Tree-Adjoining Grammar
(TAG)

One of several formalisms
that are actually more
powerful than CFG

Note: CFG with features
isn't any more powerful than vanilla CFG.
(Why? what do we mean by “more powerful”?)

600465 oo g NIP - Fisper 1

Read the Transparencies

This lecture used transparencies.

But here are some very brief notes to
remind you what we covered.

The transparencies are now online, too.

600465 oo g NIP - Fisper

What CFG and TAG Share

Build a tree from a bunch of tree fragments

technically, build a derived tree from elementary
trees

The collection of allowed fragments is the
grammar!

The fragments might correspond to context-free
rules, but they might be bigger as in TAG

Semantics associated with every fragment

A00 AR5 oot NIP .1 Ficper

Substitution

Substitution: Stick an appropriate initial
tree fragment at the bottom of a tree (to
expand a childless nonterminal node)

Fills semantic slots of other words

Get templates and idioms for free: “NP
called NP up,” “NP kicked the bucket”

A00 465 oot NIP .1 Ficper

Adjunction

Adjunction: Stick an appropriate auxiliary tree
fragment into the middle of a tree

Splits a node into two parts and sticks some
material between them

Good for adding optional modifiers

Good for long-distance dependencies

Why insert into the middle?

Because the insertion doesn’t affect the specified
semantic relations among nodes in the original
fragment

A00 AR5 oot NIP .1 Ficper 5

Features

Still need features with TAGs

Every elementary tree has some features

If a node can be split, it must specify which
features will get associated with the top half vs.
bottom half

Have to do unification or checking to figure out
the values of the features after all the
substitution and adjunction is done. This tells
us how to do morphology legally.

A00 465 oot NIP .1 Ficper




