The Maximum-Entropy Stewpot

summary of half of the course (statistics)

Probability is Useful

- We love probability distributions!
- We've learned how to define & use p(...) functions.
- Pick best output text T from a set of candidates
 - speech recognition (HW2); machine translation; OCR; spell correction...
 - maximize p₁(T) for some appropriate distribution p₁
- Pick best annotation T for a fixed input I

 - maximize p(T | I); equivalently maximize joint probability p(I,T)
 - often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T) speech recognition & other tasks above are cases of this too:
 - we're maximizing an appropriate p₁(T) defined by p(T | I)
- Pick best probability distribution (a meta-problem!)
 - really, pick best <u>parameters</u> θ: train HMM, PCFG, n-grams, clusters
 - maximum likelihood; smoothing; EM if unsupervised (incomplete data)
- Bayesian smoothing: $\max p(\theta|data) = \max p(\theta, data) = p(\theta)p(data|\theta)$

summary of other half of the course (linguistics)

Probability is Flexible

- We love probability distributions!
 - We've learned how to **define** & use p(...) functions.
- We want p(...) to define probability of *linguistic* objects
 - Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 - Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,
 - Vectors (decis.lists, Gaussians, naïve Bayes; Yarowsky, clustering/k-NN)
- We've also seen some not-so-probabilistic stuff
 - Syntactic features, semantics, morph., Gold. Could be stochasticized?
 - Methods can be quantitative & data-driven but not fully probabilistic:
- But probabilities have wormed their way into most things
- p(...) has to capture our intuitions about the ling. data

really so alternative?

An Alternative Tradition

- Old AI hacking technique:
 - Possible parses (or whatever) have scores.
 - Pick the one with the best score.
 - How do you define the score?
 - Completely ad hoc!
 - Throw anything you want into the stew
 - Add a bonus for this, a penalty for that, etc.
- "Learns" over time as you adjust bonuses and penalties by hand to improve performance. ©
- Total kludge, but totally flexible too ...
 - Can throw in any intuitions you might have

really so alternative?

An Alternative Tradition

- Old A
 - Po
 - Pic
 - Ho
- "Lear pena
- Total
- Exposé at 9
- Probabilistic Revolution Not Really a Revolution, Critics Say

Log-probabilities no more than scores in disguise

"We're just adding stuff up like the old corrupt regime did," admits spokesperson

uses and nce. 😊

Nuthin' but adding weights

- n-grams: ... + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...
- PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Cascade of FSTs:

 $[\log p(A)] + [\log p(B \mid A)] + [\log p(C \mid B)] + ...$

- - log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) ...
- *Note:* Today we'll use +logprob not -logprob: i.e., bigger weights are better.

Nuthin' but adding weights

- n-grams: ... + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...
- PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
 - Can regard any linguistic object as a collection of features (here, tree = a collection of context-free rules)
 - Weight of the object = total weight of features
 - Our weights have always been conditional log-probs (≤0)
 but that is going to change in a few minutes!
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Cascade of FSTs:

 $\left[\log p(A)\right] + \left[\log p(B \mid A)\right] + \left[\log p(C \mid B)\right] + \dots$

Mailan Ray reson

83% of Probabilists Rally Behind, Paradigm

".2, .4, .6, .8! We're not gonna take your bait!"

- 1. Can estimate our parameters automatically
 - e.g., log p(t7 | t5, t6) (trigram tag probability)
 - from supervised or unsupervised data
- 2. Our results are more meaningful
 - Can use probabilities to place bets, quantify risk
 - e.g., how sure are we that this is the correct parse?
- 3. Our results can be meaningfully combined ⇒ modularity!
 - Multiply indep. conditional probs normalized, unlike scores
 p(English text) * p(English phonemes | English text) * p(Jap.
 - p(English text) * p(English phonemes | English text) * p(Jap.
 phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
 - p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p(phonology | morphology) * p(sounds | phonology)

600 465 - Intro to NI P - J. Fisner

Probabilists Regret Being Bound by Principle

- Ad-hoc approach does have one advantage
- Consider e.g. Naïve Bayes for text categorization:
 - Buy this supercalifragilistic Ginsu knife set for only \$39 today ...
- Some useful features:
 - Contains Buy
- Contains supercalifragilistic
- .5 .02 Contains a dollar amount under \$100
 - Contains an imperative sentence
- Reading level = 8th grade
- .9 .1 Mentions money (use word classes and/or regexp to detect this)
 - Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
 - What assumption does Naïve Bayes make? True here?

600 465 - Intro to NI P - J. Fisner

Probabilists Regret Being Bound by Principle

- Ad-hoc approach does have one advantage
- Consider e.g. Naïve Bayes for text categorization:
 - Buy this supercalifragilistic Ginsu knife set for only \$39 today ...
- Some useful features:
- span tipe 50% of spam has this 25x more likely than in ling contains a dollar amount under \$100 but here are the emails with both features only 25x!

90% of spam has this – 9x more likely than in ling

claims .5*.9=45% of spam has **both** features – 25*9=225x more likely than in ling

Naïve Bayes

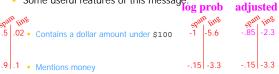
- 9|.1 Mentions money
- Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
- What assumption does Naïve Bayes make? True here?

600 465 - Intro to NI P - J. Fisner

10

Probabilists Regret Being Bound by Principle

- But ad-hoc approach does have one advantage
 - Can adjust scores to compensate for feature overlap ...
- Some useful features of this message:
 log prob



- Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
- What assumption does Naïve Bayes make? True here?

600 465 - Intro to NI P - I. Fisner

Revolution Corrupted by Bourgeois Values

- Naïve Bayes needs overlapping but independent features
- But not clear how to restructure these features like that:
 - Contains Buy
 - Contains supercalifragilistic
 - Contains a dollar amount under \$100
 - Contains an imperative sentence
 - Reading level = 7th grade
 - Mentions money (use word classes and/or regexp to detect this)
- Boy, we'd like to be able to throw all that useful stuff in without worrying about feature overlap/independence.
- Well, maybe we can add up scores and <u>pretend</u> like we got a log probability:

600 465 - Intro to NI P - J. Fisner

12

Revolution Corrupted by Bourgeois Values

- Naïve Bayes needs overlapping but independent features
- But not clear how to restructure these features like that:
- +4 Contains Buy
- +0.2 Contains supercalifragilistic
- +1 Contains a dollar amount under \$100
- +2 Contains an imperative sentence
- -3 Reading level = 7th grade
- +5 Mentions money (use word classes and/or regexp to detect this)
- Boy, we'd like to be able to throw all that useful stuff in without worrying about feature overlap/independence.
- Well, maybe we can add up scores and pretend like we got a log probability: log p(feats | spam) = 5.77
- Oops, then p(feats | spam) = exp 5.77 = 320.5

Renormalize by 1/Z to get a scale down so Log-Linear Model

- p(feats | spam) = exp 5.77 = 320.5 and sum
- $p(m \mid spam) = (1/Z(\lambda)) \exp \sum_{i} \lambda_{i} f_{i}(m)$ where m is the email message
 - λ_i is weight of feature i
 - $f_i(m) \in \{0,1\}$ according to whether m has feature i More generally, allow $f_i(m) = count or strength of feature$.
 - $1/Z(\lambda)$ is a normalizing factor making Σ_m p(m | spam)=1 (summed over all possible messages m! hard to find!)
- The weights we add up are basically arbitrary.
- They don't have to mean anything, so long as they give us a good probability.
- Why is it called "log-linear"?

Why Bother?

- Gives us probs, not just scores.
 - Can use 'em to bet, or combine w/ other probs.
- We can now learn weights from data!
 - Choose weights λ_i that maximize logprob of labeled training data = $\log \prod_i p(c_i) p(m_i | c_i)$
 - where c_i∈ {ling,spam} is classification of message m_i
 - and p(m_i | c_i) is log-linear model from previous slide
 - Convex function easy to maximize! (why?)
- But: $p(m_i | c_i)$ for a given λ requires $Z(\lambda)$: hard!

Attempt to Cancel out Z

- Set weights to maximize $\prod_i p(c_i) p(m_i | c_i)$
 - where p(m | spam) = $(1/Z(\lambda))$ exp $\sum_i \lambda_i f_i(m)$
 - But normalizer $Z(\lambda)$ is awful sum over all possible emails
- $\begin{tabular}{ll} & \textbf{So instead: Maximize} & Π_j p(c_j \mid m_j)$ \\ & \textbf{Doesn't model the emails } m_j$, only their classifications c_j \\ & \textbf{Makes more sense anyway given our feature set} \end{tabular}$
- $p(spam \mid m) = p(spam)p(m|spam) / (p(spam)p(m|spam) + p(ling)p(m|ling))$
- Z appears in both numerator and denominator
- Alas, doesn't cancel out because Z differs for the spam and ling models
- But we can fix this .

So: Modify Setup a Bit

- Instead of having separate models p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
- Have just one joint model p(m,c) gives us both p(m,spam) and p(m,ling)
- Equivalent to changing feature set to:
 - spam ← weight of this feature is log p(spam) + a constant
 spam and Contains Buy ←old spam model's weight for "contains Buy
 - spam and Contains supercalifragilistic
 - \leftarrow weight of this feature is log p(ling) + a constant
 - ling and Contains Buy ←old ling model's weight for "contains Buy"
 - ling and Contains supercalifragilistic
- No real change, but 2 categories now share single feature set and single value of $Z(\lambda)$

Now we can cancel out Z

Now $p(m,c) = (1/Z(\lambda)) \exp \sum_i \lambda_i f_i(m,c)$ where $c \in \{ling, spam\}$

- Old: choose weights λ_i that maximize prob of labeled training data = $\prod_i p(m_i, c_i)$
- New: choose weights λ_i that maximize prob of labels given messages = $\prod_i p(c_i \mid m_i)$
- Now Z cancels out of conditional probability!
 - $p(spam \mid m) = p(m,spam) / (p(m,spam) + p(m,ling))$ = $\exp \sum_{i} \lambda_{i} f_{i}(m,spam) / (\exp \sum_{i} \lambda_{i} f_{i}(m,spam) + \exp \sum_{i} \lambda_{i} f_{i}(m,ling))$
 - Easy to compute now ...
 - Π_i p(c_i | m_i) is still convex, so easy to maximize too

3

Maximum Entropy

- Suppose there are 10 classes, A through J.
- I don't give you any other information.
- Question: Given message m: what is your guess for p(C | m)?
- Suppose I tell you that 55% of all messages are in class A.
- Question: Now what is your guess for p(C | m)?
- Suppose I <u>also</u> tell you that 10% of all messages contain Buy and 80% of these are in class A or C.
- Question: Now what is your guess for p(C | m), if m contains Buy?
- OUCH!

600 465 - Intro to NI P - J. Fisne

Maximum Entropy

	Α	В	С	D	E	F	G	Н	I	J
Buy										.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

Column A sums to 0.55 ("55% of all messages are in class A")

600 465 - Intro to NLP - .1 Fisne

Maximum Entropy

	Α	В	С	D	E	F	G	Н	I	J
Buy										.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1 ("10% of all messages contain Buy")

600 465 - Intro to NI P - .I. Fisner

Maximum Entropy

	Α	В	С	D	E	F	G	Н	I	J
Day	.051									
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1
- (Buy, A) and (Buy, C) cells sum to 0.08 ("80% of the 10%")
- Given these constraints, fill in cells "as equally as possible": maximize the entropy (related to cross-entropy, perplexity)

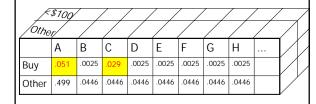
Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ... Largest if probabilities are evenly distributed

Maximum Entropy

	А	В	С	D	E	F	G	Н	I	J
Buy	.051	.0025	.029	.0025	.0025	.0025	.0025	.0025	.0025	.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1
- (Buy, A) and (Buy, C) cells sum to 0.08 ("80% of the 10%")
- Given these constraints, fill in cells "as equally as possible": maximize the entropy
- Now p(Buy, C) = .029 and p(C | Buy) = .29
- We got a compromise: $p(C \mid Buy) < p(A \mid Buy) < .55$

Generalizing to More Features



600 465 - Intro to NI P - J. Fisner

What we just did

- For each feature ("contains Buy"), see what fraction of training data has it
- Many distributions p(c,m) would predict these fractions (including the unsmoothed one where all mass goes to feature combos we've actually seen)
- Of these, pick distribution that has max entropy
- Amazing Theorem: This distribution has the form $p(m,c) = (1/Z(\lambda)) \exp \sum_i \lambda_i f_i(m,c)$
 - So it is log-linear. In fact it is the same log-linear distribution that maximizes $\prod_j p(m_j, c_j)$ as before!
- Gives another motivation for our log-linear approach.

600 465 - Intro to NLP - I. Fisne

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly.
- If we have a feature that only appears in spam training, not ling training, it will get weight ∞ to maximize p(spam | feature) at 1.
- These behaviors overfit the training data.
- Will probably do poorly on test data.

600 465 - Intro to NI P - J. Fisner

Solutions to Overfitting

- Throw out rare features.
 - Require every feature to occur > 4 times, and > 0 times with ling, and > 0 times with spam.
- 2. Only keep 1000 features.
 - Add one at a time, always greedily picking the one that most improves performance on held-out data.
- 3. Smooth the observed feature counts.
- 4. Smooth the weights by using a prior.
 - $\max p(\lambda | \text{data}) = \max p(\lambda, \text{data}) = p(\lambda)p(\text{data}|\lambda)$
 - decree $p(\lambda)$ to be high when most weights close to 0

600 465 - Intro to NI P - J. Fisner

27