S} so NP can be the first child of either NP or S

P (VP) = {VP} so VP can be the first child only of VP
P (S) = {} so S can’t be the first child of anything

Then
Sj(N) = {lead} so Predict(N) adds all N → . lead . . . rules via R(N,lead)
Sj(V) = {lead} so Predict(V) adds all V → . lead . . . rules via R(V,lead)
Sj(NP) = {N,NP} so Predict(NP) adds all NP → . N . . . rules via R(NP,N)

and all NP → . NP ... rules via R(NP,NP)
but does not add any NP → . Det . . . rules, since lead can’t be the first word of a Det

Sj(VP) = {V,VP} so Predict(VP) adds all VP → . V ... rules via R(VP,V)
and all VP → . VP ... rules via R(VP,VP)

Sj(S) = {NP} so Predict(S) adds all S → . NP. . . rules via R(S,NP)
but does not add any S → . PP ... rules, since lead can’t be the first word of a PP

You had to recurse during the construction of Sj to find all the nonterminals that lead could be the first
word of.

12



• Don’t fill up all the available memory. If you do, the OS will start using the disk
as auxiliary storage, making things extremely slow. You can check the size and
CPU usage of running processes by typing top.

• If you are using too much memory, it may mean that you are not eliminating
duplicates correctly. Or it may mean that you designed your program to have
many little hash tables (see discussion at problem 1).

• Again, for comparison, my compiled LISP program took about 75 minutes and
42M of memory to get through wallstreet.sen. The first sentence took only 1
minute because it is short, but the algorithm is O(n3), so longer sentences take
much longer.

• If I recall, the class record was set in 2004 by Johnny Graettinger, whose program
took about 1 minute total on wallstreet.sen.

• For the record, “real” parsers run at hundreds of sentences per minute despite
having more complicated probability models. How?

– probabilistic pruning—very important!
– careful code optimization
– merging the grammar rules into finite-state automata, as we discussed in

class; this avoids dealing separately with all of the similar long rules

You are certainly welcome to use any of these techniques, but you are not required
to. It is up to you how you want to balance programming time and runtime, so
long as you implement some non-trivial speedup.

To help check your program:

• You can run many of the same checks that were suggested in problem 1.

• Your new parser is just a fast version of your old one. So try them on some of
the same examples and make sure that they get the right answer.

• Tracing is wise. An Earley parser can still get the right answer even if it adds
way too many dotted rules to the parse table (unnecessary rules, duplicate rules,
rules that are inconsistent with the left context, etc.). It will just be slower than
necessary. So use some kind of tracing to examine what your parser is actually
doing . . . Just print comment lines starting with #, which will be deleted by
prettyprint and ignored by the graders.

• For the first two sentences in wallstreet.sen, the lowest-weighted parses have
weights of 34.2301 and 104.9127 respectively. If you have the allowed bug dis-
cussed on page 7, you may get a higher-weighted parse for the second sentence,
usually of weight 113.1897.

13



Your new parser should be called parse2 and should behave just like parse, only
faster.10 Submit the code as well as its output wallstreet.par and your discussion
of the output. Describe in your README file what speedup method you used, and
estimate how much speedup you got on short sentences (try time parse ... in
Unix).

Note: The reason you are submitting both programs is only so that you can get full
credit on parse even if parse2 has a problem. If you don’t want to bother with this,
just submit parse2 and let us know in your README.

You might enjoy typing in your own newspaper sentences and seeing what comes out.
Just use the checkvocab script first to check that you’re not using out-of-vocabulary
words.

3. We now turn to semantics. Parsing speed will not be a big issue for this part of the
assignment, so you can use parse again rather than parse2.

Your first job is to understand the notation for adding features to a grammar. A
grammar with features is a .grf file; the corresponding .gr file can be produced by
using delfeats to strip the features and comments. You have been given some simple
.grf files that demonstrate the different features of the notation.

(a) Read the file arith.grf carefully and examine the output of the following com-
mands, especially the part of the output that is not indented:
parse arith.gr arith.sen > arith.par

buildfeats arith.grf arith.par

The output for each parse is an indented trace, showing how the features for each
constituent are built bottom-up. The traces for different parses are separated
by ---.
At the end of a trace (not indented) is the final result: the features for the parse
as a whole. This is what you should usually study, but if something is mysterious
you can look earlier in the trace to see how the parse’s features arose from those
of smaller constituents.

(b) Now study arith-infix.grf and try
buildfeats arith-infix.grf arith.par

(c) Finally, study arith-typed.grf and try
parse arith.gr arith-typed.sen > arith-typed.par

buildfeats arith-typed.grf arith-typed.par

10With one exception. parse should always find the lowest-weight parse. parse2 occasionally might not,
if you chose to use an unsafe pruning method. But try to set the parameters of your pruning method so
that parse2 does seem to find the lowest-weight parse.

14



Note that you can abbreviate this process using the parsefeats script, which
also does some other nice things for you (look at the script to see what!):
parsefeats arith-typed.grf arith-typed.sen

There is nothing to hand in for this question—just make sure you understand what’s
going on before it gets more confusing!

4. times(x,y) is all very well, but to build interesting natural-language semantics we
are going to have to use lambda terms. So here are some simple exercises—you don’t
have to hand the answers in.

You can check your answers using the simplify script, which will simplify any
lambda-expression you type in. (Look at the top of the script for documentation.
Start it by typing ./simplify with no arguments.) But try to come up with each
answer on your own first . . .

(a) Simplify (λx x ∗ x)3 .

(b) Simplify (λx x ∗ x)(y + y) .

(c) Simplify (λx x ∗ x)y + y .

(d) Simplify (λa a)(λb f(b)) .

(e) Simplify (λa 3)(λb f(b)) .

(f) Simplify (λx green(x))(y). Since the result holds for any y, what do you conclude
about the relation between λx green(x) and green?

(g) Simplify (λx λy ate(x, y))(lemur, leopard) .

(h) Simplify (λx λy ate(x, y))(lemur) .

(i) Apply the previous answer to “leopard”: simplify (λx λy ate(x, y))(lemur)(leopard).

(j) Simplify (λx f(x, y))(a)(b)(c(z)) .

(k) Simplify (λx f(x, y))(a, b, c(z)) . This is just an abbreviation for the previous
case.

(l) Simplify (λf f(x))g .

(m) Simplify (λf f(f(f(x))))g .

(n) Simplify (λf f(f(f(x))))(λt a(c(t))) .

(o) Simplify (λf f(f(f(x))))(λt t ∗ t) .

(p) Simplify (λf f(f(f(x))))(λt a(b, c[t], d)) .

15



Feel free to play around more with simplify. You can actually do some outrageous
things with it, including using lambda terms to represent integers, pairs, stacks, con-
ditionals, recursion, loops, and in fact any Turing machine. (Can you write an ex-
pression whose simplification doesn’t terminate?) More information is at the top of
the file LambdaTerm.pm.

5. For these, you should hand your answers in. (Put them in your README, using the
same notation used by simplify. You can use simplify to check your answers.)

Several of these are basically division problems (analogous to “If x · 3 = 21, what is
x?”). For example, if f(6) = 6 · 6, then what is f? Answer: f = λx x · x. That’s all
there is to it.11

(These “division” problems are related to the end of the semantics lecture. We wanted
a particular meaning for “Every nation wants George to love Laura,” and worked
backwards to figure out what functions f should be associated with the words. Those
slides will make more sense once you’ve done this question.)

(a) Suppose f(John) = loves(Mary, John). What is f ,

i. written in the form λx · · · ?
ii. written without any λ ?

(For example, (λx x)(3) can be written as 3. λx s(x) can be written as s.)

(b) In our semantics, loves(Mary, John) will be the interpretation of “John loves
Mary,” not vice-versa. This is just more convenient because then the VP in that
sentence has a nice, compact semantics. Namely, what?

(c) Suppose f(John) = (∀x woman(x) ⇒ loves(x, John)).

i. What is f?
ii. Translate f and f(John) into English.

Note: To type an expression such as ∀x woman(x) ⇒ loves(x, John) into the
simplify script, write something like A%x woman(x) => loves(x,John).12 No-
tating ∀ as A% (or anything ending in %) tells simplify that the following x is a
dummy variable, not a constant.

(d) Suppose f(λx loves(Mary, x)) = (λx Obviously(loves(Mary, x))). What is f
and how would you use it in constructing the semantics of “Sue obviously loves
Mary?”

(e) Suppose f(λx loves(Mary, x)) = (∀y woman(y) ⇒ loves(Mary, y)).
11Other possible answers are f = λx 6 · x, f = λx x + 30, and f = λx 36. These are technically correct,

since f(6) = 36 in all these cases. But f = λx x · x is the answer we’d be looking for.
12This particular expression cannot be simplified further by simplify, so don’t be alarmed if you type it

in and it comes right back at you.

16



i. What is f?
ii. Translate f(λx loves(Mary, x)), (λx loves(Mary, x)), and f into English.

(f) Let f be your answer from question 5(e)i. Suppose g(woman) = f .

i. What is g as a lambda term?
ii. What English word does it represent?

Hint: Substituting g(woman) for f in question 5e yields g(woman)(λx loves(Mary, x)) =
(∀y woman(y) ⇒ loves(Mary, y)). If you replaced every other term in this equa-
tion with the English phrase of which it is the semantics, then what would you
have to replace g with?

(g) Suppose f(λx loves(Mary, x)) = loves(Mary, Papa).

i. What is f as a lambda term?
ii. Why would one want to give Papa these funny semantics (rather than just

sem=Papa, as in the original english.grf)? (Hint: Look back at question 5e,
translate both expressions into English, and think “consistency.”)

6. Now you’re ready to look at a (small) English semantic grammar: study english.grf.
The syntactic coverage is nowhere near that of the Penn Treebank’s grammar, but it
does have semantics.

Try running (as in question 3c)

parsefeats english.grf english.sen

This will convert the grammar to a .gr file, parse some English sentences using your
Earley parser, and then assign features with buildfeats.

Each of the 22 sentences in english.sen should have yielded a parse with your parser.
For each sentence, inspect its features and decide whether they are appropriate:

• For a grammatical sentence, did the system find the most plausible semantics?

• For an ungrammatical sentence, did the system print the message “there is no
consistent way to assign features”?

List the sentences where you think the feature assignment may be inappropriate, and
explain why. In each case, say whether it would have helped if the parser had chosen
a different valid parse of the same sentence. (Remember, the parser uses probabilities
but without considering features, and then buildfeats is stuck computing features
for whatever the parser chose.) If so, what parse would have worked better?

For example, if the sentence is

Meilin saw a bird with the telescope

17



then you should notice a problem if the representation is

Past(see(a(%x bird(x) ^ with(the(telescope),x)),Meilin))

since that says that the bird has the telescope. Probably this is not the semantics
that the author of the sentence intended. A different parse would have gotten the
correct semantics.

Important: Don’t kill yourself. Once you are sure your parser is working, you don’t
have to pore over the output for hours with a monocle and tweezers. Just try to find
the major problems and briefly say why they are problems. We won’t penalize you
for missing a few. The point of this problem is not to torture you, only to make you
stare at the output long enough to UnderstandTM what’s going on and make some
intelligent comments.

Certainly you do not have to second-guess the style of the representations. That is,

Past(with(the(telescope),see(a(bird),Meilin)))

may not be the ideal semantic representation, since the handling of prepositions,
determiners, and tense is pretty primitive. But it is reasonable enough that you
needn’t take issue with it.

7. In english.grf and english.sen, Papa is eating bonbons rather than caviar. This
is because I couldn’t figure out whether caviar was singular or plural. You say “All
caviar is delicious,” but all only combines with plural nouns and is only combines
with singular nouns . . . so which is caviar?

In fact, caviar (like chocolate and dirt and camera film) is what is called a “mass
noun.” Modify english.grf to admit three values for the num feature: sing, pl, and
mass. Add caviar as a mass noun. Make sure that mass nouns work correctly both
with verbs (which always treat them as singular) and with determiners (which don’t).

To do this, you’ll need to work out the facts about which determiners can go with
which nouns. You may want to make a grid of determiners versus nouns and see
which ones can combine, using the vocabulary in english.grf. You’ll notice that
mass determiners are always plural determiners as well (all caviar → all bonbons) but
not vice-versa (two bonbons 6→ *two caviar).13

13It would be nice to capture this asymmetric generalization with a rule like N[num=pl] → N[num=mass],
which says that mass determiners can always be used where plural determiners are called for. One could
similarly write NP[num=sing] → NP[num=mass], which says that mass NPs can be used to agree with singular
verbs or singular pronouns. Unfortunately, these elegant rules introduce an extra NP node into the tree when
mass nouns are involved. That would require the shape of the tree to be affected by the num features. So
they won’t work with our system, which parses before it looks at the features.

18



Try to handle these inelegant facts elegantly, using as small and simple a system of
rules as you can under the circumstances. Submit your modified english.grf. Run
it on a few sentences about caviar—both grammatical and ungrammatical ones—and
report what happened.

8. english.grf doesn’t attempt any real semantics for determiners. In particular, quan-
tifiers like “every” are left as atomic elements with no internal semantics.

english-fullquant.grf fixes this, reorganizing the grammar along the lines you
explored in questions 5e–5g.14 At the end of the semantics lectures, we also handled
“every nation” in this style—you could review those slides.

Try parsefeats english-fullquant.grf english.sen to see the new form of the
output. Study english-fullquant.grf to see how it’s done; just look at the changes,
which are marked with ***.

(a) The new grammar gives pretty complicated semantic features to two and to
singular and plural the. Justify the features it uses (i.e., explain what those
lambda-terms mean). The ! symbol means “not.”

(b) The semantics of one rule in the new grammar has been left as ???. It affects
the sentence Papa want -ed George to eat a pickle. What should replace the ????
(Try your answer out, but see if you can get it without trial and error! It’s hard
to wrap your brain around, I know.)

14This approach (due to Montague) is called the “Proper Theory of Quantification” because it says that
proper nouns have the same semantic type as NPs containing quantifiers.

19


