
1

600.465 - Intro to NLP - J. Eisner 1

Smoothing

600.465 - Intro to NLP - J. Eisner 2

Parameter Estimation

p(x1=h, x2=o, x3=r, x4=s, x5=e, x6=s, …)
≈ p(h | BOS, BOS)
* p(o | BOS, h)
* p(r | h, o)
* p(s | o, r)
* p(e | r, s)
* p(s | s, e)
* …

4470/52108

395/ 4470

1417/14765

1573/26412

1610/12253

2044/21250

trigram model’s
parameters

values of
those
parameters,
as naively
estimated
from Brown
corpus.

600.465 - Intro to NLP - J. Eisner 3

How to Estimate?

� p(z | xy) = ?
� Suppose our training data includes

… xya ..
… xyd …
… xyd …

but never xyz
� Should we conclude

p(a | xy) = 1/3?
p(d | xy) = 2/3?
p(z | xy) = 0/3?

� NO! Absence of xyz might just be bad luck.

600.465 - Intro to NLP - J. Eisner 4

Smoothing the Estimates

� Should we conclude
p(a | xy) = 1/3? reduce this
p(d | xy) = 2/3? reduce this
p(z | xy) = 0/3? increase this

� Discount the positive counts somewhat
� Reallocate that probability to the zeroes
� Especially if the denominator is small …

� 1/3 probably too high, 100/300 probably about right
� Especially if numerator is small …

� 1/300 probably too high, 100/300 probably about right

600.465 - Intro to NLP - J. Eisner 5

Add-One Smoothing

3/3
0/3

0/3
2/3
0/3
0/3
1/3

29/29293Total xy
1/2910xyz

…
1/2910xye
3/2932xyd
1/2910xyc
1/2910xyb
2/2921xya

600.465 - Intro to NLP - J. Eisner 6

Add-One Smoothing

300/300
0/300

0/300
200/300

0/300
0/300

100/300

326/326326300Total xy
1/32610xyz

…
1/32610xye

201/326201200xyd
1/32610xyc
1/32610xyb

101/326101100xya

300 observations instead of 3 – better data, less smoothing

2

600.465 - Intro to NLP - J. Eisner 7

Add-One Smoothing

3/3
0/3

0/3
2/3
0/3
0/3
1/3

29/29293Total xy
1/2910xyz

…
1/2910xye
3/2932xyd
1/2910xyc
1/2910xyb
2/2921xya

Suppose we’re considering 20000 word types, not 26 letters

600.465 - Intro to NLP - J. Eisner 8

Add-One Smoothing
As we see more word types, smoothed estimates keep falling

3/3
0/3

0/3
2/3
0/3
0/3
1/3

3
0

0
2
0
0
1

20003/2000320003Total

1/200031see the zygote

…

1/200031see the Abram

3/200033see the above

1/200031see the abduct

1/200031see the abbot

2/200032see the abacus

600.465 - Intro to NLP - J. Eisner 9

Add-Lambda Smoothing
� Suppose we’re dealing with a vocab of 20000 words
� As we get more and more training data, we see more and more words

that need probability – the probabilities of existing words keep
dropping, instead of converging

� This can’t be right – eventually they drop too low.

� So instead of adding 1 to all counts, add λ = 0.01
� This gives much less probability to those extra events
� But how to pick best value for α? (for the size of our training corpus)
� Try lots of values on a simulated test set! “held-out data”
� Or even better: 10-fold cross validation (aka “jackknifing”)

� Divide data into 10 subsets
� To evaluate a given alpha:

� Measure performance on each subset when other 9 are used for training
� Average performance over the 10 subsets tells us how good alpha is

600.465 - Intro to NLP - J. Eisner 10

Terminology

� Word type = distinct vocabulary item
� Word token = occurrence of that type
� A dictionary is a list of types (once each)
� A corpus is a list of tokens (each type has many tokens)

…

0e

200d

0c

0b

100a

26 types 300 tokens
100 tokens of this type

200 tokens of this type

0 tokens of this type

600.465 - Intro to NLP - J. Eisner 11

Always treat zeroes the same?

…

70ice cream

038his

10grapes

0

50

0

0

18

150

versus
0farina

0every

2donuts

1candy

0both

0a

20000 types 300 tokens 300 tokens

0/300 0/300

which zero would you expect is really rare?
600.465 - Intro to NLP - J. Eisner 12

Always treat zeroes the same?

…

70ice cream

038his

10grapes

0

50

0

0

18

150

versus
0farina

0every

2donuts

1candy

0both

0a

20000 types 300 tokens 300 tokens

determiners:
a closed class

3

600.465 - Intro to NLP - J. Eisner 13

Always treat zeroes the same?

…

70ice cream

038his

10grapes

0

50

0

0

18

150

versus
0farina

0every

2donuts

1candy

0both

0a

20000 types 300 tokens 300 tokens

(food) nouns:
an open class 600.465 - Intro to NLP - J. Eisner 14

Good-Turing Smoothing

� Intuition: Can judge rate of novel events
by rate of singletons.

� Let Nr = # of word types with r training
tokens
� e.g., N0 = number of unobserved words
� e.g., N1 = number of singletons

� Let N = Σ r Nr = total # of training tokens

600.465 - Intro to NLP - J. Eisner 15

Good-Turing Smoothing

� Let Nr = # of word types with r training tokens
� Let N = Σ r Nr = total # of training tokens

� Naïve estimate: if x has r tokens, p(x) = ?
� Answer: r/N

� Total naïve probability of all words with r tokens?
� Answer: Nr r / N.

� Good-Turing estimate of this total probability:
� Defined as: Nr+1 (r+1) / N
� So proportion of novel words in test data is estimated by

proportion of singletons in training data.
� Proportion in test data of the N1 singletons is estimated by

proportion of the N2 doubletons in training data. Etc.
� So what is Good-Turing estimate of p(x)?

600.465 - Intro to NLP - J. Eisner 16

Use the backoff, Luke!

� Why are we treating all novel events as the same?

� p(zygote | see the) vs. p(baby | see the)
� Suppose both trigrams have zero count

� baby beats zygote as a unigram
� the baby beats the zygote as a bigram
� see the baby beats see the zygote ?

� As always for backoff:
� Lower-order probabilities (unigram, bigram) aren’t quite what we want
� But we do have enuf data to estimate them & they’re better than nothing.

600.465 - Intro to NLP - J. Eisner 17

Smoothing + backoff
� Basic smoothing (e.g., add-λ or Good-Turing):

� Holds out some probability mass for novel events
� E.g., Good-Turing gives them total mass of N1/N
� Divided up evenly among the novel events

� Backoff smoothing
� Holds out same amount of probability mass for novel events
� But divide up unevenly in proportion to backoff prob.
� For p(z | xy):

� Novel events are types z that were never observed after xy
� Backoff prob for p(z | xy) is p(z | y) … which in turn backs off to p(z)!

� Note: How much mass to hold out for novel events in context xy?
� Depends on whether position following xy is an open class
� Usually not enough data to tell, though, so aggregate with other

contexts (all contexts? similar contexts?)
600.465 - Intro to NLP - J. Eisner 18

Deleted Interpolation

� Can do even simpler stuff:
� Estimate p(z | xy) as weighted average of the

naïve MLE estimates of p(z | xy), p(z | y), p(z)
� The weights can depend on the context xy

� If a lot of data are available for the context,
then trust p(z | xy) more since well-observed

� If there are not many singletons in the context,
then trust p(z | xy) more since closed-class

� Learn the weights on held-out data w/
jackknifing

