The Maximum-Entropy Stewpot

600465 oo g NIP - Fisper 1

summary of half of the course (statistics)

Probability is Useful

We love probability distributions!
We've learned how to define & use p(...) functions.
Pick best output text T from a set of candidates
speech recognition (HW2); machine translation; OCR; spell correction...
maximize p(T) for some appropriate distribution py
Pick best annotation T for a fixed input |
text categorization; parsing; part-of-speech tagging ...
maximize p(T | I); equivalently maximize joint probability p(1,T)
often define p(1,T) by noisy channel: p(1,T) = p(T) * p(1 | T)
speech recognition & other tasks above are cases of this too:
we're maximizing an appropriate p1(T) defined by p(T | I)
Pick best probability distribution (a meta-problem!)
really, pick best parameters 0: train HVMM, PCFG, n-grams, clusters ..
maximum likelihood; smoothing; EM if unsupervised (incomplete data)
Bayesian smoothing: max p(6|data) = max p(6, data) =p(0)p(data|6)

600465 oo g NIP - Fisper

summary of other half of the course (linguistics)

Probability is Flexible

We love probability distributions!
We've learned how to define & use p(...) functions.
We want p(...) to define probability of /inguistic objects
Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,
FSTs; regex compilation, best-paths, forward-backward, collocations)
Vectors (decis.lists, Gaussians, naive Bayes; Yarowsky, clustering/k-NN)
We've also seen some not-so-probabilistic stuff
Syntactic features, semantics, morph., Gold. Could be stochasticized?
Methods can be quantitative & data-driven but not fully probabilistic:
transf.-based learning, bottom-up clustering, LSA, competitive linking
But probabilities have wormed their way into most things

p(...) has to capture our intuitions about the ling. data

A00 AR5 oot NIP .1 Ficper

really so alternative?

An Alternative Tradition

Old Al hacking technique:
Possible parses (or whatever) have scores.
Pick the one with the best score.
How do you define the score?
Completely ad hoc!
Throw anything you want into the stew
Add a bonyltjs fogr)t/his, a penalty for that, etc.
“Learns” over time — as you adjust bonuses and
penalties by hand to improve performance. ©
Total kludge, but totally flexible too ...
Can throw in any intuitions you might have

A00 465 oot NIP .1 Ficper

really so alternative?

An Alternative Tradition

Old 4 Exposé at 9
Po:

Pif Probabilistic Revolution
Ho NotReally a Revolution,

Critics Say
“Leal Lc;%-probabilit_iez_no more uses and
penal an scores in disguise hce. ©

Totall “We’re just adding stuff up
Cal like the old corrupt regime [
did,” admits spokesperson

A00 AR5 oot NIP .1 Ficper 5

Nuthin’ but adding weights

N-grams: .. + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...
PCFG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
HMM tagging: ... +log p(t7 | t5, t6) + log pw7 | 7) + .
NOisy channel: [Iog p(source)] + [Iog p(data | source)]
Cascade of FSTs:
[Iog p(A)] + [Iog p(B | A)] + [Iog p(C| B)] + ..

Naive Bayes:

log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...

Note: Today we’ll use +logprob not —logprob:
i.e., bigger weights are better.

A00 465 oot NIP .1 Ficper

Nuthin’ but adding weights

N-grams: .. + log p(w7 | w5,w6) + log(w8 | w6, w7) + ..

PCFG: 10g p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...

Can regard any linguistic object as a collection of features
(here, tree = a collection of context-free rules)

Weight of the object = total weight of features

Our weights have always been conditional log-probs (< 0)
but that is going to change in a few minutes!

HMM tagging: ... +log p(t7 | t5, t6) + log pw7 | 7) + .
NOisy channel: [\og p(source)] + [\og p(data | source)]
Cascade of FSTs:

[1og p&)] + [1og p(& 1 A)] + [log p(C 1 B)] +.

sofMea T Rin\ screre:

83% of
Probabilists Rally Behind , Paradigm

“2,.4,.6,.8" We're not gonna take your bait!”

Can estimate our parameters automatically
e.g., log p(t7 | t5, t6) (trigram tag probability)
from supervised or unsupervised data
Our results are more meaningful
Can use probabilities to place bets, quantify risk
e.g., how sure are we that this is the correct parse?
Our results can be meaningfully combined = modularity!
Multiply indep. conditional probs — normalized, unlike scores

p(English text) * p(English phonemes | English text) * p(Jap.
phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
p(semantics) * p(syntax | semantics) * p(morphology | syntax) *
p(phonology | morphology) * p(sounds | phonology)

600465 oo g NIP - Fisper

Probabilists Regret Being Bound by Principle

Ad-hoc approach does have one advantage
Consider e.g. Naive Bayes for text categorization:
Buy this supercalifragilistic Gnsu knife set
for only $39 today ...
Some useful features:
Contains Buy
%Q"‘f@\'\‘\% Contains supercal i fragilistic
.5(.02 = Contains a dollar amount under $100
Contains an imperative sentence
Reading level = 8" grade
911 Mentions money (use word classes and/or regexp to detect this)
Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
What assumption does Naive Bayes make? True here?

A00 AR5 oot NIP .1 Ficper Q

Probabilists Regret Being Bound by Principle

Ad-hoc approach does have one advantage

Consider e.g. Naive Bayes for text categorization:
Buy this supercalifragilistic Gnsu knife set
for only $39 today ...

Some useful features: "
Naive Bayes

claims .5*.9=45%
of spam has both

.5.02 ={ Contains a dollar amount under $100 features —
ut here are the emails with both features — only 25x!
25*9=225x more

90% of spam has this — 9x more likely than in ling likely than in ling.

%Q'é(\\\&\‘) 50% of spam has this — 25x more likely than in ling

911 Mentions money
Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
What assumption does Naive Bayes make? True here?

A00 465 oot NIP .1 Ficper 10

Probabilists Regret Being Bound by Principle

But ad-hoc approach does have one advantage

Can adjust scores to compensate for feature overlap ...

Some useful features of this messagfc:)g prob adjusted

%Q'&(\ «® 5@\0 «® C)Q%\ﬂ\ «®
.5(.02 = Contains a dollar amount under $100 -1 |-5.6 -.85(-2.3
91.1 = Mentions money -.151-3.3 -15[-3.3

Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
What assumption does Naive Bayes make? True here?

A00 AR5 oot NIP .1 Ficper 11

Revolution Corrupted by Bourgeois Values

Naive Bayes needs overlapping but independent features
But not clear how to restructure these features like that:

Contains Buy

Contains supercal i fragilistic

Contains a dollar amount under $100

Contains an imperative sentence

Reading level = 7t grade

Mentions money (use word classes and/or regexp to detect this)

Boy, we'd like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

Well, maybe we can add up scores and pretend like we
got a log probability:

A00 465 oot NIP .1 Ficper 1

Revolution Corrupted by Bourgeois Values

Naive Bayes needs overlapping but independent features
But not clear how to restructure these features like that:

+4 Contains Buy 5 11

+0.2 = Contains supercal ifragilistic ‘0‘3\" .

+1 Contains a dollar amount under $100

+2 Contains an imperative sentence

-3 Reading level = 7t grade

+5 Mentions money (use word classes and/or regexp to detect this)

Boy, we'd like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.
Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

Oops, then p(feats | spam) = exp 5.77 = 320.5

600465 oo g NIP - Fisper 1

Renormalize by 1/Z to get a
Log-Linear Model o2y

p(m | spam) = (1/Z(\)) exp X A; fi(m) where
m is the email message
Aj is weight of feature i
f{(m)0{0,1} according to whether m has feature i
More generally, allow fi(m) = count or strength of feature.
1/Z(A) is a normalizing factor making %, p(m | spam)=1
(summed over all possible messages m! hard to find!)

The weights we add up are basically arbitrary.

They don’t have to mean anything, so long as they give us
a good probability.
Why is it called “log-linear”?

600465 oo g NIP - Fisper 14

Why Bother?

Gives us probs, not just scores.
Can use 'em to bet, or combine w/ other probs.

We can now learn weights from data!
Choose weights A; that maximize logprob of
labeled training data = log |'|J- p(cj) p(mj | cJ-)

where ch{Iing,spam} is classification of message m;

and p(mj | cj) is log-linear model from previous slide
Convex function — easy to maximize! (why?)
But: p(mj | cJ-) for a given A requires Z(A): hard!

A00 AR5 oot NIP .1 Ficper 15

Attempt to Cancel out Z

Set weights to maximize []; p(c;) p(mj | cj)
where p(m | spam) = (1/Z())) exp X A; f;(m)
But normalizer Z(A\) is awful sum over all possible emails

So instead: Maximize |'|j p(c; | mj)
Doesn’'t model the emails mj, only their classifications G
Makes more sense anyway given our feature set

p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)-+p(ling)p(m|ling))
Z appears in both numerator and denominator

Alas, doesn't cancel out because Z differs for the spam and ling models

But we can fix this ...

A00 465 oot NIP .1 Ficper T

So: Modify Setup a Bit

Instead of having separate models
p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
Have just one joint model p(m,c)
gives us both p(m,spam) and p(m,ling)
Equivalent to changing feature set to:

spam < weight of this feature is log p(spam) + a constant
spam and Contains Buy <old spam model's weight for “contains Buy’|
spam and Contains supercal i fragilistic

ling < weight of this feature is log p(ling) + a constant
ling and Contains Buy <-old ling model’s weight for “contains Buy”
ling and Contains supercal i fragilistic

No real change, but 2 categories now share single

feature set and single value of Z(A)

A00 465 oot NIP .1 1

Now we can cancel out Z

Now p(m,c) = (1/Z(A)) exp > A; fi(m,c) where cling, spam}
Old: choose weights A; that maximize prob of labeled
training data = |'|j p(mjy cj)

New: choose weights A; that maximize prob of labels
given messages = M; p(cj | mj)

Now Z cancels out of conditional probability!
p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))
= exp X A fi(m,spam) / (exp Zj A; fi(m,spam) + exp X A; fi(m,ling))
Easy to compute now ...
|‘|j p(cj | mj) is still convex, so easy to maximize too

A00 465 oot NIP .1 Ficper 1

Maximum Entropy Maximum Entropy

Suppose there are 10 classes, A through J.

| don't give you any other information. A B ¢ b |E F G H I J
Question: Given message m: what is your guess for p(C | m)? Buy |.051 |.0025|.029 |.0025 .0025 |.0025 |.0025 |.0025 |.0025 |.0025

Other |.499 |.0446 |.0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446 | .0446
Suppose | tell you that 55% of all messages are in class A.

Question: Now what is your guess for p(C | m)? Column A sums to 0.55 (“55% of all messages are in class A”)

Suppose | also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.
Question: Now what is your guess for p(C | m),
if m contains Buy?
OUCH!

600465 oo g NIP - Fisper

600465 oo g NIP - Fisper

Maximum Entropy Maximum Entropy

A B |C |[D |[E |[F |G |H |I J A |B |C
Buy |.051 |.0025|.029 |.0025 |.0025 [.0025 |.0025 |.0025 |.0025 | .0025

D |[E |[F |G |H |I J
Buy |-051 |.0025|.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025

Other |.499 |.0446 | .0446 | .0446 |.0446 | .0446 | .0446 |.0446 | .0446 | .0446 Other |.499 |.0446 | .0446 | .0446 |.0446 | .0446 | .0446 |.0446 | .0446 | .0446

Column A sums to 0.55

Column A sums to 0.55
Row Buy sums to 0.1 (*10% of all messages contain Buy”)

Row Buy sums to 0.1
(Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)
Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ...
Largest if probabilities are evenly distributed

A00 465 oot NIP .1 Ficper

Maximum Entropy Generalizing to More Features

A B |[C D |[E [F |G |H |I J 10"
Buy .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025
Othey

A |B |C |[D |[E |[F |G |H
Buy |.051 |.0025|.029 |.0025 |.0025 |.0025 |.0025 |.0025

Other |.499 |.0446 | 0446 | .0446 | 0446 | 0446 | .0446 | .0446 | .0446 | .0446

Column A sums to 0.55
Row Buy sums t0 0.1 Other |.499 |.0446 |.0446 | .0446 | .0446 |.0446 | .0446 | .0446
(Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

Now p(Buy, C) =.029 and p(C | Buy) = .29
We got a compromise: p(C | Buy) < p(A | Buy) < .55

A00 AR5 oot NIP .1 Ficper

A00 465 oot NIP .1 Ficper

What we just did

For each feature (“contains Buy”), see what
fraction of training data has it
Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all
mass goes to feature combos we've actually seen)

Of these, pick distribution that has max entropy

Amazing Theorem: This distribution has the
form p(m,c) = (1/Z(\)) exp X A; fi(m,c)
So it is log-linear. In fact it is the same log-linear
distribution that maximizes |‘|j p(mjv cj) as before!

Gives another motivation for our log-linear approach.

600465 oo g NIP - Fisper

Overfitting

If we have too many features, we can choose
weights to model the training data perfectly.

If we have a feature that only appears in spam
training, not ling training, it will get weight « to
maximize p(spam | feature) at 1.

These behaviors overfit the training data.
Will probably do poorly on test data.

600465 oo g NIP - Fisper

Solutions to Overfitting

Throw out rare features.

Require every feature to occur > 4 times, and > 0
times with ling, and > 0 times with spam.

Only keep 1000 features.

Add one at a time, always greedily picking the one
that most improves performance on held-out data.

Smooth the observed feature counts.

Smooth the weights by using a prior.
max p(A|data) = max p(A, data) =p(A\)p(data|A)
decree p(\) to be high when most weights close to 0

A00 AR5 oot NIP .1 Ficper

