Parsing

Programming languages

printf ("/charset [%"

(re_opcode_t) "(p 1) == charset_not ? "A" : "");
assert (p + *p < pend);
for (c = 0; c < 256; c++)
f Sc /B < *p && (p[1 + (c/8)7 &(1 << (c %8)))) {
* Are we starting a range
if (last +1 == ¢ && ! |nrange) {
putchar ('-");
inrange = 1;
}* Have we broken g&
else if (last + 1 |nrange) {
put char (Iast);
Inrange = O;
}
if (! |nran?;
put char Easy to parse.
last = ¢;

Designed that way!

Natural languages

prlntf /charset 0/5 re opcode_t *p - 1 == charset_not ? "7"
g dforc:O'c<256 c++|fc/8<
p&&p1+c/ &1<<c%8 \Aestartlgarange”lflast+
! inrange putchar '-'. inrange = 1; Have we broken
a range” el se if last + I'= ¢ & inrange putchar |ast;
inrange = 0; if ! |nrange putchar c; last = c;

No {} () [] to indicate scope & precedence
Lots of overloading (arity varies)
Grammar isn’t known in advance!

Context-free grammar not best formalism

The parsing problem

correct test trees

EEEmEmE —

S e R

— accuracy

test mmmEE —

sentences

TMwD>T
5
}
—=D=00O

Recent parsers

I quite accurate
Grammar (Eisner, Collins,

Applications of parsing (1/2)

Machine translation (aAlshawi 1996, Wu 1997, ...)

) tree :
English { ém’ é > Chinese

Speech synthesis from parses (Prevost 1996)

The government plans to raise income tax.
The government plans to raise income tax the imagination.

Speech recognition using parsing (chelba et al 1998)
Put the file in the folder.
Put the file and the folder.

Applications of parsing (2/2)

Grammar checking (Mmicrosoft)

Indexing for information retrieval (woods 1997)
... washing a car with a hose ... —— vehicle maintenance

Information extraction (Hobbs 1996)

aNY Times ||| —»| <2 A = ﬂj%}@lﬁ)vasg
=archive E2 r i iad i

Parsing for the Turing Test

Most linguistic properties are defined over trees.
One needs to parse to see subtle distinctions. E.g.:

Sara dislikes criticism of her. (her #Sara)
Sara dislikes criticism of her by anyone. (her #Sara)
Sara dislikes anyone’s criticism of her. (her = Sara or her #Sara)

In rest of lecture (and following two
lectures), we'll develop some parsing
algorithms on the blackboard.

CKY algorithm, recognizer version

Input: string of n words
Output: yes/no (since it's only a recognizer)
Data structure: n x n table

rows labeled 0 to n-1

columns labeled 1 to n

cell [i,j] lists constituents found between i and j

CKY algorithm, recognizer version

fori:=1ton
Add to [i-1,i] all categories for the it" word
for width := 2 ton
for start := 0 to n-width
Define end := start + width
for mid := start+1 to end-1
for every constituent X in [start,mid]
for every constituent Y in [mid,end]
for all ways of combining X and Y (if any)

Add the resulting constituent to
[start,end] if it's not already there.

