
600.406 — Finite-State Methods in NLP, Part II
Assignment 4: Building Finite-State Operators

Solution Set
Prof. J. Eisner — Spring 2001

1. (a) A xx B
def
= {〈a, b〉 : a ∈ A, b ∈ B, |a| = |b|}

(b) First eliminate ε’s from A and B (by full determinization or just ε-closure).
Now perform a cross-product construction much like the one used for inter-
section or composition. The key step is that if A has an arc q

a→ q′ and B

has an arc r
b→ r′, then A xx B should have an arc 〈q, r〉 a:b−→ 〈q′, r′〉. Unlike

intersection, any symbol in A can be matched with any symbol in B.

(c) This question is harder than I intended. The relation A xx B is a function iff B
contains at most one length-|a| string for every a ∈ A. However, being a func-
tion is weaker than being sequential; accordingly, this condition is necessary
but not sufficient for sequentiality.
For a counterexample consider A = {um}, B = {v2n} ∪ {w2n+1}. These satisfy
the condition above (hence A xx B is a function), but A xx B is the classic
nonsequential relation {〈u, v〉2n} ∪ {〈u, w〉2n+1}.
On the other hand, if we change A to {u2n}∪{x2n+1}, then A xx B becomes se-
quential (even though we have not changed the lengths of strings in A). These
two examples together suggest that in general, determining the (sub)sequentiality
of A xx B may be no easier than determining the (sub)sequentiality of an ar-
bitrary regular relation (e.g., by the twins property).

(d) E ◦ ?∗ ◦ F

2. (a) Skip step (G).

(b) The intent of this question was that if the stochastic process declined (nonde-
terministically) to replace a longest match, then it should continue as usual



at the next available point—skipping over just one character, not over the en-
tire longest match. For example, replace nondeterm (aa : b, ε, ε) should
transduce aaa to the set {aaa, ba, ab}, not just {aaa, ba}.
Your answers missed this point: they tried to modify (E) so that a substring y′

surrounded by <1 and >1 would be nondeterministically replaced by T (y′) or
left alone. This is equivalent to replace (T ∪domain (T ), L, R), and does not
have the intended effect.
The correct answer is to modify (B) so that before each domain (T )>2, it inserts
<2 with probability p (and ε with probability 1 − p). It will then fail to see any
matches to domain (T ) starting at the points where it declined to insert <2.

(c) In step (C), don’t replace <2domain (T )>2 if it contains >2 internally. Also get
rid of step (D).

(d) Oops! My intended answer to this one doesn’t quite work. Sometimes you
have to start writing the solutions before realizing that. :-)
My idea was the same as in the answer to (b): randomly remove some of the
matches to domain (T ). After step (B), just stochastically delete some of the
>2 marks. Each >2 mark should be retained with independent probability p
(and replaced by ε with probability 1−p). Then continue as in shortest-match
replacement.
This can be accomplished with a simple one-state weighted transducer, de-
scribed by the slightly less simple regexp

\> 2* ( {> 2:> 2: p , > 2: ε: (1 − p)} \> 2* )*

Unfortunately, the probabilities now are not independent as requested. If the
transducer declines to replace a match ending at position k, then it will later
decline to replace any later-starting match that also ends at k. I doubt this can
be fixed, although perhaps a useful variant is still possible.

(e) The idea was to stochastically delete some of the >2 marks after step (B), as
above, but to continue as in longest-match rather than shortest-match replace-
ment. But again, this answer doesn’t quite work.

3. For each tag pair (x, y), let Rxy be the sequential transducer replace (ε : ε : pxy, x, y),
which leaves the input string alone but multiplies its weight by pxy each time xy
appears in the input.1 Note that the first argument of replace transduces ε to ε

1There are several perfectly good ways to write Rxy .
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but with weight pxy. Now compose all the Rxy transducers together in any order
to get the weighted transducer R. Since R is a weighted identity transducer, it is
indistinguishable from a weighted acceptor as desired.

To handle the edges of the string correctly, the above construction must allow x
and y to be the special symbols ˆ and $, which match the start and end of the
string respectively. In XFST, these symbols are called .#. and .#. . If they are not
implemented at all, as in the FSA Utilities, one can add them and remove them
before applying R: just write E ◦R ◦ E−1, where E = (ε : ˆ )?∗(ε : $).

4. (a) i. A binary constraint Ci (a regular language) can be equivalently imple-
mented as a counting constraint (a regular relation) that acts as the iden-
tity on strings in Ci and inserts a single star into other strings. Specifically,
the counting constraint may be written as Ci ∪ (ε : * )(˜ Ci).

ii. Following Karttunen (1998), but using FSA Utilities notation,
:- op(402,yfx,’oo’). % declare oo as an infix operator
macro(punion(Q,R), {Q, ˜domain(Q) o R}).
macro(T oo C, punion(T o C, T)).

iii. Define Vi
def
= (̃?∗(??∗)i), the language of strings with fewer than i stars.

Now put Ci
def
= domain (C ◦ Vi) is the language of strings to which C

assigns fewer than i stars. Now T oo C1 oo C2 oo C3 gives T o+ C
as desired. (Note that Ci = ?∗ for i ≥ 4, since by assumption C always
assigns fewer than 4 stars.)

(b) A completed version of otdir.plg , with the definitions filled in, is available
on request. Here are the definitions. Remember that multiple correct answers
are possible for lang_one through lang_seven ; only one is given here.

i. macro(constraint(Lif,Rif,Lthen,Rthen),
addstarwhere(Lif,Rif) o delstarwhere(Lthen,Rthen)).

ii. macro(surfconstraint(Lif,Rif,Lthen,Rthen),
constraint(ignore(Lif,deep) & ˜[? *, deep],

ignore(Rif,deep),
ignore(Lthen,deep) & ˜[? *, deep],
ignore(Rthen,deep))).

The ˜[? *, deep] clauses are necessary to ensure one star per viola-
tion. If the constraint is supposed to put a star between A and B on the
surface, then these clauses ensure that AcccB is transduced to A*cccB
rather than A*c*c*c*B . Of the 4 positions that are between A and B if
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deep characters are ignored, we only consider the leftmost one (the one
not preceded by a deep character).
(Actually, the extra clause on Lthen looks unnecessary to me now, but I
haven’t tried removing it.)

iii. macro(noins,
constraint(surfseg,[],corrpair,[])).

iv. macro(onset,
surfconstraint(lsyl,[],[],surfcons)).

Every [ must be immediately followed on the surface by a consonant.
v. macro(nocomplex,

surfconstraint(surfcons,surfcons,{},{})).
This states the constraint very directly: it says that two adjacent surface
consonants always deserve a star, with no way out (since Lthen and
Rthen are the empty language {}).

vi. macro(singlenuc,
surfconstraint(surfvowel,

ignore(surfvowel,surfcons),
{},{})).

vii. macro(worsen_lr, [? *, ([]:star)+,
[‘star, (star*):(star*) ]*]).

viii. macro(prune_lr(TC),
pragma([TC], TC o ˜range(TC o elim(surf)

o worsen_lr
o intr(surf)))).

ix. macro(T do C, reverse(reverse(T) od reverse(C))).

x. macro(lang_one, gen od nucleus od singlenuc
od syllabify od nodel od noins
od nocomplex od onset
o elim(deep)).

xi. macro(lang_two, gen od nucleus od singlenuc
od syllabify od nodel od noins
do nocomplex od onset
o elim(deep)).

xii. macro(lang_three, gen od nucleus od singlenuc
od nocomplex od nodel od noins
od syllabify od onset
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o elim(deep)).

xiii. macro(lang_four, gen od nucleus od singlenuc
od nocomplex od syllabify
od noins od nodel od onset
o elim(deep)).

xiv. macro(lang_five, gen od nucleus od singlenuc
od nocomplex od syllabify
od noins do nodel od onset
o elim(deep)).

xv. macro(lang_seven, gen od nucleus od singlenuc
od nocomplex od syllabify
od nodel do noins od onset
o elim(deep)).

(c) There are in fact quite a few possible answers for lang three . It is instruc-
tive to look at the whole taxonomy. One must begin by requiring syllables to
be well-formed:

gen od nucleus od singlenuc ...

One must end by asking that as much as possible be syllabified, and other
things equal, that these syllables have onsets (e.g., to get [DA][BEC] rather
than [DAB][EC] ):

... od syllabify od onset

In between, the nodel and noins must dominate syllabify , because in
[AB]C[DE] , we prefer letting the Cgo unsyllabified to deleting it or inserting
a vowel:

... od nodel od noins ...

or

... od noins od nodel ...

The real question is the position of nocomplex with respect to all these con-
straints. Are we willing to insert or delete material (or syllable boundaries) to
avoid nocomplex ?
If nocomplex is ranked below syllabify , then we are willing to violate it
in order to get everything satisfied. But it still matters whether we prefer to
violate it late (od) or early (do). I’ll use {} to indicate sets of constraints for
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which it doesn’t matter in what order they’re introduced or whether they’re
introduced with od or do (either because they are ranked too high to be vio-
lated, or they are ranked too low to have any choices left):

... {nodel,noins} {syllabify} od nocomplex ...: [AB][CCCCCDE]

... {nodel,noins} {syllabify} do nocomplex ...: [ABCCCCC][DE]

If nocomplex is more important than getting everything syllabified, but not
important enough to justify insertion or deletion, then we will be able to avoid
one more violation of it, at syllabify ’s expense:

... {nodel, noins} od nocomplex {syllabify} ...: [AB]C[CCCCDE]

... {nodel, noins} do nocomplex {syllabify} ...: [ABCCCC]C[DE]

If nocomplex is important enough, then we will be willing to insert or delete
in order to avoid violating it. Here’s what happens if noins is the least im-
portant of noins, nodel, nocomplex , and so gets violated (here V can
be any vowel, so we get multiple outputs):

... {nodel,nocomplex} od noins {syllabify} ...: [AB]C[CVC]C[CV][DE]

... {nodel,nocomplex} do noins {syllabify} ...: [A][BVC]C[CVC]C[DE]

Finally, if nodel is low man on the totem pole, then it is the constraint that
has to carry the violations. We end up deleting all but the first three or all but
the last three consonants:

... {noins,nocomplex} od nodel {syllabify} ...: [AB]C[CE]

... {noins,nocomplex} do nodel {syllabify} ...: [AC]C[DE]

(d) The easiest solution is to add a constraint that prohibits E. IF this is placed
at the bottom of the hierarchy, it is only used to break ties when there are
multiple solutions. So it won’t result in deleting an input E (as it would if
ranked about nodel ); it just prefers that A is inserted instead.

(e) One should ignore stars in substrings for purposes of matching them against
the contexts L and R. Note that in the case of addstarwhere , we do not
bother with ignore for the right context: that’s because the input string is
unstarred, and the right context has not yet been starred when it is checked
during left-to-right directed replacement (replace ).

(f) Since filtering by deep* o has no effect on strings that match deep* , of
course the grammar will remain correct on such strings if we remove the fil-
ter. But the filter considerably reduces the size of the FST, because it spares
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the FST from having to deal with cases where the input contains surface char-
acters. (Our macros define some behavior on such cases, but not a behavior
that we planned or cared about when defining the macros.)

(g) i. 5 states in syllabify (Use the “Count FA” button at the bottom of the
GUI window.)

ii. 4 states in t minimize(syllabify)

iii. 3 states in syllabify , and 2 states in t minimize(syllabify) , after
changing the definition of constraint to
macro(constraint(Lif,Rif,Lthen,Rthen),

range(gen) o addstarwhere(Lif,Rif)
o delstarwhere(Lthen,Rthen)).

iv. The transducer for syllabify is quite easy to understand: it inserts a
star after any surface segment (capital letter) that is not between brackets.
The minimized version is more complicated because the minimization al-
gorithm operates on sequential FSTs, so it has to start by determinizing
the FST and in particular eliminating epsilons. In state 0 (outside brack-
ets), it copies letters, inserting a star after each capital letter:
$@(A..E):[$@(a..e),*] $@(A..E):[$@(a..e)]

In state 1, it does the same but never inserts stars. Open and close brackets
allow it to switch between the states.

(h) t minimize(lang five) has 18 states and 98 arcs. Setting S to the dis-
junction {a,b,’A’,’B’,’[’,’]’} , we can define our smaller version as
S∗ ◦ lang five ◦ S∗, whose minimized version has only 5 states and 10 arcs.

(i) i. A reasonable strategy would be to encode input-only letters as iA , iB ,
iC ,. . . , output-only letters as Ao, Bo, Co,. . . , and letters that are faithfully
copied from input to output (so they appear in both) as iAo , iBo , iCo ,. . . .
Thus, Gen should insert i before each letter of the input string, freely
insert o after some of those letters, and should also freely insert output-
only letters such as oC. Now, for example, nodel checks that any letter
preceded by i is followed by o: constraint([i,?],[],[],o) .

ii. The following relation will swap either x or y with the preceding charac-
ter. For example, it will map ax to xa .
{[[]:x,?,x:[]],[[]:y,?,y:[]]}

This is tricky to determinize, because a deterministic version has to wait
to see both characters before it can output either one. In other words,
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it has to remember a (or any character) while waiting to see whether
the next character is x or y ; output the x or y ; and then output the re-
membered character. In the determinized machine, an arc $@(?):[]
from state 0 to state 1 remembers and deletes a character ?. Then an
arc x:[x,$@(?)] or y:[x,$@(?)] , from state 1 to state 2, replaces x
(or y ) by x (or y ) followed by the remembered character. Remember that
$@(· · ·) denotes a backreference to something matched in the input, and
this example shows that the backreference can refer to a different arc.
As implemented, this technique cannot be used to swap arbitrary sub-
strings, which would be beyond finite-state power. It is crucial that x and
y are actually hardcoded into the machines above. For example, there is
no way to give a regexp for a machine that swaps two arbitrary characters
or substrings: backreferences will always output substrings in the same
order as they were input. Moreover, backreferences must be to single
characters, not to arbitrary substrings. Thus, determinizing the first ex-
pression below uses a sequence of two backreferences, but determinizing
the second fails to terminate!
{[[]:x,?,?,x:[]],[[]:y,?,?,y:[]]}
{[[]:x,? *,x:[]],[[]:y,? *,y:[]]}
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