Words vs. Terms
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Words vs. Terms

Information Retrieval cares about “terms”
You search for 'em, Google indexes 'em

Query:

What kind of nonkeys live in Costa Rica?
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Words vs. Terms

What kind of nonkeys live in Costa Rica?

words?

content words?

word stems?

word clusters?

multi-word phrases?

thematic content? (this is a “habitat question”)
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Finding Phrases (“collocations”)

kick the bucket

directed graph

iambic pentameter

Osama bin Laden

United Nations

real estate

quality control

international best practice

... have their own meanings, translations, etc.
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Finding Phrases (“collocations”)

Just use common bigrams?

Doesn't work:
80871  of the
58841 inthe
26430  to the

15494  to be
12622  from the

11428  New York
10007  he said

Possible correction — just drop function words!
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Finding Phrases (“collocations”)

Just use common bigrams?
Better correction - filter by tags: AN, NN, NP N ...

11487  New York
7261 United States
5412 Los Angeles
3301 last year

1074 chief executive
1073 real estate
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Finding Phrases (“collocations”)

Still want to filter out “new companies”

These words occur together reasonably often but
only because both are frequent

Do they occur more often [among A N pairs?]
than you would expect by chance?

Expect by chance: p(new) p(companies)

Actually observed: p(new companies)

mutual information = p(new) p(companies | new)

binomial significance test

data from Manning & Schiitze textbook (14 million words of NY Times)

(Pointwise) Mutual Information

new “new TOTAL

(o]

4,667 4,675

(“old companies™)

companies

____~companies 15,820| 14,287,181 14,303,001

(“old machines”)

TOTAL 15,828| 14,291,848| 14,307,676
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p(new companies) = p(new) p(companies) ? \N
MI = log, p(new companies) / p(new)p(companies)
= log, (8/N) /((15828/N)(4675/N)) = log, 1.55 = 0.63

MI >0 ifand onlyif p(co’s | new) > p(co’s) > p(co’s | =new)
Here MI is positive but small. Would be larger for stronger collocations.
Bl Eisper
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data from Manning & Schiitze textbook (14 million words of NY Times)

Significance Tests

new “new TOTAL

____companies 1 583 584
(“old companies™)

____~companies 1978 1,785,898 | 1,787,876
(“old machines”)

TOTAL 1979 1,786,481 | 1,788,460

Sparse data. In fact, suppose we divided all counts by 8:
Would MI change?
No, yet we should be less confident it's a real collocation.
Extreme case: what happens if 2 novel words next to each other?
So do a significance test! Takes sample size into account.
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data from Manning & Schiitze textbook (14 million words of NY Times)

Binomial Significance (“Coin Flips”)

%,’ new -new TOTAL

____companies 8 4,667 4,675

____~companies 15,820| 14,287,181|14,303,001

TOTAL 15,828| 14,291,848|14,307,676

Assume we have 2 coins that were used when generating the text.

Following new, we flip coin A to decide whether companies is next.

Following ~new, we flip coin B to decide whether companies is next.

We can see that A was flipped 15828 times and got 8 heads.
Probability of this: p? (1-p)i5820 * 158281/ o0

We can see that B was flipped 14291848 times and got 4667 heads.

Our question: Do the two coins have different weights?
(equivalently, are there really two separate coins or just one?)
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data from Manning & Schiitze textbook (14 million words of NY Times)

Binomial Significance (“Coin Flips”)

new “new TOTAL

____companies 8 4,667 4,675

____~companies 15,820| 14,287,181 14,303,001

TOTAL 15,828| 14,291,848|14,307,676

Null hypothesis: same coin
assume p,,(co’s | new) = p,,(co’s | =new) = p,,(co’s) = 4675/14307676
p.u(data) = p,,(8 out of 15828)*p, (4667 out of 14291848) = .00042
Collocation hypothesis: different coins
assume p,(co’s | new) = 8/15828, p,y(co’s | ~new) = 4667/14291848
Peoi(data) = p, (8 out of 15828)*p,,(4667 out of 14291848) = .00081
So collocation hypothesis doubles p(data).
We can sort bigrams by the log-likelihood ratio: log p ,(data)/p,,(data)
i.e., how sure are we that “companies” is more likely after “new”?
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data from Manning & Schiitze textbook (14 million words of NY Times)

Binomial Significance (“Coin Flips”)

new “new TOTAL

____companies 1 583 584
____~companies 1978 1,785,898| 1,787,876
TOTAL 1979 1,786,481| 1,788,460

Null hypothesis: same coin
assume p,,,(co’s | new) = p,(co’s | ~new) = p,,(co’s) = 584/1788460
pau(data) = p,,(1 out of 1979)*p, (583 out of 1786481) = .0056
Collocation hypothesis: different coins
assume pg,(co’s | new) = 1/1979, py,(co’s | =new) = 583/1786481
Peor(data) = py (1 out of 1979)*p,,(583 out of 1786418) = .0061
Collocation hypothesis still increases p(data), but only slightly now.
If we don't have much data, 2-coin model can’t be much better at explaining it.

Pointwise mutual information as strong as before, but based on much less data.
<$0it's pow reasonable to believe the null hypothesis that it's a coincidence,




data from Manning & Schiitze textbook (14 million words of NY Times)

Binomial Significance (“Coin Flips”)

new “new TOTAL

____companies 8 4,667 4,675

____~companies 15,820| 14,287,181|14,303,001

TOTAL 15,828| 14,291,848|14,307,676

Null hypothesis: same coin
assume p,,,(co’s | new) = p,,(co’s | =new) = p,,(co’s) = 4675/14307676
p.u(data) = p,,(8 out of 15828)*p, (4667 out of 14291848) = .00042
Collocation hypothesis: different coins
assume p,(co’s | new) = 8/15828, p,y(co’s | ~new) = 4667/14291848
Peoi(data) = p, (8 out of 15828)*p,,(4667 out of 14291848) = .00081
Does this mean that collocation hypothesis is twice as likely?
No, as it's far less probable a priori ! (most bigrams ain't collocations)
Bayes: p(coll | data) = p(coll) * p(data | coll) / p(data) isn't twice p(null | data)
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Function vs. Content Words

Might want to eliminate function words, or reduce
their influence on a search

Tests for content word:

If it appears rarely?
no: c(beneath) < c(Kennedy) = c(aside) « c(oil) in WSJ
If it appears in only a few documents?
better: Kennedy tokens are concentrated in a few docs
This is traditional solution in IR
If its frequency varies a lot among documents?
best: content words come in bursts (when it rains, it pours?)

probability of Kennedy is increased if Kennedy appeared in
preceding text — it is a “self-trigger” whereas beneath isn't
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Latent Semantic Analysis

A trick from Information Retrieval

Each document in corpus is a length-k vector
Or each paragraph, or whatever
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a single document

Latent Semantic Analysis

A trick from Information Retrieval
Each document in corpus is a length-k vector
Plot all documents in corpus

Reduced-dimensionality plot True plot in k dimensions
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Latent Semantic Analysis

Reduced plot is a perspective drawing of true plot

It projects true plot onto a few axes

Oa best choice of axes — shows most variation in the data.
Found by linear algebra: “Singular Value Decomposition” (SVD)

True plot in k dimensions
o © [

Reduced-dimensionality plot
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Latent Semantic Analysis

SVD plot allows best possible reconstruction of true plot
(i.e., can recover 3-D coordinates with minimal distortion)

Ignores variation in the axes that it didn't pick
Hope that variation’s just noise and we want to ignore it

Reduced-dimensionality plot True plot in k dimensions
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Latent Semantic Analysis

SVD finds a small number of theme vectors
Approximates each doc as linear combination of themes
Coordinates in reduced plot = linear coefficients

How much of theme A in this document? How much of theme B?
Each theme is a collection of words that tend to appear together

Reduced-dimensionality plot True plot in k dimensions
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Latent Semantic Analysis

New coordinates might actually be useful for Info Retrieval

To compare 2 documents, or a query and a document:
Project both into reduced space: do they have themes in common?
Even if they have no words in common!

Reduced-dimensionality plot True plot in k dimensions
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Latent Semantic Analysis

Themes extracted for IR might help sense disambiguation

Each word is like a tiny document: (0,0,0,1,0,0,...)
Express word as a linear combination of themes
Each theme corresponds to a sense?
E.g., “Jordan” has Mideast and Sports themes
(plus Advertising theme, alas, which is same sense as Sports)

Word's sense in a document: which of its themes are strongest in
the document?

Groups senses as well as splitting them
One word has several themes and many words have same theme
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Latent Semantic Analysis

Another perspective (similar to neural networks):

terms
12345672829

b
ROAN AR
\V#?&?&»‘x%

W)

matrix of strengths
(how strong is each
term in each document?)

"

1234567 Each cpnnection has a
documents weight given by the matrix.
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Latent Semantic Analysis

Which documents is term 5 strong in?

terms
12345672829

\l\\\ N

\M\}( il

Nhes<s:
M

docs 2,5, 6
light up strongest.

1234567
documents
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Latent Semantic Analysis

Which documents are terms 5 and 8 strong in?

terms
12345672829

AN

\

M

\)\W«\\ ,9;'1"‘9 / This answers a query

"Q& consisting of terms 5 and 8!
g

//‘(

documents

really just matrix multiplication:
term vector (query) x strength matrix = doc vector
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Latent Semantic Analysis
Conversely, what terms are strong in document 5?

terms
12345672829

\idddd

N

“

)

gives doc 5’s coordinates!

N
W

1234567

Latent Semantic Analysis

SVD approximates by smaller 3-layer network
Forces sparse data through a bottleneck, smoothing it
terms
12345672839

terms
123 456789
Nhddds
Nt
b
)

)
123 4567

1234567
documents

documents
[ ] [ )
»
-

documents
L
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Latent Semantic Analysis

l.e., smooth sparse data by matrix approx: M = A B
A encodes camera angle, B gives each doc’s new coords
terms
1234567289

terms
12345672829

matrix
M

1234567 1234567
documents

documents
[ ] [ )
»
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Latent Semantic Analysis
Completely symmetric! Regard A, B as projecting terms and docs
into a low-dimensional “theme space” where their similarity can be

judged.
terms
12345672809

terms
12345672829

matrix
M

1234567 1234567
documents

documents
‘&‘ )

Latent Semantic Analysis

into a low-dimensional “theme space” where their similarity can
be judged.

Cluster documents (helps sparsity problem!)

Cluster words

Compare a word with a doc

Identify a word’s themes with its senses
sense disambiguation by looking at document’s senses

Identify a document’s themes with its topics
topic categorization
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Completely symmetric. Regard A, B as projecting terms and docs
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If you’'ve seen SVD before ...

SVD actually decomposes M = A D B’ exactly
A = camera angle (orthonormal); D diagonal; B’ orthonormal

terms
12345672829

terms
12345672829

matrix
M

1234567
documents
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If you’'ve seen SVD before ...

Keep only the largest j < k diagonal elements of D
This gives best possible approximation to M using only j blue units

terms
12345672829

matrix
M

1234567
documents
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If you’'ve seen SVD before ...

Keep only the largest j < k diagonal elements of D
This gives best possible approximation to M using only j blue units

terms terms
12345672829

12345672829

matrix
M

1234567
documents
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If you’'ve seen SVD before ...

To simplify picture, can write M = A (DB’) = AB

terms terms
12345672829 12345672829

matrix L)
1234567 1234567
documents documents

How should you pick j (number of blue units)?
Just like picking number of clusters:
How well does §y§em work with each j (on held-out data)?
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