
600.405 — Finite-State Methods in NLP
Assignment 3: HMMs and Formal Power Series

Prof. J. Eisner — Fall 2000
Handed out: Sat., Dec. 2, 2000

Due date: Try to do problem 1 by the Dec. 5 lecture,
so that you’ll understand the lecture. Assignment is due by

Thu., Dec. 7, 3pm, to NEB 224 mailbox or jason@cs.jhu.edu .

1. This week’s practical exercise uses the FSM toolkit. Step by step, you will build a
Hidden Markov Model (HMM) and use it to assign parts of speech to words. As
usual, you are welcome to work in pairs. If you still run into trouble, please email
me as soon as possible.

(a) To familiarize yourself with the problem, manually give the appropriate part-
of-speech tag for each word in the following sentence:

Both of the other candidates eyed Nader suspiciously.

You should use the tag set that is described in http://www.ldc.upenn.
edu/doc/treebank2/cl93.html , section 2.2. By way of example, you can
view over a million words of English text (the Brown corpus) that have been
manually annotated with these tags:1 http://www.cs.jhu.edu/˜jason/
405/hw3files/brown.txt .

(b) The cost of an event is the negative logarithm (base e) of the event’s probabil-
ity. Suppose two events have probabilities p and q. (i) What are their costs?
(ii) What is the sum of their costs? (iii) The sum of their costs is also a cost;
what “event” is it the cost of?

1It appears that four of the punctuation tags described there are not used in our version of the Brown
corpus. Other punctuation tags were instead made to do double duty.

jason@cs.jhu.edu
http://www.ldc.upenn.edu/doc/treebank2/cl93.html
http://www.ldc.upenn.edu/doc/treebank2/cl93.html
http://www.cs.jhu.edu/~jason/405/hw3files/brown.txt
http://www.cs.jhu.edu/~jason/405/hw3files/brown.txt

0

1/
0.

06
0

./7
.1

25

2

D
T

/0
.6

14

3

IN
/1

.0
69

4/
11

.3
5

N
N

/2
.2

44

5

V
B

D
/4

.7
09

./2
.8

68

D
T

/7
.0

50

IN
/7

.5
54

N
N

/7
.8

30

./5
.0

71

D
T

/5
.2

63

IN
/3

.6
97

N
N

/0
.0

48

V
B

D
/4

.5
07

./5
.1

61

D
T

/0
.3

55

IN
/3

.0
12

N
N

/1
.4

15

V
B

D
/6

.4
44

./1
.4

77

D
T

/3
.9

52

IN
/0

.6
56

N
N

/1
.9

24
V

B
D

/2
.4

28

./2
.3

50

D
T

/0
.8

36

IN
/0

.9
42

N
N

/2
.6

56

V
B

D
/4

.4
80

Figure 1: The acceptor tagbigram-tiny.fsa . (This is a version of tagbigram.fsa
that has been simplified by removing some states and then renormalizing the probabil-
ities; the real tagbigram.fsa is a large dense tangle that is too hard to read.)

2

(c) Figure 1 shows a finite-state machine over the semiring (R, min, +). Compute
the weight it assigns to the tag sequence “DT NN NN VBD .”? If this weight
represents the cost of the tag sequence, then out of 10000 random English
sentences, how many would you expect to have this part-of-speech sequence?

(d) Same question as in (1c) but with the final period removed from the tag se-
quence. (Warning: this is a bit of a trick question!)

(e) The machine of Figure 1 was constructed automatically from the Brown cor-
pus. Notice that state 4 is the state of the machine if it has just read NN. The
cost of reading a VBDnext—i.e., the weight of the arc from 4 to 5—is 2.428.
This is because 8.82% of the NNtags in the Brown corpus were immediately
followed by VBD, and (− log 0.0882) = 2.428. The machine was built by a
short Perl script that prepared input to fsmcompile ; the script had to read
the Brown corpus and print lines like 4 5 VBD 2.428 .
This kind of machine is called a Markov model, which means that the next
tag (or the option of stopping) is chosen randomly with a probability that
depends only on the previous tag. The machine’s state serves to remember
that tag.
Actually, Figure 1 shows only a simplified version of the machine that fits on
the page. Download the full machine: it is called tagbigram.fsa , and the
corresponding label file (for fsmprint and fsmdraw) is tags.lab . All files
in this problem can be found in the web directory http://www.cs.jhu.
edu/˜jason/405/hw3files/ (or the ordinary directory ˜jason/405/hw3files/
on the CS research network).
Answer the same question as in (1c) but with the real machine, using the
FSM tools to the extent possible. What commands did you execute to get the
answer? (Hint: you may find fsmminimize helpful at the last step, although
the implementation seems to have some funny rounding error.)
Note: You could review http://www.cs.jhu.edu/˜jason/405/software.
html , including the lexcompre command.

(f) The simplified machine actually shown in Figure 1 can be found as
tagbigram-tiny.fsa . Also, there is a machine called deltag.fst that
recognizes (Σ : ε). (Examine it if you like.)
Construct the following machine out of those parts:

fsmclosure deltag.fst | fsmcompose tagbigram-tiny.fsa - |
fsmproject -o | fsmrmepsilon

3

http://www.cs.jhu.edu/~jason/405/hw3files/
http://www.cs.jhu.edu/~jason/405/hw3files/
http://www.cs.jhu.edu/~jason/405/software.html
http://www.cs.jhu.edu/~jason/405/software.html

(i) What is its final-state weight? (ii) More important, what is the precise
relation of this weight to Figure 1? (iii) Does this give you another way to
answer problem 1e?
Note: fsmproject and fsmrmepsilon are documented on the fsm man
page. You may wish to look at the intermediate stages in the pipeline above.
Finally (big hint) if you find yourself studying Figure 1 closely, fsmbestpath
may help you find what you’re looking for.

(g) Although the FSM toolkit is designed to work over arbitrary semirings, the
compiled version we currently have only works over (R, min, +). (A more
flexible version is supposed to come out within half a year.)
But suppose you replaced the arc weights of Figure 1 with probabilities (rather
than negative log probabilities), and used the semiring (R, +,×). What would
the answer to problem 1f be then?
Note: For any state, the sum of the weights on its out-arcs, plus its stopping
weight, would be 1.

(h) Generate 5 random paths through tagbigram.fst, using
fsmrandgen -n 5 tagbigram.fsa . Each path is a randomly generated
string of tags. Use fsmrandgen -? for usage documentation.
To generate each path, fsmrandgen takes a random walk on the automaton,
at each state choosing its next move probabilistically. (It assumes the semiring
(R, +,×), so that arc weights and stopping weights are costs; it uses these
costs to compute the probabilities of all the options at a given state. These
probabilities should sum to 1 as mentioned above; if for some reason they
don’t, fsmrandgen renormalizes them before choosing, but this isn’t usually
what you want.2)
Save this automaton in a file. Look at its topology using fsmdraw . Then pass
it through lexfsmstrings (documented on the lextools man page; you
will want to use the -ltags.lab argument). In general I recommend piping
the output of lexfsmstrings through an extra transducer or two to make

2It’s not what you want because it depends on the structure of the automaton, not on the formal power
series that it represents. Two equivalent automata (e.g., before and after minimization) would be affected
differently by the renormalization.

In most such cases, what you really want is to renormalize the path weights so that the relative path
probabilities are preserved. For example, if you’re interested in the conditional probability distribution of
tag strings that match a particular regular expression such as VB DTΣ∗, you intersect tagbigram.fsa
with VB DTΣ∗ and renormalize. Extra credit: How would you use FSM operations to renormalize a
probabilistic automaton in this way, over (R,+,×) as in problem 1g?

4

0/0

.:../6.235

.:?/2.473
DT:Any/7.904

DT:a/1.674
IN:from/3.482
IN:unto/9.053

NN:specialist/9.283
NN:stake/9.101

VBD:considered/7.317
VBD:needed/6.656

Figure 2: The tag-to-word transducer tag2word.fst has 53850 words, some of which
appear with multiple parts of speech, for a total of 63762 arcs. (This diagram shows only
a subset of the arcs; it is available as tag2word-tiny.fst).

it more readable, e.g., pipe it through

perl -pe ’s/\[.*?\]|<.*?>|./$& /g; tr/][//d;’

Include the results in your writeup. Must longer strings always have higher
costs?

(i) Figure 2 shows a transducer tag2word.fst using the same weight semir-
ing (R, min, +). This simply maps tags to words. Again the costs were de-
termined automatically from the Brown corpus. For example, 0.011% of all
singular common nouns (NN) in the corpus were the word stake , so we
would like to replace NNwith stake with probability 0.00011, i.e., cost 9.101
as shown.
In problem 1h you generated an automaton that has 5 strings of tags. Replace
those tags with words nondeterministically as follows: Apply tag2word.fst
to that automaton (using fsmcompose) and select some paths using fsmrandgen .
These new paths still have both input (tag) and output (word) symbols. For
your answer, print out just the words on those paths. They should be plausible
give the tags you already chose, and they should look vaguely like English.
Be careful if your output looks fishy: you will have to use both fsmproject

5

0

1/0.060

.:../13.36

.:?/9.599

2

DT:a/2.288

DT:Any/8.518

3

IN:from/4.551

IN:unto/10.12

4/11.35

NN:stake/11.34

NN:specialist/11.52

5

VBD:needed/11.36

VBD:considered/12.02

.:../9.104

.:?/5.342

DT:a/8.724

DT:Any/14.95

IN:from/11.03

IN:unto/16.60

NN:stake/16.93

NN:specialist/17.11

.:../11.30

.:?/7.545

DT:a/6.937
DT:Any/13.16

IN:from/7.179

IN:unto/12.75

NN:stake/9.149

NN:specialist/9.332

VBD:needed/11.16

VBD:considered/11.82

.:../11.39

.:?/7.635

DT:a/2.029

DT:Any/8.259

IN:from/6.494
IN:unto/12.06

NN:stake/10.51

NN:specialist/10.69

VBD:needed/13.10

VBD:considered/13.76

.:../7.712

.:?/3.951

DT:a/5.626

DT:Any/11.85

IN:from/4.139

IN:unto/9.709

NN:stake/11.02
NN:specialist/11.20

VBD:needed/9.085

VBD:considered/9.746

.:../8.585

.:?/4.823

DT:a/2.510

DT:Any/8.740

IN:from/4.424

IN:unto/9.995

NN:stake/11.75

NN:specialist/11.93

VBD:needed/11.13
VBD:considered/11.79

Figure 3: The composition of Figure 1 with Figure 2.

6

and the label file words.lab for the last step.
Note: Footnote 2 applies here, so using fsmrandgen is actually unwise. Ques-
tion (1m) below explores a better approach.

(j) What we’re really interested in is the composition M2 = tagbigram.fsa ◦
tag2word.fst . This is a subsequential (i.e., deterministic) transducer from
tags to words because both the machines being composed are subsequential.
A simplified version is shown in Figure 3.
Suppose there is a (unique) path in M2 that reads a string of tags ~t from the
upper language and a string of words ~w from the lower language. Suppose
further that this path has weight C. You can think of this in any of the follow-
ing ways:

• M2 transduces ~t to ~w with weight C.
• The inverse transducer M inv

2 (see problem 7a) transduces ~w to ~t with
weight C.

• M2 accepts the pair (~t, ~w) with weight C.

What event is C the cost of, and why? In 1000 tagged sentences, how often
would you expect to see the pair (~t, ~w)?

(k) Generate 5 random paths and the 5 lowest-cost paths from the machine M2

and print out their word sequences. Report the commands you used and the
output strings. What does the lowest-cost path represent? Why isn’t it the
same length as the path in problem 1f?
Note: M2 only takes a matter of seconds to create on a fast machine, but it’s
about 42 megabytes, so you probably don’t want to save it to disk; instead
pipe the output of fsmcompose directly into the commands that find random
paths and best paths. If you do create any large files in the course of this
assignment (e.g., in the /tmp directory), clean them up!

(l) Starting with the next question, we will replace tagbigram.fsa with
tagtrigram.fsa . This is also derived automatically from the Brown cor-
pus, but it is a second-order Markov model that captures more of the facts of
English. The state encodes the previous two tags (not just the previous one),
so the cost of reading VBDnext is sensitive to more of the previous context.
How many states and arcs does each machine have? (Use fsminfo -n to
find out.) The number of arcs in one machine seems to be related to the num-
ber of states in the other—is this a coincidence? If not, explain.
Note: These machines have not been minimized.

7

(m) ? One would like to rerun problem 1k using the trigram model instead of the
bigram model. This should generate random strings that look even more like
English. Unfortunately, the composition M3 = tagbigram.fsa ◦ tag2word.fst
is too large a machine to compute easily.3

Nonetheless, at least one of the following commands chooses a random path
in the composition, with exactly the same probability as fsmrandgen M3

would have:

i. fsmrandgen tagtrigram.fsa | fsmcompose - tag2word.fst
| fsmproject -o

ii. fsmrandgen tagtrigram.fsa | fsmcompose - tag2word.fst
| fsmproject -o | fsmrandgen

iii. fsmrandgen tagtrigram.fsa | fsmcompose - tag2word.fst
| fsmproject -o | fsmdeterminize | fsmrandgen

iv. fsmrandgen tagtrigram.fsa | fsmarith -m 0 | fsmcompose
- tag2word.fst | fsmproject -o | fsmrandgen

Try all of these out and include sample output. Which command does what
we want? How exactly do the others differ? (Use man fsm and fsmarith
-? for help.)

(n) ? One might also like to generate the best path in the trigram model M3. Is
there also a trick here that will find the best path without actually constructing
M3?
A common approximation technique is to consider just the “very good” paths
in the simpler model M2, and choose the best of these according to M3. What
commands would do this efficiently?

(o) Now let’s use the machine for its real purpose—part-of-speech tagging. We
want to find the best path that is consistent with a given string of words. (In
this context, M3 is called a hidden Markov model because the arcs (tags)
chosen by the Markov model, tagtrigram.fsa , are not observed; only their
correlates, the words, are observed.)
Try composing M3 with each of the following difficult sentences. You should
do this efficiently, without actually constructing M3. (Hint: composition is
associative; alternatively, fsmcompose can take more than 2 arguments.)

3If you use the C library calls rather than the command-line utilities, large machines are not always a
problem because their states and arcs are computed lazily on demand. In the command-line utilities, the
whole machine has to be created and piped to the next command.

8

lexcompre -lwords.lab -s ’[time][flies][like][an][arrow]\.’
lexcompre -lwords.lab -s ’[can][you][can][this][can][of][soup]\?’

In each case, look at the resulting machine, then find and report the tag se-
quence of its best path. Was the tag sequence correct? If not, was it plausible?

(p) Another interesting application is to constrain the machine not by a string of
words, but by a lattice of words:

... -s ’[can][you][can](([this]([can]|[scan]))|([the][scan]))
(([of]|[a]|[us])[soup])|([us][up])\?’

... -s ’[can][you][can](([this]([can]|[scan]))|([the][scan]))
(([of]|[a]|[us])[soup])|([us][up]<5>)\?’

A lattice represents an uncertain input: in this case, a set of strings that sound
alike. The regexps above are hard to read, so use fsmdraw to visualize one of
the lattices above after it is produced by lexcompre .
In general, lattices have many weights. The second lattice above puts a large
cost on up to indicate that the input really didn’t sound very much like “up.”
After drawing each lattice, compose M3 with the lattice, find the best path,
and report the word sequence on that path.
This contrasts with the previous problem, where you reported the tag se-
quence. You are now using M3 to disambiguate an ambiguous input while
tagging it. A word sequence in the lattice is considered likely if it is the result
of likely substitutions of words into a tag sequence that is itself likely.
Notice that when we added a weight to “up” in the second lattice, “up” was
not the only word that changed in the best path. Why not?

(q) ? Now let’s get realistic and tag a lot of sentences at once. We’ll do the first
200 sentences from the Brown corpus, containing 5190 words. (Since our au-
tomata were built with knowledge of those words and their correct tags, this
is not a fair test of the tagging method.)
The word sequence is in brown200-words.fsa . This is a straight-line au-
tomaton that simply puts the words one after another. Each new sentence is
preceded by the special word *bos* (“beginning of sentence”). The correct
tag for *bos* is always *BOS* .
Find the best tag sequence for these words according to M3, and put it in a
file called brown200-tritags.fsa . The correct tag sequence is in the file
brown200-tags.fsa . Report the weights of both sequences under M3.

9

Similarly, find the best tag sequence for these words according to M2, and put
it in a file called brown200-bitags.fsa . The correct tag sequence is in the
file brown200-tags.fsa . Report the weights of both sequences under M2.
M3 and M2 don’t have any arcs labeled with *BOS* or *bos* . You’ll have to
modify them so they will transduce a string of several tag sequences separated
by *BOS* tags to a string of several word sequences separated by *bos*
words.
As always, you should not try to do this by modifying the states and arcs of
existing machines. Just use the FSM operations (perhaps together with some
“glue” in the form of small regexps or machines) to build up new machines
from old. Give the commands you used.

(r) ? Finally, what’s the error rate—how many tags did M3 get wrong (likewise
M2)? You can also determine this with a transducer.
Compute the answer using nothing except operations on deltag.fst (see
problem (1f)) and the two tag sequences to be compared.
Hint: First build a transducer scorer.fst such that brown200-tritags.fsa
◦ scorer.fst ◦ brown200-tags.fsa is most of the way to your answer.
You’ll need fsmarith (see problem (1m)).

(s) Extra credit: In problem 1o, you created a lattice of all tag sequences that were
consistent with an input sentence. Suppose this lattice were weighted with
probabilities rather than logarithmic costs (as in problem 1g). Also suppose it
were extended over an entire corpus as in the previous problem.
The forward-backward (Baum-Welch) reestimation algorithm asks for the ex-
pected number of times a given trigram appears in the lattice. Can you com-
pute this using a transducer? If so, sketch the best way; if not, why not?

Congratulations on finishing this very long problem!

2. Recall the following notation from class:

• K〈〈Σ〉〉 def
= the set of formal power series over Σ∗ with coefficients in the semir-

ing K. (This notation assumes that ⊕ and ⊗ will be clear from context. If not,
mention them, or write them as subscripts: K⊕,⊗〈〈Σ〉〉.)

• (S, w)
def
= the coefficient of w in S ∈ K〈〈Σ〉〉.

• K〈Σ〉 def
= {S ∈ K〈〈Σ〉〉 : {w : (S, w) 6= 0} is finite} = the set of non-commutative

polynomials over Σ∗ with coefficients in K.

10

• (S ⊕ T, w)
def
= (S, w)⊕ (T, w) (“union”)

• (S ⊗ T, w)
def
=

⊕
uv=w((S, u)⊗ (T, v)) (“concatenation”; in fact ST

def
= S ⊗ T)

• S∗
def
=

⊕
i≥0 Si = 1⊕ S ⊕ (S ⊗ S)⊕ · · · (“Kleene star”)

• (S � T, w)
def
= (S, w)⊗ (T, w) (“Hadamard product”)

• KRat〈〈Σ〉〉
def
= the closure of K〈Σ〉 under union, concatenation, and Kleene star

= the set of rational power series.

For each of the following regular expressions in the notation of the FSA Utilities
(see http://www.cs.jhu.edu/˜jason/405/software.html),

• write an equivalent expression over formal power series (preserving the struc-
ture of the expression but using the new notation);

• give the first few terms of the series ∈ K〈〈Σ〉〉 that your expression denotes;

• say what you assumed K〈〈Σ〉〉 was when you wrote out the first few terms.

I’ve given the answer for the first one.

(a) {a :: 0, b :: 3}∗

Answer: (0a⊕3b)∗ = 1⊕0a⊕3b⊕0aa⊕3ab⊕3ba⊕6bb⊕· · · ∈ Rmin,+〈〈{a, b}〉〉.
[Note that in this case the semiring’s 0 is ∞, not 0.]
Alternative answer over a different semiring: (0a ⊕ 3b)∗ = (3b)∗ = 1 ⊕ 3b ⊕ 9bb ⊕
27bbb⊕ · · · ∈ R+,×〈〈{a, b}〉〉. [Here 0 = 0.]

(b) [{a :: 0, [b :: 2, c :: 2]}∗, d, e]

(c) {a :: 0, [b, c] :: 4}∗

(d) [{a :: 1, [a, a] :: 4, [a, a, a] :: 9}, {a :: 1, [a, a] :: 4, [a, a, a] :: 9}]
(e) [{a :: 1, [a, a] :: 4, [a, a, a] :: 9}, {a :: 1, [a, a] :: 4, [a, a, a] :: 9}] & (a : 2)∗

(f) {a : x, b : y}∗

(g) {a, ab}∗

(h) [{a : u, [a, a] : [v, v], [a, a, a] : [u, u, u]}, {a : u, [a, a] : [v, v], [a, a, a] : [u, u, u]}]
(i) {a : [x, y], a : ε, ε : z}∗

(j) {a : [x, y], a : ε, ε : z}∗

(k) {a : x : 0, b : y : 3}∗

11

http://www.cs.jhu.edu/~jason/405/software.html

(l) {a : [x, y] : 3, a : ε : 4, ε : z : 5}∗

3. Draw a minimal weighted automaton recognizing the power series of (2d).

(You don’t know yet how to minimize weighted automata in general, but you
should be able to figure this one out from the power series you wrote, especially
since it has finitely many terms (i.e., is a polynomial).)

4. (a) In R+,×〈〈{a, b}〉〉, simplify the expression 3ab⊕ 4ab⊕ (5ba⊗ 7).

(b) In Rmin,+〈〈{a, b}〉〉, simplify the expression 3ab⊕ 4ab⊕ (5ba⊗ 7).

(c) In general, we write ST as an abbreviation for S ⊗ T . There is a danger of
confusion here, since 3ab is ambiguous: it could mean either (i) the function
that maps ab 7→ 3 and maps everything else 7→ 0, or (ii) the product 3⊗ a⊗ b.
Show that there is actually no danger because the power series (i) and (ii) are
equal.
(Hint: Remember that 3 denotes 3ε, the power series that maps ε 7→ 3 and
maps everything else 7→ 0, and a ∈ Σ denotes 1a similarly.)

5. The series S is called proper iff (S, ε) = 0. It was claimed in class that the series
definining S∗ will converge if S is proper. Let’s explore that.

(a) Suppose S is proper and you are given a string w. For all m ≥ 0, let km

denote the partial sum
⊕m

i=0(S
i, w). Show that k0, k1, k2, . . . converges after

finitely many terms, and write a closed-form expression for the limit value
k∞ in terms of S and w. (We can then define (S∗, w)

def
= k∞.)

(b) Give an example of a series S (over some semiring you choose) such that S is
not proper but k0, k1, k2, . . . converges after finitely many terms anyway.

6. Recall that a formal power series S ∈ K〈〈X〉〉 is recognizable iff there exist n ≥ 0,
L, R ∈ Kn×1, and M : X → Kn×n such that for all strings w = x1 . . . xj , we have
(S, w) = LtM(x1)M(x2) · · ·M(xj)R. This gives us an effective way of calculating
(S, w) even when the automaton is nondeterministic.

Prove that L can be eliminated from the definition in favor of a single unweighted
start state. That is, even if the definition were changed to require Lt = [1 0 0 · · · 0],
the same series would be considered recognizable as before. To put this another
way, one can transform any finite-state machine, without changing the function it
computes, so as to eliminate multiple initial states and initial-state weights.

12

Similarly, show that R can be eliminated from the definition, but that L and R
cannot both be eliminated without changing the meaning of recognizability.

7. In this problem, we consider special operations on (weighted) transducers.

Let Σ, ∆ be alphabets and let K be a semiring. Suppose S ∈ (Krat〈〈∆〉〉)rat〈〈Σ〉〉.
This says that S is a rational power series mapping each string w ∈ Σ∗ to a rational
power series (S, w) over ∆∗, i.e., to a weighted language. S may be regarded as
a weighted transduction from Σ∗ → ∆∗; we write ((S, w), v) to get the weight of
mapping w ∈ Σ∗ to v ∈ ∆∗.

(a) ? We define the inverse transduction Sinv by ((Sinv, v), w)
def
= ((S, w), v).4 Can

we conclude from the fact that S is a rational power series that Sinv is too?
Why or why not?

(b) ? Let Γ be another alphabet, and suppose T ∈ (Krat〈〈Γ〉〉)〈〈∆〉〉. We define
the composition S ◦ T by (((S ◦ T), u), w)

def
=

⊕
v∈∆∗((S, u), v) ⊗ ((S, v), w) =⊕

v((S, u) � (Sinv, w), v). Can we conclude from the fact that S and T are ra-
tional power series that S ◦ T is too? Why or why not?

You may or may not find it helpful to use the fact that the rational power series are
exactly the recognizable power series.

4Sinv is usually written S−1. However, I’m trying to avoid notational confusion: in class we used S−1

to denote the multiplicative inverse of a formal power series, whereas here we want the inverse under
composition.

This ambiguity in exponents stems from the fact that both multiplication and composition are written
with concatenation. You’ve already run into it in trigonometry: you might expect sin2 and sin−1 to be
interpreted consistently—either as sin · sin and 1/ sin or else as sin ◦ sin and arcsin—but by convention
they’re not.

13

