
1

Parsing
Programming languages
printf ("/charset [%s",

(re_opcode_t) *(p - 1) == charset_not ? "^" : "");

assert (p + *p < pend);

for (c = 0; c < 256; c++)
if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {

/* Are we starting a range? */
if (last + 1 == c && ! inrange) {

putchar ('-');
inrange = 1;

}
/* Have we broken a range? */
else if (last + 1 != c && inrange) {

putchar (last);
inrange = 0;

}

if (! inrange)
putchar (c);

last = c;
}

� Easy to parse.

� Designed that way!

Natural languages

� No {} () [] to indicate scope & precedence

� Lots of overloading (arity varies)

� Grammar isn’t known in advance!

� Context-free grammar not best formalism

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^"
: ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 <
*p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last +
1 == c && ! inrange putchar '-'; inrange = 1; Have we broken
a range? else if last + 1 != c && inrange putchar last;
inrange = 0; if ! inrange putchar c; last = c;

The parsing problem

P
A
R
S
E
R

Grammar

s
c
o
r
e
r

correct test trees

test
sentences

accuracy

Recent parsers
quite accurate
(Eisner, Collins,
Charniak, etc.)

Applications of parsing (1/2)

� Machine translation (Alshawi 1996, Wu 1997, ...)

English Chinese
tree

operations

� Speech synthesis from parses (Prevost 1996)
The government plans to raise income tax.
The government plans to raise income tax the imagination.

� Speech recognition using parsing (Chelba et al 1998)

Put the file in the folder.
Put the file and the folder.

Applications of parsing (2/2)

� Grammar checking (Microsoft)

� Indexing for information retrieval (Woods 1997)
... washing a car with a hose ... vehicle maintenance

� Information extraction (Hobbs 1996)

�NY Times
�archive

�Database

�query

2

Parsing for the Turing Test

� Most linguistic properties are defined over trees.
� One needs to parse to see subtle distinctions. E.g.:

Sara dislikes criticism of her. (her ≠ Sara)

Sara dislikes criticism of her by anyone. (her ≠ Sara)

Sara dislikes anyone’s criticism of her. (her = Sara or her ≠ Sara)

� In rest of lecture (and following two
lectures), we’ll develop some parsing
algorithms on the blackboard.

CKY algorithm, recognizer version

� Input: string of n words
� Output: yes/no (since it’s only a recognizer)

� Data structure: n x n table
� rows labeled 0 to n-1
� columns labeled 1 to n
� cell [i,j] lists constituents found between i and j

CKY algorithm, recognizer version

� for i := 1 to n
� Add to [i-1,i] all categories for the ith word

� for width := 2 to n
� for start := 0 to n-width

� Define end := start + width
� for mid := start+1 to end-1

� for every constituent X in [start,mid]
� for every constituent Y in [mid,end]
� for all ways of combining X and Y (if any)
� Add the resulting constituent to

[start,end] if it’s not already there.

