Smoothing

600465 oo g NIP - Fisper

Parameter Estimation

p(X1:h7 X,=0, X3=TI, X;=S, Xg=€, Xz=S,)
= p(h I BOS, BOS) trigram model’s

* p(o I BOS’ h) parameters 4:;;);5ji33
* p(l' I h- O) values of 1417/14765
*p(s|o,r) e ters, | 1573126412
*pe]r,s) asnavely | 1610/12253
* p(S | S, e) from Brown _ 2044/21250

corpus.
* p

600465 oo g NIP - Fisper

How to Estimate?

p(z | xy) =2
Suppose our training data includes
.o Xya ..
woxyd L
woxyd L
but never xyz
Should we conclude
p(a| xy) = 1/3?
p(d | xy) =2/3?
p(z | xy) = 0/3?
NO! Absence of xyz might just be bad luck.

A00 AR5 oot NIP .1 Ficper

Smoothing the Estimates

Should we conclude
p(a | xy) = 1/3? reduce this
p(d | xy) = 2/3? reduce this
p(z | xy) = 0/3? increase this

Discount the positive counts somewhat
Reallocate that probability to the zeroes

Especially if the denominator is small ...
1/3 probably too high, 100/300 probably about right

Especially if numerator is small ...
1/300 probably too high, 100/300 probably about right

A00 465 oot NIP .1 Ficper A

Add-One Smoothing

Xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
Xyc 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29
Xyz 0 0/3 1 1/29
Total xy 3 3/3 29| 29/29

A00 AR5 oot NIP .1 Ficper

Add-One Smoothing

300 observations instead of 3 — better data, less smoothing

Xya 100| 100/300 101|101/326
xyb 0| 0/300 1] 1/326
XycC 0| 0/300 1] 1/326
xyd 200 | 200/300 201|201/326
xye 0| 0/300 1| 1/326
Xyz 0| 0/300 1] 1/326
Total xy 300 300/300 326|326/326

A00 465 oot NIP .1 Ficper a

Add-One Smoothing

Suppose we're considering 20000 word types, not 26 letters

Xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
XycC 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29
Xyz 0 0/3 1 1/29
Total xy 3 3/3 29| 29/29

600465 oo g NIP - Fisper

Add-One Smoothing

As we see more word types, smoothed estimates keep falling

Add-Lambda Smoothing

Suppose we're dealing with a vocab of 20000 words

As we get more and more training data, we see more and more words
that need probability — the probabilities of existing words keep
dropping, instead of converging

This can't be right — eventually they drop too low.

So instead of adding 1 to all counts, add A = 0.01
This gives much less probability to those extra events
But how to pick best value for a? (for the size of our training corpus)
Try lots of values on a simulated test set! “held-out data”
Or even better: 10-fold cross validation (aka “jackknifing”)

Divide data into 10 subsets

To evaluate a given alpha:

Measure performance on each subset when other 9 are used for training

Average performance over the 10 subsets tells us how good alpha is
600465 oot NI) Fisner aQ

see the abacus 1 1/3 2| 2/20003
see the abbot 0 0/3 1/1/20003
see the abduct 0 0/3 1/1/20003
see the above 2 2/3 31 3/20003
see the Abram 0 0/3 1|1/20003
see the zygote 0 0/3 1{1/20003
Total 3 3/3| 20003/ 2000er20008
Terminology

Word type = distinct vocabulary item

Word token = occurrence of that type

A dictionary is a list of types (once each)

A corpus is a list of tokens (each type has many tokens)

26 types 300 tokens

a 100 100 tokens of this type
b 0 0 tokens of this type
c 0
d 200 200 tokens of this type
e 0

A00 465 oo to NI .1 Ficper 10

Always treat zeroes the same?

20000 types 300 tokens 300 tokens

a 150 0

both 18 0

candy 0 1

donuts 0 2

every 50 Versus 0

farina @2\ (@\

grapes 0| 0/300 1 0/300

his 38 0

0 7

RN

ice cream

which zero would you expect is really rare?

Always treat zeroes the same?

20000 types 300 tokens 300 tokens
a 150 0

both 18 0

candy 0 1

donuts 0 2

every 50 Versus 0

farina 0 0

grapes 0 1

his 38 0

ice cream 0 7

determiners:
a closed class

Always treat zeroes the same?

20000 types 300 tokens 300 tokens
a 150 0

both 18 0

candy 0 1

donuts 0 2

every 50 Versus 0

farina 0 0

grapes 0 1

his 38 0

(food) nouns:
an open class

Good-Turing Smoothing

Intuition: Can judge rate of novel events
by rate of singletons.

Let N, = # of word types with r training
tokens

e.g., Ng = number of unobserved words
e.g., N; = number of singletons
Let N = X r N, = total # of training tokens

600465 oo g NIP - Fisper 14

Good-Turing Smoothing

Let N, = # of word types with r training tokens
Let N = X r N, = total # of training tokens

Naive estimate: if x has r tokens, p(x) = ?
Answer: r/N

Total naive probability of all words with r tokens?
Answer: N, r / N.

Good-Turing estimate of this total probability:
Defined as: N,,, (r+1) / N

So proportion of novel words in test data is estimated by
proportion of singletons in training data.

Proportion in test data of the N, singletons is estimated by
proportion of the N, doubletons in training data. Etc.
So what is Good-Turing estimate of p(x)?

A00 AR5 oot NIP .1 Ficper 15

Use the backoff, Luke!

Why are we treating all novel events as the same?

p(zygote | see the) vs. p(baby | see the)
Suppose both trigrams have zero count

baby beats zygote as a unigram
the baby beats the zygote as a bigram
see the baby beats see the zygote ?

As always for backoff:
Lower-order probabilities (unigram, bigram) aren’t quite what we want
But we do have enuf data to estimate them & they're better than nothing.

A00 465 oot NIP .1 Ficper T

Smoothing + backoff

Basic smoothing (e.g., add-A or Good-Turing):
Holds out some probability mass for novel events
E.g., Good-Turing gives them total mass of N,/N
Divided up evenly among the novel events

Backoff smoothing

Holds out same amount of probability mass for novel events

But divide up unevenly in proportion to backoff prob.

For p(z | xy):
Novel events are types z that were never observed after xy
Backoff prob for p(z | xy) is p(z | y) ... which in turn backs off to p(z)!

Note: How much mass to hold out for novel events in context xy?
Depends on whether position following xy is an open class

Usually not enough data to tell, though, so aggregate with other
contexts (all contexts? similar contexts?)

A00 AR5 oot NIP .1 Ficper 1

Deleted Interpolation

Can do even simpler stuff:
Estimate p(z | xy) as weighted average of the
naive MLE estimates of p(z | xy), p(z | y), p(z)
The weights can depend on the context xy

If a lot of data are available for the context,
then trust p(z | xy) more since well-observed

If there are not many singletons in the context,
then trust p(z | xy) more since closed-class

Learn the weights on held-out data w/
jackknifing

A00 465 oot NIP .1 Ficper 1

