Building Finite-State
Machines

600465 _Intro to NIP] Ficper

Xerox Finite-State Tool

You'll use it for homework ...

Commercial product (but we have academic license here)
One of several finite-state toolkits available

This one is easiest to use but doesn’t have probabilities

Usage:
Enter a regular expression; it builds FSA or FST
Now type in input string

FSA: It tells you whether it's accepted
FST: It tells you all the output strings (if any)
Can also invert FST to let you map outputs to inputs

Could hook it up to other NLP tools that need finite-
state processing of their input or output

600465 _Intro fo NIP] Ficper

Common Regular
Expression Operators

concatenation EF
x4 iteration E*, E+
| union E|F
& intersection E&F
~\ - complementation, minus —~E, \x, E-F
. X, crossproduct E.x.F
. 0. composition E.o.F
.u upper (input) language E.u “domain”
.

lower (output) language E.| *“range”

£00.465 Jotio fo NID] Ficno

What the Operators Mean

[blackboard discussion]

[Composition is the most interesting
case: see following slides.]

600465 1ot

foNID 1 Ficno

How to define transducers?

state set Q

initial state i

set of final states F

input alphabet Z (also define 2*, 2+, 3?)
output alphabet A

transition function d: Q x X? --> 29
output function s: Q x Z? x Q --> A*

£00 465 lotio to NID] Ficno

o © o X

600465 1ot

slide courtesy of L. Karttunen (modified)

How to implement?

concatenation

iteration

union

complementation, minus
intersection
crossproduct
composition

upper (input) language
lower (output) language

Lo NID] Ficno

EF

E*, E+

E|F

~E, \x, E-F
E&F

E X F

E.o. F

E.u “domain”
E.l “range”

example courtesy of M. Mohri

Concatenation

ed/0.5

o green/0.3 ‘ blue/0

green/0.4

blue/1.2

example courtesy of M. Mohri

Union

/0.5 green/0.4
o green/0.3 ‘ blue/0 + blue/1.2

ed/0.5

— 3 green03 ") blue/0 (5)_cpso8
{} O D,

600465 _Intro to NIP] Ficper

red/0.5

. green/0.3 blue/0
e S ellowos

green/0.4

blue/1.2

600465 _Intro fo NIP] Ficper

example courtesy of M. Mohri

Closure (this example has outputs too)

a:b/0.6 *

b:b/0.3 a:b/0.5

a:a/0.1

a:b/0.6

b:b/0.3

b:b/0.4

why add new start state 4? eps:eps/0.7
why not just make state 0 final?

600465 lotio fo NID] F) 9

example courtesy of M. Mohri

Upper language (domain)

a:b/0.6

b:b/0.3 a:b/0.5

a:a/0.1

a/0.6

similarly construct lower language .l
also called input & output languages

600465 lotio fo NID] F) 10

example courtesy of M. Mohri

Reversal

a:b/0.6

b:b/0.3

a:a/0.1

a:b/0.6

a:b/0.5 b:b/0.3

b:b/0.4

£00 465 lotio to NID] F) 11

example courtesy of M. Mohri

Inversion

a:b/0.6

b:b/0.3
a:a/0.1

b:b/0.3

£00 465 lotio fo NID] Fi 1

Complementation

Given a machine M, represent all strings
not accepted by M

Just change final states to non-final and
vice-versa

Works only if machine has been
determinized and completed first (why?)

example adapted from M. Mohri

Intersection
fat/e._s)
pig/0.3 eats/0
(@22 D=0y

sleeps/0.6
pig/0.4

8 sleeps/1.3
-

& fat/0.2

eats/0.6

= fat/0.7 pigi0.7 @}WOG/

Intersection
fat/0.5
8 pig/0.3 eats/0 210.8
O
sleeps/0.6
pig/0.4

fat/0.2 8 sleeps/1.3 @
1 2/0.5
& O
eats/0.6
eats/0. y
— fat/0.7 pig/0.7 @/ﬁ/
Paths 0012 and 0110 both accept fat pig eats

So must the new machine: along path 0,0 0,1 1,1 2,0

£00.465 Jotio fo NID] Ficno

Intersection
faﬂ(%%
pig/0.3 eats/0
@22 D=2 (09
sleeps/0.6
pig/0.4
fat/0.2 8 sleeps/1.3
1
& @2 o3
eats/0.6

— fat/0.7

Paths 00 and 01 both accept fat
So must the new machine: along path 0,0 0,1

£00.465 lotio fo NID] Ficno 15

Intersection
fat/g.%
pig/0.3 eats/0
@ B2 @ (og
sleeps/0.6
pig/0.4
fat/0.2 8 sleeps/1.3
& O
eats/0.6

— fat/0.7 pig/0.7 @

Paths 00 and 11 both accept pig
So must the new machine: along path 0,1 1,1

£00 465 lotio to NID] Ficno

Intersection
fat/g.%
pig/0.3 eats/0
(-0 @ =0
sleeps/0.6
pig/0.4
fat/0.2 8 sleeps/1.3 O
1 2/0.5
& @2 o3
eats/0.6
— fat/0.7 pig/0.7 @
Paths 12 and 12 both accept fat sleeps/1.9

So must the new machine: along path 1,1 2,2

600465 lotio to NID] Ficno 1

Intersection

fat/0.5

A

sleeps/0.6

pig/0.4

& 38 sleeps/1.3 @

eats/0.6
_ fat/0.7 pig/0.7 ﬁmﬁ/
= Q=L@

600465 _Intro to NIP] Ficper

What Composition Means

What Composition Means

f g
3 4
ab?d > abed — [aBys
2 2
abed — oped
6 8
abid — P\
does not contain
R R any pair of the
Relation = set of pairs fomabid>..
ab?d - abcd abcd > afyd
ab?d - abed abed > afed
{ab?d > abjd} {abed > aﬁb}
f g
3 4
ab?d > abed — [aBys
2 2
abed — aped
8
6 A

abjd — [

600465)

4
opyod
;)
. - oBe
Relation composition: f ° g E
o3
Relation = set of pairs
ab?d - abcd abcd > afyd
ab?d - abed abed > afed
{ab?d > abjd} feg {abed > aﬁb}
ab?d > apyd
ab?d 2> aped
ab?d > a3 4
ab?d — opyod
2
oped

feg={>z: x>y Of and y>z O0)}
where x, y, z are strings

500465

Intersection vs. Composition

Intersection
pig/0.4

=20 « ® - @@

Composition

pig:pink/0.4

ilbur:pig/O0..
. .0.

iIbur:pink/O@

600465 |

example courtesy of M. Mohri

) o Composition
Intersection vs. Composition

Intersection mismatch

elephant/0.4 A ‘
@@ & @ = @@

Composition mismatch

elephant:gray/0.4
Wilbur:pig/0.
© .0.

600465 _Intro to NIP] Ficper 5

Composition Composition

a:b.o. b:a=a:a b:b .o. b:a=b:a
/] /]

Composition

L b

s
ORI O)

- @
=02 ‘
0 P
\/\ e r\\

a:b.o. b:a=a:a

B

Composition

brati6 \:i‘/}
a:a.o.a:b=ab \/

Composition
-
OEE A

22l

=02

o

=307
II.A

i

brai 6 \\
b:b .0. a:b = nothing
N/

(since intermediate symbol doesn’t match)

Composition

Relation = set of pairs

ab?d - abcd abcd > afyd
ab?d - abed abed > afed
ab?d - abjd feg abed > afd

ab?d 2> apyd
ab?d 2> aped
ab?d 2> oD

4
ab?d — apyd

feg={>z:y x>y Of and y>z O0g)}
where x, y, z are strings

500465

Composition with Sets

We've defined A .0. B where both are FSTs
Now extend definition to allow one to be a FSA
Two relations (FSTs):

A°B={x>z: (x>y OA and y>z OB)}
Set and relation:

A°B={x>z: xOA and x>z OB}
Relation and set:

A°B={x>z: x>z OA and z0OB}
Two sets (acceptors) — same as intersection:

A°B={x: x OA and x OB}

600465 _Intro to NIP] Ficper

Composition and Coercion

Really just treats a set as identity relation on set
{abc, pqr, ..} = {abc>abc, pgr->par, ...}
Two relations (FSTs):
A°B={x>z: x>y OA and y>z OB)}
Set and relation is now special case (if Oy then y=x):
A°B={x>z: x>x0OA and x>z OB}
Relation and set is now special case (if [y then y=2):
A°B={x>z: x>z0OA and z>z 0B}

Two sets (acceptors) is now special case:
A°B={x>z: x>x OA and x>x OB}

600465 _Intro fo NIP] Ficper

3 Uses of Set Composition:

Feed string into Greek transducer:
{abed->abed} .0. Greek = {abed>aped, abed>ap3 }
{abed} .0. Greek = {abed>cped, abed=>apd }
[{abed} .0. Greek].| = {apes, B3 }

Feed several strings in parallel:

{abcd, abed} .0. Greek
= {abcd=>apy3d, abed>0ped, abed> B3 }
[{abcd,abed} .0. Greek].l = {apys, apes, ap@ }

Filter result via Nog = {apys3, BB , ..}

{abcd,abed} .0. Greek .0. Nog
= {abcd>apyd, abed>0pB }

£00.465 Jotio fo NID] Ficno

What are the “basic”
transducers?

The operations on the previous slides
combine transducers into bigger ones

But where do we start?

ae fora @ O250)
e:x for x (A Qﬂ(@

Q: Do we also need a:x? How about €:€ ?

£00.465 lotio fo NID] Ficno A0

