Finite-State and the Noisy Channel

COO ACE Intro to NI D. I. Fina

Word Segmentation

theprophetsaidtothecity

- What does this say?
 - And what other words are substrings?
- Could segment with parsing (how?), but slow.
- Given L = a "lexicon" FSA that matches all English words.
- How to apply to this problem?
- What if Lexicon is weighted?
- From unigrams to bigrams?
- Smooth L to include unseen words?

600 465 Jatro to NLD | Finance

Spelling correction

- Spelling correction also needs a lexicon L
- But there is distortion ...
 - Let T be a transducer that models common typos and other spelling errors

```
    ance → ence (deliverance, ...)
    e → ε (deliverance, ...)
    ε → e // Cons _ Cons (athlete, ...)
    rr → r (embarrass, occurrence, ...)
    ge → dge (privilege, ...)
    etc.
```

- Now what can you do with L .o. T?
- Should T and L have probabilities?
- Want T to include "all possible" errors ...

600 465 - Intro to NI P - J. Fisne

Noisy Channel Model real language X noisy channel X → Y yucky language Y want to recover X from Y

Morpheme Segmentation

- Let Lexicon be a machine that matches all Turkish words
 - Same problem as word segmentation
 - Just at a lower level: morpheme segmentation
 - Turkish word: uygarlas,tiramadiklarimizdanmis,sinizcasina
 = uygar+las,+tir+ama+dik+lar+imiz+dan+mis,+siniz+casina
 (behaving) as if you are among those whom we could not cause to become civilized
 - Some constraints on morpheme sequence: bigram probs
 - Generative model concatenate then fix up joints
 - stop + -ing = stopping, fly + s = flies
 Use a cascade of transducers to handle all the fixups
 - But this is just morphology!
 - Can use probabilities here too (but people often don't)

