
600.406 — Finite-State Methods in NLP, Part II
Assignment 5: Determinization, Minimization

and a Little Learning

Prof. J. Eisner — Spring 2001

Note: This assigment uses the terms “output” and “weight” interchangeably to refer
to elements of the semiring K.

1. In any semiring, the left quotient xi ⊗ y denotes an arbitrary value v having the
property x ⊗ v = y. (That is, x ⊗ (xi ⊗ y) = y.) If there is no such value v in the
semiring, we say xi ⊗ y is undefined.

Be careful: xi is not an element of the semiring, the way an inverse element like x−1

is. Rather, for each x ∈ K, “xi⊗” is a prefix operator. However, xi does behave in
many ways like x−1 (and the notation “i” is meant to suggest “inverse”).

(a) How can you compute xi ⊗ y in the tropical semiring (R≥0 ∪ {∞}, min, +)?

(b) Show that 0i ⊗ y is undefined for y 6= 0 (in all semirings).

(c) Give a different example where xi ⊗ y is undefined (specify x, y, and the
semiring you are using).

(d) Show that 0i ⊗ 0 has multiple values.

(e) Give a different example where xi⊗y has more than one possible value. (Hint:
Use the integers modulo 6 under +,× as your semiring.1)
We will say that a semiring has unique left quotients if xi×y has at most one
value for x 6= 0.

1An integral domain is a commutative ring (i.e., semiring with additive inverses and commutative
multiplication) in which 0 cannot be written as a product of nonzero factors. It is easy to show that xi ⊗ y
has at most one value in an integral domain. The integers modulo any composite number is a standard
example of a (semi)ring that is not an integral domain.



(f) The semiring multiplication⊗ has higher precedence than the prefix operator
xi⊗. For example, xi⊗y⊗z is intended to denote xi⊗(y⊗z). Give an example
showing that this is not always the same thing as (xi ⊗ y)⊗ z.

(g) Show, however, that we do still have the associative property in the following
sense: if (xi ⊗ y) ⊗ z is defined, then any value v of this expression is indeed
also a value of xi ⊗ (y ⊗ z). More generally, the possible values of the first
expression form a subset of the possible values of the second expression.

(h) Show that v is a value of wi ⊗ xi ⊗ y if and only if it is a value of (x⊗ w)i ⊗ y.

(i) We say that a semiring K has left inverses2 if for all k ∈ K, except k = 0, there
exists k−1 ∈ K such that k−1 ⊗ k = 1. Show that in such a semiring, xi ⊗ y
is defined for all x, y ∈ K except as described in question 1b, and is unique
when defined (so that K has unique left quotients).

2. Determinize the following weighted transducer by hand, over the semiring (R, +,×).
Each state of the resulting machine should be labeled with a set of triples of the
form (original state, deferred output, deferred weight). (Adapted from an exam-
ple of Mehyrar Mohri over a different semiring.)

3. This problem considers minimization of the following weighted automaton (adapted
from an example of Mohri’s), whose weights fall in the tropical semiring (R≥0 ∪
{∞}, min, +). The basic procedure is identical to the transducer minimization we
did in class. The only difference is in the computation of the “prefix function” P ()
(question 3a).
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(a) For each state q in the machine, compute P (q). This is the output that will be
pushed backwards through state q (and perhaps further).
P (q) is a function of the (possibly infinite) set of all paths from q to final states:

2This is related to the notion of division rings; it might be better to say K is a “left division semiring.”
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• For the transducer minimization we did in class, each path produced an
output string, and P (q) was the longest common prefix (LCP) of all those
strings (Mohri (2000)).

• In the present case of the tropical semiring, each path produces an output
weight, and P (q) will be the minimum (i.e., semiring sum) of all those
weights (Mohri (1997), who writes d(q) rather than P (q) in this case).

(b) “Push” the output weights (this is also known as quasi-determinization) and
draw the resulting machine. An output k, on an arc from q to r, should be
replaced with P (q)i ⊗ k ⊗ P (r). (Recall question 1a.) Check that the pushed
machine seems equivalent to the original one.

(c) In the previous question, you should have thought carefully about how to
push the outputs of initial arcs and final states. In particular, how did you
handle pushing P (initial state) 6= 1(= 0)? There are at least 3 possible answers
to this—can you think of the others?

(d) Minimize the pushed machine using ordinary automaton minimization. (You
may want to review footnote 2 and problem 6 of Assignment 1.) First find the
equivalence classes of states, showing your work, treating complex arc labels
like a/6 as if they were single input symbols.3 Then merge equivalent states
and draw the resulting (minimal) automaton.

(e) If you hadn’t pushed the outputs first, what states would have been equiva-
lent?

(f) Sometimes changing a single weight will affect whether two states can merge.
For example, changing the weight on any arc from state 3 means that nothing
can merge (even after pushing). However, changing the weight on any arc
from state 1 or 2 still permits the same merges as before. Why the difference?

(g) Mohri (1997) and Mohri (2000) both discuss this algorithm for minimization
in the tropical semiring, including the computation of P . Both papers define
that semiring as (R≥0 ∪ {∞}, min, +).

i. Is the minimal machine always well-defined if negative weights are al-
lowed?

ii. How might the minimization algorithm get into trouble if applied to such
a machine? (Note: This is a real question—the FSM tools allow negative
weights but fsmminimize will sometimes halt with an error.)

3You can use the easy O(n2|Σ|) algorithm that appears in Hopcroft & Ullman, but be aware that there
is an O(m log n) algorithm where m is the number of edges.
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iii. The minimization algorithm does work properly on some machines with
negative weights. However, the minimization of such a sequential ma-
chine might be subsequential—that is, the minimization might give it
final-state weights where it had none before. Give an example.

4. ? Suppose we have a machine whose outputs fall in an arbitrary semiring K. Sur-
prisingly, there might not be a unique minimal equivalent machine! If not, the
standard approach to minimization (merging equivalence classes of states) can’t
work. I haven’t seen such cases noticed before.

The semiring we will consider is Z[
√
−5] (which is actually a ring). It is defined

as ({a + b
√
−5 : a, b ∈ Z}, +,×) where Z denotes the set of integers and + and

× are the usual addition and multiplication of complex numbers. It is a standard
example of a commutative ring that differs from the ring of integers Z in that fac-
torization is not unique.4 For example, 6 = 2× 3 = (1 +

√
−5)(1−

√
−5) and these

factors cannot be factored further.

(a) The following machine takes weights in Z[
√
−5]. Find two different mini-

mizations. You are not working with anyone’s minimization algorithm, so
you are on your own! You should figure out how you can push weights back
in order to make it possible to merge states, as in the previous problem.

4Curious about how to make this claim precise? There are four kinds of elements in a ring: zero (0),
units, composites, and irreducibles. A unit is a ring element that has a multiplicative inverse in the ring; in
both Z and Z[

√
−5], it’s easy to show the only units are 1 and -1. A composite is a nonzero element that can

be written as a product of 2 or more non-units. Anything else is an irreducible (roughly speaking, a prime
number). A Unique Factorization Domain (UFD) is an integral domain (footnote 1) in which a composite
can be factored into irreducibles in at most one way, up to permutation of the factors and multiplication
of the factors by units (e.g., in Z, (5)(-3) and (3)(-5) are considered to be the same factorization). The
Fundamental Theorem of Arithmetic says precisely that Z is a UFD. But Z[

√
−5] is an integral domain

that is not a UFD, since 6 has two obviously distinct factorizations into irreducibles.
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(b) Why would a minimization algorithm be hard to design for this semiring?
(Hint: Consider how to define P (). What if the machine in 4a had been miss-
ing state 3? Or, for that matter, if it had looked like the one below? I think the
problem is probably NP-hard by reduction from Minimum Clique Partition,
but showing this would require designing a funky semiring.)
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(c) ? Your minimizations in 4a compute the same function, so in what sense are
they different? There is a one-sentence answer, but be precise and make sure
that your definition does not consider the following two Z-weighted machines
to be different. (Possible hint: Footnote 4. Better hint: Mohri (2000), Theorem
3.)

0 1
a/-2

2/1
b/-1

3 4
a/2

5/1
b/1

5

http://www.nada.kth.se/~viggo/wwwcompendium/node25.html
http://www.research.att.com/~mohri/postscript/tcs.ps


(d) The set Rat(Σ) of regular languages over Σ = {x} can be defined as the
closure of the set of languages {∅, {ε}, {x}} under union, concatenation, and
Kleene star. These languages form a semiring (Rat(Σ),∪, ·).
One can define a subsemiring K ⊆ Rat(Σ) by considering only the closure of
the set {∅, {ε}, {xx}, {xxx}} under the same operations.

i. What strings cannot appear in any language in K?
ii. Give an element of K (i.e., a language) that has two different complete

factorizations.
iii. Give a K-weighted automaton that has no unique minimization. (Hint:

Similar to the one in question 4a.)

5. Despite the previous question, good minimization algorithms do turn out to exist
for semirings besides the ones that Mohri discusses. They are identical to the algo-
rithm in question 3 except for the definition and computation of the P function.

We’ll establish the exact class of semirings where minimization “is possible,” and
we’ll see how to define P to get minimization algorithms for “most” of these semir-
ings. In particular we’ll derive a fast algorithm for any semiring that has left in-
verses as in question 1i. Such semirings include the tropical semiring (where our
algorithm has some advantages over Mohri’s) and any field, including (R, +,×)
or (C, +,×) or the field to be defined in question 6.

Notation: Σ is the alphabet and K is the weight semiring. We assume the input
machine is subsequential but not necessarily complete or trim.5 (It is certainly
wise to trim the input machine: this leaves a smaller machine for the later steps to
work on. But in the presentation here, I haven’t required it because it’s not strictly
necessary and I wanted to expose what was going on.) The machine’s initial state
is q0. If q is a state and a ∈ Σ, then the a-labeled arc from q has destination state

5Remember that a subsequential machine is one whose transition function is deterministic and which
may have final-state outputs. (A sequential machine is one where there are no final-state outputs, or
equivalently, these outputs are 1. In a p-subsequential machine, there may be up to p different final
outputs per state, which allows a little bit of inexpensive nondeterminism.)

A complete machine is one whose transition function δ(q, a) is defined for all states q and symbols a,
so there are no “missing transitions.” Any machine can be completed, without adding states, by defining
the missing transitions δ(q, a) arbitrarily and with weight σ(q, a) = 0.

In a trim machine, every state lies on at least one 0-free path from the initial state to a final state. A
machine can be trimmed in linear time by eliminating arcs of weight 0 and then using DFS to identify
(and eliminate) states that are not accessible from the initial state or co-accessible from any final state.
Eliminating such states and arcs may lead to an incomplete machine, which can be completed as above if
desired without adding states.
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δ(q, a) and weight σ(q, a). We extend this notation in the usual way to allow δ(q, w)
and σ(q, w) for w ∈ Σ∗.

Such a machine represents a formal power series in K〈〈Σ〉〉. For minimizing such
machines, we will require a function P from K〈〈Σ〉〉 → K. P is able to “summa-
rize” any formal power series as a weight (or at least, any rational one).

So instead of evaluating P on a state q, as in question 3a, we’ll evaluate it on Sq ∈
K〈〈Σ〉〉. Sq is called the suffix function of q. It is defined as the formal power
series that the machine would represent if q were the initial state. (Regarded as a
function, Sq maps each w ∈ Σ∗ to the weight (possibly 0) of its accepting path from
q, or 0 if there is no such path. So in effect it describes the set of all accepting paths
from q.)

In Mohri’s algorithms, P (S) depends only on the range of S—it summarizes just
the weights of the accepting paths—but we will crucially take the broader view that
P (S) is allowed to look at all of S. This also allows a cleaner presentation.

We will require P to have the following sufficient properties (which are more or
less necessary—see question 5n and subsequent discussion). We’ll show that if
such a P exists for the semiring K, and also K has unique left quotients as defined
in question 1e, then the basic minimization algorithm is correct. (Note: We’ll get a
more general version in question 5n.)

• The shifting property: If k ∈ K, S ∈ K〈〈Σ〉〉, then P (k ⊗ S) = k ⊗ P (S).
This is really the crucial property: it will ensure that when we push prefixes
back, mergeable states end up with the same suffix function so that we can
merge them. Notice that it prevents P () from being a constant function.

• The quotient property: If a ∈ Σ, S ∈ K〈〈Σ〉〉, then the left quotient P (S)i ⊗
P (a−1S) is defined (see problem 1). Here a−1S is standard notation for the
formal power series defined by (a−1S, w)

def
= (S, aw).

• The final-quotient property: if S ∈ K〈〈Σ〉〉, then P (S)i⊗(S, ε) is defined. (See
question 5l for a simpler alternative.)

The function represented by the input machine is Sq0 , the suffix function of the ini-
tial state. We wish to find a minimal machine for this function. Just as in question
3, the algorithm works as follows: pushing changes the arc weights, then minimiza-
tion merges states by running unweighted FSA minimization as if the arc labels
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were atomic, and finally trimming removes any useless states (and arcs).6 No step
changes the function Sq0 computed by the machine.

Definition of pushing: Given an arc with label a ∈ Σ from q to r = δ(q, a), pushing
replaces its weight k = σ(q, a) ∈ K with the left quotient P (Sq)

i ⊗P (a−1Sq), which
is defined by the quotient property.7 Also, the initial state weight is changed from
k to k⊗ P (Sq0). And the final weight at q, namely (Sq, ε), is replaced with P (Sq)

i ⊗
(Sq, ε), which is defined by the final-quotient property.8

We now consider minimality. Let S
def
= Sq0 be the series for which we want to

construct a minimal machine. Let D = {u ∈ Σ∗ : u−1S 6= 0}.9 For u, v ∈ D, let us
write u

S∼ v iff u−1S = ku ⊗ S ′ and v−1S = kv ⊗ S ′. That is, u
S∼ v means there exist

ku, kv ∈ K and S ′ ∈ Σ〈〈K〉〉 such that we can express (S, uw) = ku ⊗ (S ′, w) and
(S, vw) = kv ⊗ (S ′, w) for all w ∈ Σ∗.

For a machine M and for u, v ∈ D, write u
M∼ v if δ(q0, u) = δ(q0, v), that is, the

prefixes u and v reach the same state. It is easy to see that for any subsequential
machine that represents S, u

M∼ v ⇒ u
S∼ v for all u, v ∈ D. Question 5e asks

you to prove this. Suppose one such machine M̄ also has the converse property

that u
S∼ v ⇒ u

M̄∼ v for all u, v ∈ D. Then it is pretty easy to see that M̄ (once it

6See footnote 5 for the trimming method. But if the input machine was trim to start with, then the
output machine will already be trim, except possibly for one dead state that was added at the start of FSA
minimization (to complete the FSA), was not merged with anything, and will have to be removed again.

7Notice that this equals P (Sq)i ⊗ P (k ⊗ Sr) which equals P (Sq)i ⊗ k ⊗ P (Sr) by the shifting property.
This last version is easier to understand, so that’s how we wrote it in question 3.

8Since the algorithm assumes that K has unique left quotients, these definitions are unique except for
0i⊗0. During pushing, we can in fact choose any value for a label 0i⊗0; these labels just don’t show up in
our proofs. (The consequence of arbitrary labels will be that the dead states in the pushed automaton may
or may not be merged with one another during the minimization step, which is okay because we’re going
to trim them all anyway.) Note that by question 5c, this case (P (Sq) = 0) arises only when computing the
output labels from a dead state q, so it doesn’t even arise if we start with a trim automaton (footnote 6).

9We restrict our equivalence relations to this set instead of Σ∗, following Mohri, because otherwise
we’d have no hope of S∼ being an equivalence relation: any u 6∈ D would satisfy (∀v)u S∼ v (via ku = 0).
Intuitively, this is because a dead state can merge with any state if we merely ensure (by pushing) that the
arcs leading to it have weight 0. In unweighted FSA minimization, this is not possible, but here it would
typically prevent S∼ from being an equivalence relation. Fortunately we can patch S∼ by limiting it to D
and still get a proof that our minimized machine really is minimal.

Conceivably, similar patches might result in efficient algorithms when similar problems arise with other
special values of ku (e.g., nontrivial factors of 0—see footnote 1). But we will take the (slightly fishy)
attitude here that semirings are beyond the pale unless they work with the minimally patched version of
S∼ just described: see problem 5m.
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is trimmed of its inaccessible and dead states) must be a minimal machine for S;
question 5g asks you to prove this.

We’ll say that an automaton M̄ for S with the above property (that u
S∼ v ⇒ u

M̄∼ v)
is perfectly minimal. Our algorithm tries to find a perfectly minimal automaton.
(The automaton in question 4a has no perfectly minimal equivalents, so its min-
imal equivalents would have to be found by some other approach, as noted in
question 4b.)

The algorithm takes an input machine M , applies pushing to get M ′, and applies
unweighted FSA minimization to get M̄ . All three machines represent the same
series S (as you will partly show in question 5d).10 So all that’s left to show is that
M̄ is perfectly minimal (a trimmed version will then be minimal). Let’s prove it.
Let δ, σ, Sq denote the transition, output weight, and suffix functions in M , and
δ′ = δ, σ′, S ′

q similarly in M ′.

Given u
S∼ v, we must show u

M̄∼ v. We know u−1S = ku ⊗ S ′, v−1S = kv ⊗ S ′. Let
q = δ(q0, u), r = δ(q0, v). Claim that σ′(q, a) = σ′(r, a) for any a ∈ Σ. Because left
quotients can have multiple values (footnote 8), be careful to read the following
equations as saying that any value of an expression is also a value of the next
expression:

σ′(q, a) = P (Sq)
i ⊗ P (a−1Sq) (definition of σ′ via pushing)

= P (Sq)
i ⊗ (ki ⊗ k)⊗ P (a−1Sq) (for any k ∈ K)

= P (Sq)
i ⊗ ki ⊗ (k ⊗ P (a−1Sq)) (by question 1g)

= (k ⊗ P (Sq))
i ⊗ (k ⊗ P (a−1Sq)) (by question 1h)

= P (k ⊗ Sq)
i ⊗ P (a−1(k ⊗ Sq)) (by shifting property)

= P (u−1S)i ⊗ P (a−1(u−1S)) (instantiating k as σ(q0, u))

= P (ku ⊗ S ′)i ⊗ P (a−1(ku ⊗ S ′)) (from the definition of u
S∼ v)

= P (S ′)i ⊗ ki
u ⊗ (ku ⊗ P (a−1S ′)) (running the previous steps backwards)

This last expression has only one value,11 which can only be P (S ′)i ⊗ P (a−1S ′)

10A subtlety: Unweighted FSA minimization insists that final and non-final states not be merged, but
here it is states with different final weights that can’t be merged. This can be enforced directly, or else
reduced to the unweighted case by a simple transformation that Mohri describes (similar to the one you’ll
need for problem 5l).

11The algorithm assumes that left quotients are unique, but since that only means left quotients by
nonzero, seeing uniqueness means checking that P (ku⊗S′) 6= 0. That equals P (u−1S), which by question
5c is nonzero provided that u−1S 6= 0. And we do have u−1S 6= 0 since u

S∼ v and therefore u ∈ D.
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by question 1g. By symmetry σ′(r, a) equals the same thing, demonstrating the
claim. The rest of the proof follows Mohri exactly: It’s easy to see that ua

S∼ va
(question 5f), so that the previous claim that σ′(q, a) = σ′(r, a) also applies to show
(e.g.) σ′(δ′(q, a), b) = σ′(δ′(r, a), b). By induction, we see that reading any w ∈ Σ∗

outputs exactly the same sequence of weights whether we start at q or at r in M ′. So
regarding M ′ as an unweighted automaton whose arcs are labeled with (symbol,
weight) pairs in Σ×K, this means that the strings (a1, k1)(a2, k2) . . . (ai, ki) ∈ (Σ×
K)∗ we can accept from q are exactly those we can accept from r. So unweighted

minimization of this automaton will merge states q and r. It follows that u
M̄∼ v,

and therefore M̄ is perfectly minimal. Q.E.D.

Now for the problems:

(a) We saw in question 4 that a Z[
√
−5]-weighted automaton need not have a

perfectly minimal equivalent. So it must be impossible to define P in the
semiring Z[

√
−5]. Show this directly by considering the suffix function S2

from question 4a; in particular, consider P (S2), P (a−1S2), P (b−1S2), and P (1).
(Hint: Show that if P has the shifting property then it can’t have the quotient
property.)
Note: You could still define a reasonable P for this semiring that has the quo-
tient and final-quotient properties without the shifting property. Then push-
ing would be well-defined, but minimization would not necessarily find a
minimal version of the automaton.

When faced with a question that requires you to manipulate symbols, it
often helps to step back and think about what the question means. The
quantities P (S2)iP (a−1S2) and P (S2)iP (b−1S2) are supposed to be output
weights on the arcs from state 2. To say that they can’t be well-defined
means that in the minimized machine, there’s no consistent way to pick
output weights on the arcs from state 2. You should have already discovered
this for yourself in question 4a!
It simplifies matters that this semiring is commutative. The contradiction
will arise when you try to find some value P (S2) that divides both 6P (1)
and (2 + 2

√
−5)P (1), as required by the quotient property, and is itself di-

visible by both 2 and 1 +
√
−5, as required by the shifting property.

Basically, the shifting property makes sure you push back enough weight
from the suffix function, and the quotient property makes sure you don’t
push back too much. In the absence of unique factorizations, these come
into conflict.
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Not sure what to do with P (1) above? Hint: P (1) divides (1, ε) = 1, thanks
to the final-quotient property, so in this semiring it must be either 1 or -1. (In
general the final-quotient property means P (1) always has a right inverse;
problem 5l says that the converse is essentially true too.)

(b) Let δ′ and σ′ be the transition and output functions of the pushed machine M ′,
whereas δ and σ were the corresponding functions in the original machine
M . Prove (by an easy induction on w) that for any state q and for all w ∈ Σ∗,
σ′(q, w) = P (Sq)

i ⊗ P (w−1Sq).

(c) Use the previous question and the properties of P to prove that P (Sq) = 0 iff
Sq = 0. (The latter “0” is in K〈〈Σ〉〉; by the usual rules, it denotes the “empty”
power series that maps all strings to 0 ∈ K, i.e., accepts nothing.) In this case
q is called a dead state.

(d) Use question 5b to prove that the pushed machine M ′ represents the same
series as the original machine M .

(e) Prove what the text earlier said this question would ask you to prove.

(f) Show that if u
S∼ v, then ua

S∼ va.

(g) Same instructions as question 5e. :-) (Hint: Let S∼ ∗ be the transitive closure of
S∼. Both S∼ ∗ and M∼ are equivalence relations; they partition D into n and nM

equivalence classes, respectively. Notice how nM is related to the machine M ,
and compare it to n.)

(h) Now let’s consider transducers whose outputs are strings in ∆∗. The nuisance
is that if we take ⊕ = ∪ as usual, our weights are sets of strings, and it’s hard
to see (or compute) what to push. As a simple example, {ac, bc, ad, bd} =
{a, b} · {c, d}, so {a, b} is a prefix that must be pushed back by the shifting
property.
However, in the usual case, our input transducer’s arcs are weighted with
single strings, not sets of strings. And since it is subsequential, the ⊕ opera-
tion doesn’t really matter at all! We don’t have to add together the strings on
accepting paths for the input because there is at most one such path.
So let’s keep ⊗ = · (concatenation), but define a new ⊕ that lets us deal with
string sets of size 0 and 1 only.12 For an unambiguous machine, this change to

12For somewhat different reasons, Mohri defines a similar semiring, the “string semiring,” with the
difference that ⊕ is the longest common prefix operation. However, as Mohri points out, that is only a
left semiring (no right distributivity (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z)). So it is less safe to define automata
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⊕ doesn’t affect the function being computed, or the minimization algorithm.
But it does let us define P over a simpler set of weights.
We take our semiring to be K = (∆∗∪{∞}, min, ·). 0 = ∞ is a special element
that represents “no output” and whose behavior is defined by the rules for
0. Since · is concatenation, 1 = ε as usual. We define min(u, v) as whichever
string is shorter, breaking ties alphabetically according to some fixed arbitrary
ordering of the alphabet ∆. Notice that min gives a total ordering of ∆∗ (in
fact a well-ordering, assuming that ∆ is well-ordered).

i. Prove that K is a semiring and has unique left quotients.
ii. Why couldn’t we have simply defined min(u, v) by alphabetical order?

iii. If S ∈ K〈〈Σ〉〉, define P (S) =
∧

w∈Σ∗(S, w), where ∧ is the longest com-
mon prefix operation (with identity ∞). Show that P has the shifting,
quotient, and final-quotient properties.

This shows that Mohri’s algorithm for minimization of sequential transducers
is a special case of our general algorithm.

(i) Now for the punchline. Suppose the weight semiring K has left inverses
(hence also unique left quotients) in the sense of question 1i. (This was not
true in the previous question!)

i. Show that S∼ is guaranteed to be an equivalence relation.
ii. Suppose we have an ordering of Σ, giving us an ordering on Σ∗ exactly

as in the previous question.
The support of S is the set {w : (S, w) 6= 0}. Define P (S)

def
= (S, min support(S)),

or P (S) = 0 when support(S) = ∅. In other words, P (S) finds the
least string (according to the above ordering) to which S assigns nonzero
weight, if any, and returns that weight.
Show that P (S) has the shifting, quotient, and final-quotient properties.

iii. Why couldn’t we have simply defined min by alphabetical order? (Dif-
ferent answer from question 5(h)ii!)

iv. ? Assume that ⊗ runs in constant time. Give a linear-time algorithm to
compute P (Sq) at every node q of a K-weighted automaton. (That is,
linear on the number of nodes + edges; the automaton might not be com-
plete and any missing edges should save you time.) Hint: Use breadth-
first search on the reversed transition graph.

over it—although such automata would still define functions, algorithms that assume right distributivity
might not work correctly with them.
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(j) One semiring with left inverses is the tropical semiring (R≥0 ∪ {∞}, min, +).
As we’ve seen, Mohri defines P (S) in this semiring as

⊕
w∈Σ∗(S, w), which

finds the minimum-weight path in S. This definition also satisfies all the right
properties.
Compare this definition of P to the new definition proposed in question 5i.

i. Which can be computed faster?
ii. Does this speed difference matter asymptotically in the context of the full

minimization algorithm?
iii. Which handles negative weights better?
iv. How well does each idea generalize to (R≥0, +,×) and (R, +,×)?
v. Do they have the same behavior with respect to question 3(g)iii?

vi. In each algorithm, can the output weights be interpreted as probabilities
if the input weights can?

(k) Propose a definition of P (S) for the semiring of integers (Z, +,×). Note that
this semiring includes negative integers and does not have left inverses.

(l) ? Extra credit: The final-quotient property is rather similar to the quotient
property. This question exploits that fact and gives a way to avoid bothering
with the final-quotient property when choosing P . Here Σ′ = Σ ∪ {$}, where
$ 6∈ Σ is a new symbol representing “end of string.”
Suppose we can find a function P ′ : K〈〈Σ′〉〉 → K that might not have
the final-quotient property, but does have the shifting, quotient, and inverse
properties:

• The inverse property: The particular element P (1) ∈ K has a right in-
verse i ∈ K. (Remember that by the usual rules, 1 ∈ K〈〈Σ〉〉 denotes the
power series 1ε that maps ε to 1 ∈ K and everything else to 0 ∈ K.)

This is more convenient to check than the final-quotient property. In fact, nat-
ural definitions of P ′ tend to have P ′(1) = 1, which certainly has an inverse.

Show that P : K〈〈Σ〉〉 → K defined by P (S)
def
= P ′(S$) has the shifting,

quotient, and final-quotient properties. (Hint: You will have to use problem
1g.)

(m) Now, to return to the broad picture, we’ll investigate which semirings K are
“nice” in that the sense that they allow perfect minimization.
We’ve already seen that if there’s a pushing function P for K〈〈Σ〉〉, and K has
unique left quotients, then all subsequential S ∈ K〈〈Σ〉〉 must have perfectly
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minimal representations derived by our algorithm. But here we’re concerned
with cases where we don’t know whether these conditions apply.
We’ll start by considering when a given series S has a perfectly minimal rep-
resentation.

i. Show that if S has a perfectly minimal representation M̄ , then S∼ is an
equivalence relation.

ii. Show the converse: if S∼ is an equivalence relation, then S has a perfectly
minimal representation. No, on second thought, don’t show it, I’ll just
tell you in the footnote.13

iii. Suppose (K,⊗) is any monoid. (For example, any semiring, but we don’t
need⊕ for this definition.) Let’s say that K has unique left factorizations
iff for any Σ and x, y ∈ K and X, Y ∈ K〈〈Σ〉〉 such that x⊗X = y⊗Y 6= 0,
we can find x′, y′ ∈ K and Z ∈ K〈〈Σ〉〉 such that X = x′⊗Z, Y = y′⊗Z.14

Show that if K is a semiring with unique left factorization, then S∼ is an
equivalence relation for any S ∈ K〈〈Σ〉〉.

iv. Show the converse: If S∼ is an equivalence relation for any S ∈ K〈〈Σ〉〉,
then K has unique left factorizations. You should assume |Σ| ≥ 2. (Hint:
Consider S = (aa⊗ xX)⊕ (ba⊗X)⊕ (bb⊗ Y ) where a, b ∈ Σ.)

Putting it all together, we obtain our characterization of “nice” semirings K:
all subsequential series in K〈〈Σ〉〉 have perfectly minimal representations if
and only if K has unique left factorization.
There is one exception: we didn’t show that K requires unique left factoriza-
tion if |Σ| < 2. There is probably a reason for this exception—I suspect that
in that case, we are guaranteed perfectly minimal representations regardless
of K. (This is certainly true if |Σ| = 0, and remember that all subsequential
automata for |Σ| = 1 have a characteristic “lollipop” topology: see question
1g on Assignment 1.)

13There is a construction of M̄ that identifies the states with the equivalence classes of S∼. It is analogous
to a standard construction for unweighted automata. Theorem 1 in Mohri (2000) presents a version for
string-to-string transducers, and this can be generalized by replacing Mohri’s g(u) with our P (u−1S).
Mohri’s construction uses the arc label g(u)i ⊗ g(ua), which equals P (u−1S)i ⊗ P (a−1u−1S) and so is
defined thanks to the quotient property. Also, his construction must be extended to allow final weights
defined similarly as g(u)i ⊗ (S, u), which equals P (u−1S)i ⊗ (u−1S, ε) and so is defined thanks to the
final-quotient property.

14This definition is stated where X, Y, Z are power series over an arbitrary (perhaps infinite) alphabet.
We could replace them in the definition with sequences, indexed sets, or (slightly less obviously) ordinary
sets. All of these definitions pick out the same semirings K.
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(n) ? Having a “nice” semiring as above only guarantees that perfectly minimal
automata are defined. With a slightly stronger condition we can actually ob-
tain them! The method given here does not require unique left quotients, and
it does not require us to think of a particular P . (Of course, neither does the
construction in question 5(m)ii, but the following construction is much closer
to practical because it only needs to consider the set of states, not the set of
strings.)
We’ll now define a slightly stronger condition (maybe not strictly stronger?)
that lets us minimize an automaton without P or left quotients.
As before, (K,⊗) is a monoid, and lowercase letters denote values in K and
uppercase ones in K〈〈Σ〉〉. We say that Z is a minimal residue of S if when-
ever S = x⊗X , then (∃z)X = z ⊗ Z.
If Z is a minimal residue of S, then since S = 1 ⊗ S, we have S = z ⊗ Z for
some z. We call such a z a maximal left factor of S.
We say that K has maximal left factors if every nonzero power series S ∈
K〈〈Σ〉〉 has at least one minimal residue and therefore at least one maximal
left factor.15

Remark: We won’t be using P below, but what P (S) does in our original con-
struction is precisely to find a maximal left factor of S.16 In a semiring without
maximal left factors, P can’t be defined.

i. Prove that if T is a minimal residue of k ⊗ S then it is a minimal residue
of S.

ii. Assume from now on that K has maximal left factors. Show that if Z is a
minimal residue of S then it is a minimal residue of k⊗ S 6= 0. (Hint: Use
the previous question.)

iii. Let c be an arbitrary “choice function” c : 2K〈〈Σ〉〉 → K that picks out
an element of any nonempty collection of power series.17 Suppose K

15Let ≤ be the partial ordering of K〈〈Σ〉〉 by right divisibility. Unique left factorizations says that
(∀S)(∀X, Y ≤ S)∃Z ≤ X, Y . Maximal left factors uses a stronger quantifier order: (∀S)(∃Z)(∀X ≤
S)Z ≤ X .

16Proof: Using the quotient and final-quotient properties and induction on |w|, we can see for any w ∈
Σ∗, P (S) is a left factor of (S, w). Therefore P (S) is a left factor of S: we can write S = P (S) ⊗ T for
some T . To show P (S) is actually a maximal left factor, we need to show T is a minimal residue. Given
S = x ⊗X . Then P (S) = x ⊗ P (X) by the shifting property, giving x ⊗X = x ⊗ P (X) ⊗ T . Assuming
that K has unique left quotients, we conclude that X = P (X)⊗T . This shows that P (S) is a maximal left
factor.

17Perhaps by the axiom of choice. Or if we already have well-orderings of Σ and K, then we can easily

15



has maximal left factors. Define Z(S)
def
= c({minimal residues of S}), or

Z(S) = 0 if S = 0. Notice that Z(S) divides every minimal residue of S
and vice-versa.
Show that Z(k ⊗ S) = Z(S) if k 6= 0.

iv. Show that if u
S∼ v then Z(u−1S) = Z(v−1S).

v. Suppose u
S∼ v and M is a machine as usual. Let q = δ(q0, u), r = δ(q0, v).

Show that Z(Sq) = Z(Sr).
vi. In the previous question, show also that Z(a−1Sq) = Z(a−1Sr). (Hint:

ua
S∼ va, and a−1Sq = σ(q, a)Sδ(q,a).)

Notation: In general we will write [X ⊗ Y i] to denote an arbitrary element of
{k : X = k ⊗ Y }, and X ⊗ Y i to denote the canonical element of that set
selected by c().18 The expected identity holds only of the arbitrary elements:
[X ⊗ Y i] ⊗ [Y ⊗ Zi] yields [X ⊗ Zi]. Another useful identity is [X ⊗ Y i] =
[a−1X ⊗ (a−1Y )i] (since X = k ⊗ Y implies a−1x = k ⊗ a−1Y ).
We can now redefine the pushing construction directly in terms of Z rather
than P :
As usual we define S = Sq0 . Let q be a state and a ∈ Σ. We can write Sq =
x⊗Z(Sq) for some x, hence a−1Sq = x⊗a−1Z(Sq). Since that is a factorization
of a−1Sq, by the definition of Z(a−1Sq) we obtain a−1Z(Sq) = k⊗Z(a−1Sq) for
at least one value of k. That means that when pushing, we can define σ′(q, a)
to equal a−1Z(Sq)⊗Z(a−1Sq)

i, since the choice set is non-empty. We also need
to give q0 an initial weight of S ⊗ Z(S)i, which chooses a maximal left factor
from S, and to give each state q a final weight of (Z(Sq), ε).

Questions 5(n)v and 5(n)vi ensure that if u
S∼ v, then all the arcs from q and

r have the same labels in the pushed machine, under these definitions. Simi-
larly q and r have the same final weights. So by the same argument made for
the P () algorithm, unweighted FSA minimization will merge q, r and we get

u
M̄∼ v as desired.

For correctness of the algorithm, it is only left to show that the pushed ma-
chine computes the same function as the original. Following question 5b, we

define a well-ordering of K〈〈Σ〉〉 (compare two series by the least word where they differ), so let c take
the least power series in the set.

18It is all right to use c to choose among elements of K since K is embedded in K〈〈Σ〉〉. Or if K has
unique right quotients, then there is only one element to choose from (with the usual 0/0 exception), and
one can find it without a choice function as (X, w)⊗ (Y,w)i for any convenient w such that (X, w) 6= 0.
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can show σ′(q0, w) = [w−1S ⊗ Z(w−1S)i] for any w ∈ Σ∗. We can do this by
induction on |w|. By the identity mentioned above,

σ′(q0, w) = [(wa)−1S ⊗ a−1Z(w−1S)i]

Let q = δ(q0, w). By question 5(n)iii, if σ(q0, w) 6= 0 then

σ′(q, a) = [a−1Z(Sq)⊗ Z(a−1Sq)
i]

= [a−1Z(σ(q0, w)⊗ Sq)⊗ Z(σ(q0, w)⊗ a−1Sq)
i]

= [a−1Z(w−1S)⊗ Z(a−1w−1S)i]

(else σ′(q, a) is arbitrary). So

σ′(q0, wa) = σ′(q0, w)⊗ σ′(q, a) = [(wa)−1S ⊗ Z((wa)−1S)i]

proving the inductive step. To finish the proof, multiply the path weight
σ′(q0, w) by the final weight of q, namely (Z(Sq), ε) = Z(w−1S, ε). This cor-
rectly obtains (σ(q0, w) ⊗ Z(w−1S), ε) = (w−1S, ε) = (S, w); so the pushed
machine agrees with the original.

Closing remark: I think the previous minimization algorithm could be generalized
fully, that is, to all semirings with unique left factorizations. We don’t really need
to insist on minimal residues, but only residues that are minimal enough to work
with the input automaton. In such semirings, having a common residue is an
equivalence relation on the finite set of suffix functions {Sq : q ∈ Q}, with [Sq]
denoting the equivalence class of Sq, and furthermore each equivalence class [Sq]
(being finite) has some common residue Z([Sq]). Now just replace Z(Sq) in the
above algorithm with Z([Sq]) and proceed as before.

Practically speaking, to realize the generalized algorithm for a particular semir-
ing, what we need is a practical co-pushing method for finding pairwise com-
mon residues: Given two power series expressed in terms of the input machine
as ki

1 ⊗ Sq, k
i
2 ⊗ Sr where Sq, Sr are suffix functions, co-pushing finds some m1, m2

such that (k1 ⊗ m1)
i ⊗ Sq and (k2 ⊗ m2)

i ⊗ Sr are well-defined and, if possible,
equal. (The previous algorithm used maximal residues as a safe way of finding m1

and m2 separately rather than jointly.) We can run co-pushing on all state pairs,
in any order, to build up left factors that are “maximal enough.” If the co-pushing
routine can detect when it has achieved equality (found a common residue), then
this will build up the equivalence classes as we go. If the co-pushing machine does
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not know when it has succeeded in achieving equality, then unweighted FSA min-
imization can be used at the end to find the equivalence classes, provided that we
first canonicalize the pushed weights (i.e., on an arc to state q, replace weight k
with the set {k′ : k′ ⊗ Sq = k ⊗ Sq} or a canonical member of it). Either way, we
finish by merging the equivalence classes and trimming, as usual.

To summarize the main results of this problem:

• The semirings where (perfect) minimization is well-defined for |Σ| ≥ 2 are
precisely those with unique left factorizations.

• We have exhibited an actual minimization algorithm for all semirings in which
maximal left factors can be canonically extracted at each state (by some effec-
tive procedure, of course). This is a slightly stronger condition.19

• I sketched a possible generalization of the algorithm to all semirings with
unique left factorizations, i.e., all semirings where perfect minimization is
possible.

• Most importantly for practical purposes, we got an especially simple and ef-
ficient version of the algorithm in any semiring that has left inverses. This
includes all the usual semirings and the one we’ll use in question 6.

6. In class, I introduced the V -expectation semiring and sketched how it could be
used to run Expectation-Maximization (EM) quite generally on probabilistic string-
to-string FSTs, including those with epsilons and interesting parameterizations
that are independent of the machine topology.

This brief problem just asks you to check the semiring properties and develop a
couple of intuitions. (I’ve submitted a workshop paper on the full idea—feel free
to ask me for a copy.)

If V is a vector space over the reals,20 then the V -expectation semiring is (R≥0 ×
V,⊕,⊗) where

(p1, v1)⊕ (p2, v2)
def
= (p1 + p2, v1 + v2)

(p1, v1)⊗ (p2, v2)
def
= (p1p2, p1v2 + v1p2)

19At least, I think it is—I haven’t yet thought of any semirings that have unique but not maximal left
factorizations. Such a monoid would have to be pretty weird, because one could keep extracting left
factors from a power series forever without being able to get them all out “at once.”

20More generally, V could be any two-sided semimodule over any semiring, not just the reals. For
purposes of EM, we usually want the reals in order to represent probabilities, but other representations
of probabilities might conceivably be useful, such as confidence intervals.
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(a) What are 0 and 1?

(b) Prove that the semiring axioms hold.

(c) Show that the semiring has left inverses in the sense of question 1i. By ques-
tion 5i, this means that it admits an efficient minimization algorithm.

(d) A semiring that has left inverses is a field iff⊗ is commutative (so the inverses
are actually two-sided) and the semiring has additive inverses too. Is the V -
expectation semiring a field? If so, why? If not, how could it be made into a
field?
(A semiring is a field iff the following three properties also hold: ⊗ is com-
mutative, all elements have additive inverses, and all elements except 0 have
multiplicative inverses.)

(e) Some semirings K are equipped with a “closure operator” ∗ which is a partial
function from K → K. It satisfies the axiom k∗ = 1 ⊕ k ⊗ k∗. The idea is that
k∗ =

⊕∞
n=0 kn.

We need this to sum weights over infinitely many paths. For example, the
coefficient of ε in the power series (ε : k)∗ is k∗, which may or may not be
defined. (The answers to assignment 3 will have more on this.)

For example, the usual closure operator for (R, +,×) is p∗
def
= (1 − p)−1 and is

usually defined for −1 < p < 1 only.
What is the appropriate closure operator for R× V ? Show that it satisfies the
axiom.

(f) Write concise expressions without using ⊗ for the products
⊗n

i=1(pi, pivi) and⊗n
i=1(pi, vi).

(g) Review question 1g of assignment 3. The automaton it proposes describes
a Markov process that generates a part-of-speech tag sequence. Put another
way, the automaton maps any tag sequence to its probability under a certain
bigram model.
Let V = R1. Suppose you change the weights to fall in the V -expectation
semiring, by replacing each weight p ∈ R (a probability) with (p, 〈p〉) ∈ R×V .
The following quantities in R×V now have useful interpretations: give them.

i. The total weight (using ⊕) of all accepting paths in the automaton, A.
ii. The total weight (using⊕) of all accepting paths in A∩(Σ∗ VBD Σ∗), where

VBDis the tag for a past-tense verb.
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(h) The previous two questions are part of the inspiration for a different version
of the semiring, K = {0} ∪ (R>0 × V ). There is a natural mapping f from the
V -expectation semiring to K:

(p, v)
f7−→

{
[p, p−1v] if p 6= 0

0 if p = 0

(To avoid confusion, we use (p, v) to denote elements of the V -expectation
semiring and [p, v] to denote elements of K.)
Define⊕ and⊗ on K so that f is a homomorphism of semirings. That is, your
definitions should ensure f(a⊕ b) = f(a)⊕ f(b), f(a⊗ b) = f(a)⊗ f(b), f(0) =
0, f(1) = 1. Also, give expressions for [p, v]−1 and [p, v]∗.
It turns out that for EM, we wish to carry out a long computation in the V -
expectation semiring and then apply f to the result. But because f is a homo-
morphism, we could get the same answer if we applied f to the inputs first
and then carried out the computation in K. Which operations are easier to
compute in which semiring?

7. We discussed several methods for learning FSA topology. All of them relied on
greedy state merging:

• Angluin’s reversible-language learner merged states with a common suffix.

• The Abbadingo heuristics (Lang, Perlmutter, & Price (1998)) merged states
that agreed on the classification of many suffixes without disagreeing on any.

• Stolcke and Omohundro’s (1994) model merging carried out whichever merge
caused the least decrease in the training perplexity.

Angluin’s learner uses no negative evidence; instead, it is conservative and posits
the smallest language in the class that is consistent with the data. Abbadingo relies
on explicit negative evidence. Model merging is statistical (learns from a sample),
so it can learn from implicit negative evidence (non-occurrences).

Sketch an approach to learning when both implicit and explicit negative evidence
are available. The explicit negative evidence might be a list of excluded forms, or
a sample from an “anti-language,” or something else—up to you. Describe both
your proposed learning method and the input data it uses.
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