
1

600.465 - Intro to NLP - J. Eisner 1

The Maximum-Entropy Stewpot

600.465 - Intro to NLP - J. Eisner 2

Probability is Useful
� We love probability distributions!

� We’ve learned how to define & use p(…) functions.
� Pick best output text T from a set of candidates

� speech recognition (HW2); machine translation; OCR; spell correction...
� maximize p1(T) for some appropriate distribution p1

� Pick best annotation T for a fixed input I
� text categorization; parsing; part-of-speech tagging …
� maximize p(T | I); equivalently maximize joint probability p(I,T)

� often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)
� speech recognition & other tasks above are cases of this too:

� we’re maximizing an appropriate p1(T) defined by p(T | I)

� Pick best probability distribution (a meta-problem!)
� really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
� maximum likelihood; smoothing; EM if unsupervised (incomplete data)
� Bayesian smoothing: max p(θ|data) = max p(θ, data) =p(θ)p(data|θ)

summary of half of the course (statistics)

600.465 - Intro to NLP - J. Eisner 3

Probability is Flexible

� We love probability distributions!
� We’ve learned how to define & use p(…) functions.

� We want p(…) to define probability of linguistic objects
� Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
� Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
� Vectors (decis.lists, Gaussians, naïve Bayes; Yarowsky, clustering/k-NN)

� We’ve also seen some not-so-probabilistic stuff
� Syntactic features, semantics, morph., Gold. Could be stochasticized?
� Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking
� But probabilities have wormed their way into most things
� p(…) has to capture our intuitions about the ling. data

summary of other half of the course (linguistics)

600.465 - Intro to NLP - J. Eisner 4

An Alternative Tradition
� Old AI hacking technique:

� Possible parses (or whatever) have scores.
� Pick the one with the best score.
� How do you define the score?

� Completely ad hoc!
� Throw anything you want into the stew
� Add a bonus for this, a penalty for that, etc.

� “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

� Total kludge, but totally flexible too …
� Can throw in any intuitions you might have

really so alternative?

600.465 - Intro to NLP - J. Eisner 5

An Alternative Tradition
� Old AI hacking technique:

� Possible parses (or whatever) have scores.
� Pick the one with the best score.
� How do you define the score?

� Completely ad hoc!
� Throw anything you want into the stew
� Add a bonus for this, a penalty for that, etc.

� “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

� Total kludge, but totally flexible too …
� Can throw in any intuitions you might have

really so alternative?

Exposé at 9

Probabilistic Revolution
Not Really a Revolution,

Critics Say
Log-probabilities no more

than scores in disguise

“We’re just adding stuff up
like the old corrupt regime
did,” admits spokesperson

600.465 - Intro to NLP - J. Eisner 6

Nuthin’ but adding weights

� n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

� PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

� HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

� Noisy channel: [log p(source)] + [log p(data | source)]
� Cascade of FSTs:

[log p(A)] + [log p(B | A)] + [log p(C | B)] + …

� Naïve Bayes:
log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

� Note: Today we’ll use +logprob not –logprob:
i.e., bigger weights are better.

2

600.465 - Intro to NLP - J. Eisner 7

Nuthin’ but adding weights

� n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

� PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

� Can regard any linguistic object as a collection of features
(here, tree = a collection of context-free rules)

� Weight of the object = total weight of features
� Our weights have always been conditional log-probs (≤ 0)

� but that is going to change in a few minutes!

� HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

� Noisy channel: [log p(source)] + [log p(data | source)]
� Cascade of FSTs:

[log p(A)] + [log p(B | A)] + [log p(C | B)] + …

� Naïve Bayes: 600.465 - Intro to NLP - J. Eisner 8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

� e.g., log p(t7 | t5, t6) (trigram tag probability)
� from supervised or unsupervised data

2. Our results are more meaningful
� Can use probabilities to place bets, quantify risk
� e.g., how sure are we that this is the correct parse?

3. Our results can be meaningfully combined ⇒ modularity!
� Multiply indep. conditional probs – normalized, unlike scores
� p(English text) * p(English phonemes | English text) * p(Jap.

phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
� p(semantics) * p(syntax | semantics) * p(morphology | syntax) *

p(phonology | morphology) * p(sounds | phonology)

83% of
^

600.465 - Intro to NLP - J. Eisner 9

Probabilists Regret Being Bound by Principle

� Ad-hoc approach does have one advantage
� Consider e.g. Naïve Bayes for text categorization:

� Buy this supercalifragilistic Ginsu knife set
for only $39 today …

� Some useful features:
� Contains Buy
� Contains supercalifragilistic
� Contains a dollar amount under $100
� Contains an imperative sentence
� Reading level = 8th grade
� Mentions money (use word classes and/or regexp to detect this)

� Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
� What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling

600.465 - Intro to NLP - J. Eisner 10

Probabilists Regret Being Bound by Principle

� Ad-hoc approach does have one advantage
� Consider e.g. Naïve Bayes for text categorization:

� Buy this supercalifragilistic Ginsu knife set
for only $39 today …

� Some useful features:

� Contains a dollar amount under $100

� Mentions money
� Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
� What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling
Naïve Bayes
claims .5*.9=45%
of spam has both
features –
25*9=225x more
likely than in ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling

but here are the emails with both features – only 25x!

600.465 - Intro to NLP - J. Eisner 11

� But ad-hoc approach does have one advantage

� Can adjust scores to compensate for feature overlap …

� Some useful features of this message:

� Contains a dollar amount under $100

� Mentions money
� Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
� What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

-1 -5.6

-.15 -3.3

spam ling
log prob

-.85 -2.3

-.15 -3.3

spam ling
adjusted

600.465 - Intro to NLP - J. Eisner 12

Revolution Corrupted by Bourgeois Values
� Naïve Bayes needs overlapping but independent features
� But not clear how to restructure these features like that:

� Contains Buy
� Contains supercalifragilistic
� Contains a dollar amount under $100
� Contains an imperative sentence
� Reading level = 7th grade
� Mentions money (use word classes and/or regexp to detect this)
� …

� Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

� Well, maybe we can add up scores and pretend like we
got a log probability:

3

600.465 - Intro to NLP - J. Eisner 13

Revolution Corrupted by Bourgeois Values
� Naïve Bayes needs overlapping but independent features
� But not clear how to restructure these features like that:

� Contains Buy
� Contains supercalifragilistic
� Contains a dollar amount under $100
� Contains an imperative sentence
� Reading level = 7th grade
� Mentions money (use word classes and/or regexp to detect this)
� …

� Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

� Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

+4
+0.2
+1
+2
-3

+5
…

total: 5.77

� Oops, then p(feats | spam) = exp 5.77 = 320.5
600.465 - Intro to NLP - J. Eisner 14

Renormalize by 1/Z to get a
Log-Linear Model

� p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message
λ i is weight of feature i
fi(m)∈ {0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1
(summed over all possible messages m! hard to find!)

� The weights we add up are basically arbitrary.
� They don’t have to mean anything, so long as they give us

a good probability.
� Why is it called “log-linear”?

� p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

600.465 - Intro to NLP - J. Eisner 15

Why Bother?
� Gives us probs, not just scores.

� Can use ’em to bet, or combine w/ other probs.

� We can now learn weights from data!
� Choose weights λi that maximize logprob of

labeled training data = log ∏j p(cj) p(mj | cj)
� where cj∈ {ling,spam} is classification of message mj
� and p(mj | cj) is log-linear model from previous slide

� Convex function – easy to maximize! (why?)

� But: p(mj | cj) for a given λ requires Z(λ): hard!
600.465 - Intro to NLP - J. Eisner 16

Attempt to Cancel out Z

� Set weights to maximize ∏j p(cj) p(mj | cj)
� where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
� But normalizer Z(λ) is awful sum over all possible emails

� So instead: Maximize ∏j p(cj | mj)
� Doesn’t model the emails mj, only their classifications cj
� Makes more sense anyway given our feature set

� p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))
� Z appears in both numerator and denominator
� Alas, doesn’t cancel out because Z differs for the spam and ling models
� But we can fix this …

600.465 - Intro to NLP - J. Eisner 17

So: Modify Setup a Bit
� Instead of having separate models

p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
� Have just one joint model p(m,c)

gives us both p(m,spam) and p(m,ling)
� Equivalent to changing feature set to:

� spam
� spam and Contains Buy
� spam and Contains supercalifragilistic
� …

� ling
� ling and Contains Buy
� ling and Contains supercalifragilistic

� No real change, but 2 categories now share single
feature set and single value of Z(λ)

� weight of this feature is log p(spam) + a constant

� weight of this feature is log p(ling) + a constant

�old spam model’s weight for “contains Buy”

�old ling model’s weight for “contains Buy”

600.465 - Intro to NLP - J. Eisner 18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λ i fi(m,c) where c∈ {ling, spam}

� Old: choose weights λi that maximize prob of labeled
training data = ∏j p(mj, cj)

� New: choose weights λi that maximize prob of labels
given messages = ∏j p(cj | mj)

� Now Z cancels out of conditional probability!
� p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

= exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

� Easy to compute now …
� ∏j p(cj | mj) is still convex, so easy to maximize too

4

600.465 - Intro to NLP - J. Eisner 19

Maximum Entropy

� Suppose there are 10 classes, A through J.
� I don’t give you any other information.
� Question: Given message m: what is your guess for p(C | m)?

� Suppose I tell you that 55% of all messages are in class A.
� Question: Now what is your guess for p(C | m)?

� Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

� Question: Now what is your guess for p(C | m),
if m contains Buy?

� OUCH!

600.465 - Intro to NLP - J. Eisner 20

Maximum Entropy

.0446.0446.0446.0446.0446.0446.0446.0446.0446.499Other

.0025.0025.0025.0025.0025.0025.0025.029.0025.051Buy

JIHGFEDCBA

� Column A sums to 0.55 (“55% of all messages are in class A”)

600.465 - Intro to NLP - J. Eisner 21

Maximum Entropy

.0446.0446.0446.0446.0446.0446.0446.0446.0446.499Other

.0025.0025.0025.0025.0025.0025.0025.029.0025.051Buy

JIHGFEDCBA

� Column A sums to 0.55
� Row Buy sums to 0.1 (“10% of all messages contain Buy”)

600.465 - Intro to NLP - J. Eisner 22

Maximum Entropy

.0446.0446.0446.0446.0446.0446.0446.0446.0446.499Other

.0025.0025.0025.0025.0025.0025.0025.029.0025.051Buy

JIHGFEDCBA

� Column A sums to 0.55
� Row Buy sums to 0.1
� (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

� Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed

600.465 - Intro to NLP - J. Eisner 23

Maximum Entropy

.0446.0446.0446.0446.0446.0446.0446.0446.0446.499Other

.0025.0025.0025.0025.0025.0025.0025.029.0025.051Buy

JIHGFEDCBA

� Column A sums to 0.55
� Row Buy sums to 0.1
� (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

� Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

� Now p(Buy, C) = .029 and p(C | Buy) = .29
� We got a compromise: p(C | Buy) < p(A | Buy) < .55

600.465 - Intro to NLP - J. Eisner 24

Generalizing to More Features

.0446.0446.0446.0446.0446.0446.0446.499Other

.0025.0025.0025.0025.0025.029.0025.051Buy

…HGFEDCBA

<$100
Other

5

600.465 - Intro to NLP - J. Eisner 25

What we just did
� For each feature (“contains Buy”), see what

fraction of training data has it
� Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all
mass goes to feature combos we’ve actually seen)

� Of these, pick distribution that has max entropy

� Amazing Theorem: This distribution has the
form p(m,c) = (1/Z(λ)) exp ∑i λ i fi(m,c)
� So it is log-linear. In fact it is the same log-linear

distribution that maximizes ∏j p(mj, cj) as before!

� Gives another motivation for our log-linear approach.

600.465 - Intro to NLP - J. Eisner 26

Overfitting

� If we have too many features, we can choose
weights to model the training data perfectly.

� If we have a feature that only appears in spam
training, not ling training, it will get weight ∞ to
maximize p(spam | feature) at 1.

� These behaviors overfit the training data.
� Will probably do poorly on test data.

600.465 - Intro to NLP - J. Eisner 27

Solutions to Overfitting

1. Throw out rare features.
� Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
� Add one at a time, always greedily picking the one

that most improves performance on held-out data.

3. Smooth the observed feature counts.
4. Smooth the weights by using a prior.

� max p(λ|data) = max p(λ, data) =p(λ)p(data|λ)
� decree p(λ) to be high when most weights close to 0

