
600.465 — Natural Language Processing

Assignment 2: Language Modeling

Prof. J. Eisner — Fall 2006
Due date: Friday 13 October, 2 pm

This assignment will try to convince you that statistical models—even simplistic and
linguistically stupid ones like n-gram models—can be very useful, provided their parameters
are estimated carefully. In fact, these simplistic trigram models are surprisingly hard to
beat. Almost all speech recognition systems use some form of trigram model—almost
nothing else seems to work.

In addition, you will get some experience in running corpus experiments over training,
development, and test sets.

Why is this assignment absurdly long? Because the assignments are really your
primary reading for the class. They’re shorter and more interactive than a textbook. :-)
The textbook readings are usually quite helpful, and you should have at least skimmed the
readings for week 2 by now, but it is not mandatory that you know them in full detail.

Programming language: You may work in any language that you like. However,
we will give you some useful code as a starting point.1 If you don’t like the programming
languages we provided—C++ and Perl—then feel free to translate (or ignore?) our code
before continuing with the assignment. Please send your translation to the course staff so
that we can make it available to the whole class.

On getting programming help: Since this is a 400-level NLP class, not a program-
ming class, I don’t want you wasting time on these low-level issues like how to handle I/O
or hash tables of arrays. If you are doing so, then by all means seek help from someone who
knows the language better! Your responsibility is the NLP stuff—you do have to design,
write, and debug the interesting code and data structures on your own. But I don’t con-
sider it cheating if another hacker (or the TA) helps you with your I/O routines or compiler
warning messages. These aren’t InterestingTM.

How to hand in your work: Basically the same procedure as assignment 1. Again,
specific instructions will be announced before the due date. You must test that your
programs run with no problems on the ugrad machines before submitting them. You

1It counts word n-grams in a corpus, using hash tables, and uses the counts to calculate simple probability
estimates.

probably want to develop them there in the first place, since that’s where the corpora are
stored. (However, in principle you could copy the corpora elsewhere for your convenience.)

Again, besides the comments you embed in your source files, put all other notes, docu-
mentation, and answers to questions in a README file. The file should be editable so that
we can insert comments and mail it back to you. For this reason, we strongly prefer a
plain ASCII file README, or a LATEX file README.tex (in which case please also submit
README.pdf). If you must use a word processor, please save as README.rtf in the portable,
non-proprietary RTF format.

If your programs are in some language other than the ones we used, or if we need to
know something special about how to compile or run them, please explain in a plain ASCII
file HOW-TO.

Your source files, the README file, the HOW-TO file, and anything else you are submitting
will all need to be placed in a single submission directory.

Notation: When you are writing the README file, you will need some way of typing
mathematical symbols. If your file is just plain ASCII text, please use one of the following
three notations and stick to it in your assignment. (If you need some additional notation
not described here, just describe it clearly and use it.) Use parentheses as needed to
disambiguate division and other operators.

Text Picts LATEX
p(x | y) p(x | y) p(x | y) p(x \mid y)
¬x NOT x ~x \neg x
x̄ (set complement) COMPL(x) \x \bar{x}
x ⊆ y x SUBSET y x {= y x \subseteq y
x ⊇ y x SUPERSET y x }= y x \supseteq y
x ∪ y x UNION y x U y x \cup y
x ∩ y x INTERSECT y x ^ y x \cap y
x ≥ y x GREATEREQ y x >= y x \geq y
x ≤ y x LESSEQ y x <= y x \leq y
∅ (empty set) NULL 0 \emptyset
E (event space) E E E

1. These short problems will help you get the hang of manipulating probabilities. Let
E 6= ∅ denote the event space (it’s just a set, also known as the sample space), and p
be a function that assigns a real number in [0, 1] to any subset of E . This number is
called the probability of the subset.

You are told that p satisfies the following two axioms: p(E) = 1. p(X ∪ Y) =
p(X) + p(Y) provided that X ∩ Y = ∅.2

2In fact, probability functions p are also required to satisfy a generalization of this second axiom: if

2

As a matter of notation, remember that the conditional probability p(X | Z) def=
p(X∩Z)

p(Z) . For example, singing in the rain is one of my favorite rainy-day activities: so

my ratio p(singing | rainy) = p(singing AND rainy)
p(rainy) is high. Here the predicate “singing”

picks out the set of singing events in E , “rainy” picks out the set of rainy events, and
the conjoined predicate “singing AND rainy” picks out the intersection of these two
sets—that is, all events that are both singing AND rainy.

(a) Prove from the axioms that if Y ⊆ Z, then p(Y) ≤ p(Z).
You may use any and all set manipulations you like. Remember that p(A) = 0
does not imply that A = ∅ (why not?), and similarly, that p(B) = p(C) does not
imply that B = C (even if B ⊆ C).

(b) Use the above fact to prove that conditional probabilities p(X | Z), just like
ordinary probabilities, always fall in the range [0, 1].

(c) Prove from the axioms that p(∅) = 0.

(d) Let X̄ denote E−X. Prove from the axioms that p(X) = 1−p(X̄). For example,
p(singing) = 1− p(NOT singing).

(e) Prove from the axioms that p(singing AND rainy | rainy) = p(singing | rainy).

(f) Prove from the axioms that p(X | Y) = 1 − p(X̄ | Y). For example, p(singing |
rainy) = 1− p(NOT singing | rainy). This is a generalization of 1d.

(g) Simplify:
(
p(X | Y) · p(Y) + p(X | Ȳ) · p(Ȳ)

)
· p(Z̄ | X)/p(Z̄)

(h) Under what conditions is it true that p(singing OR rainy) = p(singing)+p(rainy)?

(i) Under what conditions is it true that p(singing AND rainy) = p(singing)·p(rainy)?

(j) Suppose you know that p(X | Y) = 0. Prove that p(X | Y, Z) = 0.

(k) Suppose you know that p(W | Y) = 1. Prove that p(W | Y, Z) = 1.

2. All cars are either red or blue. The witness claimed the car that hit the pedestrian
was blue. Witnesses are believed to be about 80% reliable in reporting car color
(regardless of the actual car color). But only 10% of all cars are blue.

(a) Write an equation relating the following quantities and perhaps other quantities:

p(true = blue)
p(true = blue | claimed = blue)
p(claimed = blue | true = blue)

X1, X2, X3, . . . is an infinite sequence of disjoint sets, then p(
⋃∞

i=1
Xi) =

∑∞
i=1

p(Xi). But you don’t need
this for this assignment.

3

(b) Match the three probabilities above with the following terms: prior probability,
likelihood of the evidence, posterior probability.

(c) Give the values of all three probabilities. (Hint: Use Bayes’ Theorem.) Which
probability should the judge care about?

(d) Let’s suppose the numbers 80% and 10% are specific to Baltimore. So in the
prvious problem, you were implicitly using the following more general version of
Bayes’ Theorem:

p(A | B, Y) =
p(B | A, Y) · p(A | Y)

p(B | Y)

where Y is city = Baltimore. Just as 1f generalized 1d, by adding a “background”
condition Y , this version generalizes Bayes’ Theorem. Carefully prove it.

(e) Now prove the more detailed version

p(A | B, Y) =
p(B | A, Y) · p(A | Y)

p(B | A, Y) · p(A | Y) + p(B | Ā, Y) · p(Ā | Y)

which gives a practical way of finding the denominator in the question 2d.

(f) Write out the equation given in question 2e with A, B, and Y replaced by
specific propositions from the red-and-blue car problem. For example, Y is
“city = Baltimore” (or just “Baltimore” for short). Now replace the probabilities
with actual numbers from the problem, such as 0.8.
Yeah, it’s a mickeymouse problem, but I promise that writing out a real case of
this important formula won’t kill you, and may even be good for you (like, on
an exam).

3. Beavers can make three cries, which they use to communicate. bwa and bwee usually
mean something like “come” and “go” respectively, and are used during dam main-
tenance. kiki means “watch out!” The following conditional probability table
shows the probability of the various cries in different situations.

p(cry | situation) Predator! Timber! I need help!
bwa 0 0.1 0.8
bwee 0 0.6 0.1
kiki 1.0 0.3 0.1

(a) Notice that each column of the above table sums to 1. Write an equation stating
this, in the form

∑
variable p(· · ·) = 1.

4

(b) A certain colony of beavers has already cut down all the trees around their dam.
As there are no more to chew, p(timber) = 0. Getting rid of the trees has
also reduced p(predator) to 0.2. These facts are shown in the following joint
probability table. Fill in the rest of the table, using the previous table and
the laws of probability. (Note that the meaning of each table is given in its top
left cell.)
p(cry, situation) Predator! Timber! I need help! TOTAL

bwa
bwee
kiki

TOTAL 0.2 0

(c) A beaver in this colony cries kiki. Given this cry, other beavers try to figure
out the probability that there is a predator.

i. This probability is written as: p()
ii. It can be rewritten without the | symbol as:
iii. Using the above tables, its value is:
iv. Alternatively, Bayes’ Theorem allows you to express this probability as:

p() · p()
p() · p() + p() · p() + p() · p()

v. Using the above tables, the value of this is:

·
· + · + ·

This should give the same result as in part iii., and it should be clear that
they are really the same computation—by constructing table (b) and doing
part iii., you were implicitly using Bayes’ Theorem. (I told you it was a
trivial theorem!)

4. (a) p(¬shoe | ¬nail) = 1 For want of a nail the shoe was lost,
(b) p(¬horse | ¬shoe) = 1 For want of a shoe the horse was lost,
(c) p(¬race | ¬horse) = 1 For want of a horse the race was lost,
(d) p(¬fortune | ¬race) = 1 For want of a race the fortune was lost,
(e) p(¬fortune | ¬nail) = 1 And all for the want of a horseshoe nail.

Show carefully that (e) follows from (a)–(d). Hint: Consider

p(¬fortune,¬race,¬horse,¬shoe | ¬nail),

as well as the “chain rule” and problems 1a, 1b, and 1k.

5

Figure 1: Rube Goldberg gets his think-tank working and evolves the simplified
pencil-sharpener. Open window (A) and fly kite (B). String (C) lifts small door (D) allowing
moths (E) to escape and eat red flannel shirt (F). As weight of shirt becomes less, shoe (G) steps
on switch (H) which heats electric iron (I) and burns hole in pants (J). Smoke (K) enters hole in
tree (L), smoking out opossum (M) which jumps into basket (N), pulling rope (O) and lifting cage
(P), allowing woodpecker (Q) to chew wood from pencil (R), exposing lead. Emergency knife (S) is
always handy in case opossum or the woodpecker gets sick and can’t work.

Note: The ¬ symbol denotes the boolean operator NOT.

Note: This problem is supposed to convince you that logic is just a special case of
probability theory.

Note: Be glad I didn’t ask you to prove the correct operation of Figure 1!

5. A language model is a probability function p that assigns probabilities to word
sequences such as ~w = (i, love, new, york). Think of p(~w) as the probability that if
you turned on a radio at an arbitrary moment, its next four words would be “i love
new york”—perhaps in the middle of a longer sentence such as “the latest bumper
sticker says, i love new york more than ever.” We often want to consider p(~w) to
decide whether we like it better than an alternative sequence.3

3Formally, each element W ∈ E of the underlying event space is a possible value of the infinite se-

6

Suppose ~w = w1w2 · · ·wn (a sequence of n words). A trigram language model
defines

p(~w) def= p(w1) · p(w2 | w1) · p(w3 | w1, w2) · p(w4 | w2, w3) · · · p(wn | wn−2, wn−1)

on the assumption that the sequence was generated in the order w1, w2, w3 . . . (“from
left to right”) with each word chosen in a way dependent on the previous two words.
(But the first word w1 is not dependent on anything, since we turned on the radio at
a arbitrary moment.)

(a) Expand the above definition of p(~w) using naive estimates of the parameters,
such as

p(w4 | w2, w3)
def=

c(w2w3w4)
c(w2w3)

where c(w2w3w4) denotes the count of times the trigram w2w3w4 was observed
in a training corpus.
Remark: Naive parameter estimates of this sort are called “maximum-likelihood
estimates” (MLE). They have the advantage that they maximize the probability
(equivalently, minimize the perplexity) of the training data. But they will gen-
erally perform badly on test data, unless the training data were so abundant as
to include all possible trigrams many times. This is why we must smooth these
estimates in practice.

(b) One could also define a kind of reversed trigram language model preversed that
instead assumed the words were generated in reverse order (“from right to left”):

preversed(~w) def= p(wn) · p(wn−1 | wn) · p(wn−2 | wn−1, wn) · p(wn−3 | wn−2, wn−1)
· · · p(w2 | w3, w4) · p(w1 | w2, w3)

By manipulating the notation, show that the two models are identical (i.e.,
p(~w) = preversed(~w) for any ~w) provided that both models use MLE parameters
estimated from the same training data (see problem 5a).

(c) In the data you will use in questions 6 and 14, sentences are delimited by <s> at
the start and </s> at the end. For example, the following data set consists of a
sequence of 3 sentences:

<s> do you think so </s> <s> yes </s> <s> at least i thought so </s>

Given English training data, the probability of

quence of words that will come out of the radio after you turn it on. p(~w) is really an abbreviation for
p(prefix(W, |~w|) = ~w), where |~w| denotes the length of the sequence ~w. Thus, p(i, love, new, york) is the
total probability of all infinite word sequences W that begin “i love new york”

7

<s> do you think the </s>

should be extremely low under any good language model. Why? In the case of
the trigram model, which parameter or parameters are responsible for making
this probability low?

(d) You turn on the radio as it is broadcasting an interview. Assuming a trigram
model, match up expressions (A), (B), (C) with descriptions (1), (2), (3):
The expression

(A) p(Do) · p(you|Do) · p(think|Do, you)
(B) p(Do|<s>) · p(you|<s>, Do) · p(think|Do, you) · p(</s>|you, think)
(C) p(Do|<s>) · p(you|<s>, Do) · p(think|Do, you)
represents the probability that

(1) the first complete sentence you hear is Do you think (as in, ”D’ya think?”)
(2) the first 3 words you hear are Do you think

(3) the first complete sentence you hear starts with Do you think

Explain your answers briefly. Which quantity is p(~w)? Remark: The distinctions
matter because ”Do” is more probable at the start of an English sentence than
in the middle, and because (3) describes a larger event set than (1) does.

Now you are ready to build and use some n-gram language models! You will experi-
ment with different types of smoothing. Your starting point is the sample program
fileprob.

All the smoothing methods assume a finite vocabulary, so that they can easily allocate
probability to all the words. But is this assumption justified? Aren’t there infinitely
many potential words of English that might show up in a test corpus (like “xyzzy” and
“JacrobinsteinIndustries” and “fruitylicious”)? Yes . . . so we will force the vocabulary to
be finite by a standard trick. We’ll assemble a finite vocabulary by some means (in our
case, collecting all the words we saw in the training corpus), and add one special symbol
oov (which stands for “out of vocabulary”) that represents all other words. You should
regard new words that you see in test data as nothing more than various spellings of the
oov symbol. For example, when you are considering the test sentence

i saw snuffleupagus on the tv

what you will actually compute is the probability of

i saw oov on the tv

which is really the total probability of all sentences of the form

8

i saw [some out-of-vocabulary word] on the tv

Admittedly, this total probability is higher than the probability of the particular sentence
involving snuffleupagus. But in most of this assignment, we only wish to compare the
probability of the snuffleupagus sentence under different models. Replacing snuffleupagus
with oov raises the sentence’s probability under all the models at once, so it need not
invalidate the comparison.4

We do have to make sure that if snuffleupagus is regarded as oov by one model,
then it is regarded as oov by all the other models, too. It’s not appropriate to compare
pmodel1(i saw oov on the tv) with pmodel2(i saw snuffleupagus on the tv), since the
former is actually the total probability of many sentences, and so will tend to be larger. So
all the models must have the same finite vocabulary! V denotes the size of this vocabulary
(including oov).

Though the context “oov on” never appeared in the training corpus, the smoothing
method is required to give a reasonable value anyway to p(the | oov, on), for example by
backing off to p(the | on). Similarly, the smoothing method must give a reasonable (non-
zero) probability to p(oov | i, saw). Because we’re merging all out-of-vocabulary words
into a single word oov, we avoid having to decide how to split this probability among them.

Your code doesn’t have to detect oov words. It doesn’t need to do anything special
to look up the count of a trigram such as “i saw oov .” Just look up the count of
“I saw snuffleupagus” in the usual way, and you’ll get the same answer, zero, since
“snuffleupagus” never appeared at all in the training corpus. (He’s shy.)

To help you understand and debug your programs, we have grafted brackets onto all
out-of-vocabulary words in one of the datasets (the speech directory). This lets you identify
the oov words at a glance. In this particular dataset, you will actually see the test sentence

i saw [snuffleupagus] on the tv

and therefore look up the count of the trigram “i saw [snuffleupagus],” which is 0.5

You can experiment on that dataset, starting with the following problem.

6. The sample program is on barley in the directory

/usr/local/data/cs465/hw2/code

There are subdirectories corresponding to different programming languages. Choose
one as you like. Or, port to a new language (see page 1 of the assignment).

4Problem 17 explores a prettier approach that may also work better for text categorization.
5Your program does not have to do any special handling for the brackets. Although as it happens, the

count of “i saw snuffleupagus” must also be 0, as both snuffleupagus and [snuffleupagus] are oov.

9

Each language-specific subdirectory contains an INSTRUCTIONS file explaining how to
get the program running. Those instructions will let you automatically compute the
log2-probability of three sample files (sample1, sample2, sample3). Try it!

Next, you should spend a little while looking at those sample files yourself, and in
general, browsing around the /usr/local/data/cs465/hw2 directory to see what’s
there. There are corpora for three tasks: language identification, spam detection, and
speech recognition. Each corpus has already been divided into training, development
(“held-out”), and test data, and also has a README file that you should look at.

If a language model is built from the switchboard-small corpus, using add-0.01
smoothing, what is the model’s perplexity per word on each of the three sample files?
(You can compute this from the log2-probability that fileprob prints out, as dis-
cussed in class and in your textbook.)

What happens to the log2-probabilities and perplexities if you train instead on the
larger switchboard corpus? Why?

7. Modify fileprob to obtain a new program textcat that does text categorization.
See the INSTRUCTIONS file for programming-language-specific directions about which
files to copy, alter, and submit for this problem.

textcat should be run from the command line exactly like fileprob, except that the
command line should specify two training corpora rather than 1: train1 and train2.

textcat should classify each file f listed on the command line: that is, it should print
the name of the training corpus (train1 or train2) that yields the higher value of p(f).
Finally, it should summarize by printing the percentage of files classified each way.

Sample input (please allow this format; gen and spam are the training corpora, cor-
responding to “genuine” and spam emails):

textcat add1 gen spam foo.txt bar.txt baz.txt

Sample output (please use this format; send any tracing output to the stderr stream):

spam foo.txt
spam bar.txt
gen baz.txt
1 looked more like gen (33.33%)
2 looked more like spam (66.67%)

Use add1 smoothing as shown above.

As discussed earlier, both language models built by textcat should use the same
finite vocabulary. Define this vocabulary to consist of all words that appeared in

10

either training corpus (i.e., the union of two sets), plus oov. Your model doesn’t
actually need to store the set of words in the vocabulary, but it does need to know its
size V , because the add-1 smoothing method estimates p(z | xy) as c(xyz)+1

c(xy)+V . We’ve
provided code to find V for you—see the INSTRUCTIONS file for details.

8. In this question, you will evaluate your textcat program on ONE of two problems.
You can do either language identification (the english spanish directory) or else
spam detection (the gen spam directory). Have a look at the development data in
both directories to see which one floats your boat. (Don’t peek at the test data!)

Run textcat on all the development data for your chosen problem:

• For the language ID problem, classify the files english spanish/dev/english/*/*
using the training corpora en.1K and sp.1K.
Then classify english spanish/dev/spanish/*/* similarly. Note that for this
corpus, the “words” are actually letters.

• Or, for the spam detection problem, classify the files gen spam/dev/gen/* using
the training corpora gen and spam.
Then classify gen spam/dev/spam/* similarly.

From the results, you should be able to compute a total error rate for the technique:
that is, what percentage of the test files were classified incorrectly?

Now try add-λ smoothing for λ 6= 1. Experiment by hand with different values of
λ > 0. (You’ll be asked to discuss in 9b why λ = 0 probably won’t work well.)

(a) What is the lowest error rate you could achieve on development data?

(b) What value of λ gave you that rate? Call this λ0: for simplicity, you will use
λ = λ0 throughout the rest of this assignment.

(c) Using add-λ0 smoothing, what is the error rate on test data? (Before now, you
should not have done anything with the test data!)

(d) Each of the development and test files has a length. For language ID, the length
in characters is given by the directory name; for spam detection, the length in
words is embedded in the filename.
Using your results from problem 8a, come up with some way to quantify or graph
the relation between development file length and classification accuracy. (Feel
free to use the class mailing list to discuss how to do this.) Write up your results.
You may find the xgraph utility useful; it is very easy to use. Type man xgraph
for documentation. To include a graph in your writeup, just give us instructions
about how to see it on barley (e.g., xgraph < mydatafile or gv mygraph.ps).

11

(e) Now try increasing the amount of training data. Compute the overall error rate
on development data for training sets of different sizes. Graph the training size
versus classification accuracy.

• For the language ID problem, use training corpora of 6 different sizes: en.1K
vs. sp.1K (1000 characters each); en.2K vs. sp.2K (2000 characters each);
and similarly for 5K, 10K, 20K, and 50K.

• Or, for the spam detection problem, use training corpora of 4 different sizes:
gen vs. spam; gen-times2 vs. spam-times2 (twice as much training data);
and similarly for . . . -times4 and . . . -times8.

Here are the smoothing techniques we’ll consider:

uniform distribution (UNIFORM) p(z | xy) is the same for every xyz; namely,

p(z | xy) = 1/V

where V is the size of the vocabulary including oov.

add-λ (ADDL) Add a constant λ ≥ 0 to every trigram count c(xyz):

p(z | xy) =
c(xyz) + λ

c(xy) + λV

where V is defined as above. (Observe that λ = 1 gives the add-one estimate. And
λ = 0 gives the naive historical estimate c(xyz)/c(xy).)

add-λ backoff (BACKOFF ADDL) Suppose both z and z′ have rarely been seen in
context xy. These small trigram counts are unreliable, so we’d like to rely largely on
backed-off bigram estimates to distinguish z from z′:

p(z | xy) =
c(xyz) + λV · p(z | y)

c(xy) + λV

where p(z | y) is a backed-off bigram estimate, which is estimated recursively by a
similar formula. (If p(z | y) were the UNIFORM estimate 1/V instead, this scheme
would be identical to ADDL.)

So the formula for p(z | xy) backs off to p(z | y), whose formula backs off to p(z),
whose formula backs off to . . . what??

Witten-Bell backoff (BACKOFF WB) As mentioned in class, this is a backoff scheme
where we explicitly reduce (“discount”) the probabilities of things we’ve seen, and
divide up the resulting probability mass among only the things we haven’t seen.

12

p(z | xy) =

{
pdisc(z | xy) if c(xyz) > 0
α(xy)p(z | y) otherwise

p(z | y) =

{
pdisc(z | y) if c(yz) > 0
α(y)p(z) otherwise

p(z) =

{
pdisc(z) if c(z) > 0
α() otherwise

Some new notation appears in the above formulas. The discounted probabilities pdisc

are defined by using the Witten-Bell discounting technique:

pdisc(z | xy) =
c(xyz)

c(xy) + T (xy)

pdisc(z | y) =
c(yz)

c(y) + T (y)

pdisc(z) =
c(z)

c() + T ()

where

• T (xy) is the number of different word types z that have been observed to follow
the context xy

• T (y) is the number of different word types z that have been observed to follow
the context y

• T () is the number of different word types z that have been observed at all (this
is the same as V except that it doesn’t include oov)

• c() is the number of tokens in the training corpus, otherwise known as N .

Given all the above definitions, the values α(xy), α(y), and α() will be chosen so as
to ensure that

∑
z p(z | xy) = 1,

∑
z p(z | y) = 1, and

∑
z p(z) = 1, respectively.

Numerous other smoothing schemes exist. (In past years, for example, we have covered
Katz backoff with Good-Turing discounting—a conceptually beautiful discounting scheme
that is a bit tricky in practice.)

9. (a) Above, V is carefully defined to include oov. So if you saw 19,999 different word
types in training data, then V = 20, 000. What would go wrong with the the

13

UNIFORM estimate if you mistakenly took V = 19, 999? What would go wrong
with the ADDL estimate?

(b) What would go wrong with the ADDL estimate if we set λ = 0? (Remark: This
naive historical estimate is commonly called the maximum-likelihood estimate,
because it maximizes the probability of the training corpus.)

(c) If c(xyz) = c(xyz′) = 0, than what are the BACKOFF ADDL estimates of
p(z | xy) and p(z′ | xy)? What are they if c(xyz) = c(xyz′) = 1?

(d) In the BACKOFF ADDL scheme, how does increasing λ affect the probability
estimates? (Think about your answer to the previous question.)

10. The code provided to you implements some smoothing techniques, but others are left
for you to implement – currently they just trigger error messages. Let’s fix that!

(a) Implement add-λ smoothing with backoff. See the INSTRUCTIONS file for language-
specific instructions about which files to modify and submit.
This should be just a few lines of code. You will only need to understand how
to look up counts in the hash tables. Just study how the existing methods do it.
Hint: So p(z | xy) should back off to p(z | y), which should back off to p(z),
which backs off to . . . what???

(b) How does this smoothing method (with λ = λ0) affect your error rate when you
repeat the text categorization test of problem 8c?

(c) Extra credit: Use development data to find a λ1 that works better than λ0 with
this new smoothing method. How much better does it do on test data? Is λ1

bigger or smaller than λ0? Why?

11. Now we turn to Witten-Bell backoff.

(a) Witten-Bell discounting will discount some probabilities more than others. When
is pdisc(z | xy) very close to the naive historical estimate c(xyz)/c(xy)? When is
it far less (i.e., heavily discounted)? Give a practical justification for this policy.

(b) What if we changed the Witten-Bell discounting formulas to make all T values
be zero? What would happen to the discounted estimates? What would the α
values have to be, in order to make the distributions sum to 1?

(c) Observe that the set of zero-count words {z : c(z) = 0} has size V −T ().6 What
is the simple formula for α()?

6You might think that this set is just {oov}, but that depends on how the finite vocabulary was chosen.
There might be other zero-count words as well: this is true for your gen and spam (or english and spanish)
models, since the vocabulary is taken from the union of both corpora. Conversely, it is possible for c(oov) >
0, since in general one might decide to omit rarely observed words from one’s vocabulary, treating them as
oov when they appear in training.

14

(d) Now let’s consider α(xy). Let Z(xy) be the set {z : c(xyz) > 0}. Observe that

∑
z

p(z | xy) =

 ∑
z∈Z(xy)

pdisc(z | xy)

 +

α(xy) ·
∑

z 6∈Z(xy)

p(z | y)

=

 ∑
z∈Z(xy)

pdisc(z | xy)

 + α(xy) ·

1−
∑

z∈Z(xy)

p(z | y)

To make

∑
z p(z | xy) = 1, solving the equation shows that you will need7

α(xy) =
1−

∑
z∈Z(xy) pdisc(z | xy)

1−
∑

z∈Z(xy) p(z | y)

Got that? Now, the first step in the derivation above assumed that
∑

z p(z |
y) = 1. Give a formula for α(y) that ensures this. The formula will be analogous
to the one we just derived for α(xy). (Hint: Start by defining the set Z(y).)

(e) We now have to figure out how the above formula for α(xy) can be computed
efficiently. The trouble is those two summations.

i. Simplify the subexpression
∑

z∈Z(xy) pdisc(z | xy) in the numerator, by using
the definition of pdisc and any facts you know about c(xy) and c(xyz). You
should be able to eliminate the

∑
sign altogether.

ii. Now consider the
∑

sign in the denominator. Argue that c(yz) > 0 for
every z ∈ Z(xy). That allows the following simplification:

∑
z∈Z(xy) p(z |

y) =
∑

z∈Z(xy) pdisc(z | y) =
∑

z∈Z(xy)
c(yz)

c(y)+T (y) .
(Warning: You can’t use this simplification when it leads to 0/0. But in
that special case, what can you say about the context xy? What follows
about α(xy)?)

iii. The above simplification still leaves you with a sum in the denominator. But
you can compute this sum efficiently in advance.
Write a few lines of pseudocode that show how to compute

∑
z∈Z(xy) c(yz)

for every bigram xy. You can compute and store these sums immediately
after you finish reading in the training corpus. At that point, you will have
a list of trigrams xyz that have actually been observed (the provided code
helpfully accumulates such a list for you), and you will know c(yz) for each
such trigram.

7Should we worry about division by 0 (in which case the equation has no solution)? Since p(z | y) is
smoothed to be > 0 for all z, this problem occurs if and only if every z in the vocabulary, including oov,
has appeared following xy. Fortunately, you defined the vocabulary to include all words that were actually
observed, so no oov words can ever have appeared following xy. So the problem cannot occur for you.

15

Armed with these sums, you will be able to compute α(xy) quickly when
you need it during testing. You should not have to do any summation during
testing.

(f) Explain how to compute the formula for α(y) efficiently. Just use the same
techniques as you did for α(xy) above. This is easy, but it’s helpful to write out
the solution before you start coding.

12. Now implement Witten-Bell backoff using the techniques above. How does this
smoothing method (which does not use any λ) affect your error rate when you repeat
the text categorization test in 8c?

The INSTRUCTIONS file gives language-specific instructions about which files to modify
and submit.

13. Suppose you expect a priori that 1
3 of your emails will be spam. (In fact this is true

for the test and development data!)

Or, in the language ID task, assume all the documents you view are in either Spanish
or English, and you expect a priori that 1

3 of them will be in Spanish.

How should this affect how textcat.c does its classification, and why? (Just give a
formula, don’t implement it.) Hint: Bayes’ Theorem.

Extra credit: Implement this change and measure how it affects performance on the
spam detection task (since, in fact, 1

3 of the test data for that task are spam, making
the a priori expectation correct).

14. We now turn to speech recognition. Here, instead of choosing the best model for a
given string, you will choose the best string for a given model.

The data are in the speech subdirectory. As usual, a development set and a test
set are available to you; you may experiment on the development set before getting
your final results from the test set. You should use the switchboard corpus as your
training.
Here is a sample file (dev/easy/easy025):

8 i found that to be %hesitation very helpful

0.375 -3524.81656881726 8 <s> i found that the uh it’s very helpful </s>

0.250 -3517.43670278477 9 <s> i i found that to be a very helpful </s>

0.125 -3517.19721540798 8 <s> i found that to be a very helpful </s>

0.375 -3524.07213817617 9 <s> oh i found out to be a very helpful </s>

0.375 -3521.50317920669 9 <s> i i’ve found out to be a very helpful </s>

0.375 -3525.89570470785 9 <s> but i found out to be a very helpful </s>

0.250 -3515.75259677371 8 <s> i’ve found that to be a very helpful </s>

0.125 -3517.19721540798 8 <s> i found that to be a very helpful </s>

0.500 -3513.58278343221 7 <s> i’ve found that’s be a very helpful </s>

16

Each file has 10 lines and represents a single audio-recorded utterance U . The first
line of the file is the correct transcription, preceded by its length in words. The
remaining 9 lines are some of the possible transcriptions that were considered by
a speech recognition system—including the one that the system actually chose to
output. You will similarly write a program that chooses among those 9 candidates.

Consider the last line of the sample file. The line shows a 7-word transcription
~w surrounded by <s>. . . </s> and preceded by its length, namely 7. The number
−3513.58 was the speech recognizer’s estimate of log2 p(U | ~w): that is, what is the
log-probability that ~w would have come out of someone’s mouth sounding like U?8

Finally, 0.500 = 4
8 is the word error rate of this transcription, which had 4 errors

against the 8-word true transcription on the first line of the file.9

(a) According to Bayes’ Theorem, how should you choose among the 9 candidates?
That is, what quantity are you trying to maximize, and how should you compute
it?
(Hint: You want to pick a candidate that both looks like English and looks like
the audio utterance U . Your trigram model tells you about the former, and
−3513.58 is an estimate of the latter.)

(b) Modify fileprob to obtain a new program speechrec that chooses this best
candidate. As usual, see INSTRUCTIONS for details.
The program should look at each utterance file listed on the command line,
choose one of the 9 transcriptions according to Bayes’ Theorem, and report the
word error rate of that transcription (as given in the first column). Finally, it
should summarize the overall word error rate over all the utterances—the total
number of errors divided by the total number of words in the correct transcrip-
tions.
Of course, the program is not allowed to cheat: when choosing the transcription,
it must ignore each file’s first row and first column!
Sample input (please allow this format; switchboard is the training corpus):

speechrec add1 switchboard easy025 easy034

Sample output (please use this format—but you are not required to get the same
numbers):

8Actually, the real estimate was 15 times as large. Speech recognizers are really rather bad at estimating
log p(U | ~w), so they all use a horrible hack of dividing this value by about 15 to prevent it from influencing
the choice of transcription too much! But for the sake of this question, just pretend that no hack was
necessary and −3513.58 was the actual value of log2 p(U | ~w) as stated above.

9The word error rate of each transcription has already been computed by a scoring program. The correct
transcription on the first line sometimes contains special notation that the scorer paid attention to. For
example, %hesitation on the first line told the scorer to count either uh or um as correct.

17

0.125 easy025
0.037 easy034
0.057 OVERALL

Notice that the overall error rate 0.057 is not an equal average of 0.125 and
0.037; this is because easy034 is a longer utterance and counts more heavily.

Hints about how to read the file:
• For all lines but the first, you should read a few numbers, and then as many

words as the integer told you to read. (Alternatively, you could read the
whole line at once and break it up into an array of whitespace-delimited
strings.)

• For the first line, you should read the initial integer, then read the rest
of the line. The rest of the line is only there for your interest, so you
can throw it away. The scorer has already considered the first line when
computing the scores that start each remaining line.
Warning: For the first line, the notational conventions are bizarre, so
in this case the initial integer does not necessarily tell you how many
whitespace-delimited words are on the line. Be sure to throw away the
rest of the line anyway! (If necessary, read and discard characters up
through the end-of-line symbol \n.)

(c) What is your program’s overall error rate on the carefully chosen utterances in
test/easy? How about on the random sample of utterances in test/unrestricted?
Answer for 3-gram, 2-gram, and 1-gram models.
To get your answer, you need to choose a smoothing method, so pick one that
seems to work well on the development data dev/easy and dev/unrestricted.
Be sure to tell us which method you picked and why! What would be an unfair
way to choose a smoothing method?
Hint: Some options for handling the 2-gram and 1-gram models:

• You’ll already have a probs(x, y, z) function. You could add probs(y, z) and
probs(z).

• You could give probs(x, y, z) an extra argument that controls which kind of
model it computes. For example, for a 2-gram model, it would ignore x.

• Or you could make life easy for yourself, and just call the existing probs()
function with arguments that will make it return a bigram or unigram
probability. For example, if you choose a backoff smoothing method, then
p(z | oov, y) will back off completely to p(z | y), which is the bigram prob-
ability that you want!

15. Extra credit: Problem 11a asked you to justify Witten-Bell discounting. Suppose you
redefined T (xy) in Witten-Bell discounting to be the number of word types z that

18

have been observed exactly once following xy in the training corpus. What is the
intuition behind this change? Why might it help (or hurt, or not matter much)? If
you dare, try it out and report how it affects your results.

16. Extra credit: In our text categorization setup, a problem with all the smoothing
methods is that they treat oov just like any other zero-count word. Let’s focus here
on Witten-Bell backoff.

For example, suppose the only zero-count words in the spam model are snuffleupagus,
grover, and oov. (The first two are zero-count because they appeared in the
gen corpus only.) Then these three words will share the probability mass equally:
p(snuffleupagus) = p(grover) = p(oov) = α(). But oov represents the total class
of all out-of-vocabulary words, so surely it should have much higher probability than
one measly snuffleupagus or grover.

If the gen corpus increased in size to add three more zero-count words to the vocab-
ulary, then the spam model’s estimates of p(snuffleupagus), p(grover), and p(oov)
would all have to be cut in half, since the same probability mass reserved for zero-
count words would be shared equally among 6 words instead of 3. Such huge changes
in the spam model’s probability estimates are not warranted here. Surely it would be
more accurate if p(oov) had almost all of this probability mass to start with, and
gave up tiny bits of it as additional words entered the vocabulary and left the oov
class.

The following fix might help substantially, and I’d be very interested to know whether
it improves the Witten-Bell text categorization results! The insight is that to estimate
the relative probabilities in future spam of the 0-count words snuffleupagus (which
appeared in gen) and oov (which did not appear in gen), we can look at the relative
probabilities in spam of other words that did and didn’t appear in gen. In other words,
we should measure the overlap of the two corpora.

We are building a model for spam. Suppose there are b word types that appeared
once in the spam training corpus, and a of those also appeared (at least once) in
the gen training corpus. Since all 1-count types get equal unigram probability under
Witten-Bell, we see that the total probability mass for the 1-count spam words is
divided, with a/b of it shared equally among words that appeared in gen, and 1−a/b
of it shared equally among words that did not.10 Assume that this ratio measured on
1-count spam words is also correct for 0-count spam words. Therefore, a/b of the total
probability mass reserved for 0-count types in future spam (namely T ()/(c() + T ());
see question 11c) should be shared equally among the (V − 1) − T () 0-count spam

10One could extend this idea to determine how the mass is divided three ways, among words that appeared
0, 1, ≥ 2 times in gen.

19

words that were specifically seen in gen, such as snuffleupagus and grover. The
remaining 1− a/b of this mass should go to the 0-count spam words that were never
seen in gen either, which are collectively represented by the oov symbol.

Here we are using the observed behavior of 1-count types to predict the unobserved
behavior of 0-count types, on the grounds that rare words behave alike. There are
entire smoothing methods (such as Good-Turing smoothing and Katz backoff) that
are based on that idea, using the observed rate of 1-count types in a context to predict
the true rate of 0-count types in that context. You can think of Witten-Bell as an
approximation to those smoothing methods—in place of the number of 1-count types
in a context xy, it just uses the total number of types T (xy) in that context, which
in practice is not much greater since most observed types only appear once.

If you find it easier, you can use the same kind of approximation for this problem: you
can approximate the fraction a/b of spam 1-count types whose types also appeared
in gen by the fraction I/T () of all spam types that also appeared in gen. Here T () is
the total number of types in spam, as usual, and I denotes the total number of types
in the intersection gen ∩ spam. To implement this method, you will have to compute
I. You will also have to maintain a table of words in the vocabulary so that when
you see a 0-count word in testing, you know whether it is in-vocabulary or oov. Both
can be accomplished by tinkering with the code that computes V .

17. Extra credit: We have been assuming a finite vocabulary by replacing all unknown
words with a special oov symbol. But notice that if the alphabet is finite, you could
predict the probability of an unknown word by using . . . you got it, a letter n-gram
model! Such a prediction is sensitive to the spelling and length of the unknown
word. As longer words will generally receive lower probabilities, it is possible for the
probabilities of all unknown words to sum to 1, even though there are infinitely many
of them. (Just as 1

2 + 1
4 + 1

8 + · · · = 1.)

Devise a sensible way to estimate the word trigram probability p(z | xy) by backing
off to a letter n-gram model of z if z is an unknown word. Also describe how you
would train the letter n-gram model.

Just give the formulas for your estimate—you don’t have to implement and test your
idea, although that would be nice too!

Notes:

• x and/or y and/or z may be unknown; be sure you make sensible estimates of
p(z | xy) in all these cases

• be sure that
∑

z p(z | xy) = 1

20

