
600.405 — Finite-State Methods in NLP
Assignment 1: Getting Started

Solution Set
Prof. J. Eisner — Fall 2000

1. Correction: The problem should have said δ : Q× Σ → Q, not δ : Q× Σ → Σ. Most of
you caught this; apologies to those of you who were perplexed by it.

Remark: The math notation δ : Q× Σ → Q corresponds to the C function prototype

state delta(state q, symbol a);

where the type state takes values in Q and symbol takes values in Σ. In other
words, it says that δ is a function whose arguments are pairs of the form (q, a) where
q ∈ Q and a ∈ Σ, and which returns something in Q.

Remark: The 5-tuple (Σ, Q, I, F, δ) encodes an automaton, so it is basically a mathe-
matical version of a data structure. There are at least 3 reasonable data structures for
describing the arcs of a finite-state automaton:

• An edge list: a list L of edges like (qi, a, qj), meaning that there is an arc from qi to
qj with label a. This is rather inefficient for most operations.

• An adjacency matrix: A version of the edge list, but stored in a 3-dimensional ar-
ray E for fast lookup. Put E[i, a, j] =true or false according to whether (qi, a, qj) ∈
L. (You may have seen a 2-dimensional version of this to represent unlabeled di-
rected graphs.) We will actually use this representation in lecture 3, replacing the
true and false here with arbitrary weights from a semiring.

• A transition function: A compressed version of the adjacency matrix that doesn’t
bother to store all the false values (missing arcs). This saves both space and
time if there are many missing arcs. For every state qi and symbol a, the entry
δ[i, a] stores just the state number(s) j such that E[i, a, j] = true. Notice that in



addition to being compact, this is a very convenient representation if you are at
state qi, you read symbol a, and you want to know where to go next!1

The transition function δ specified in the problem corresponds to the efficient last im-
plementation option above. It’s also a mathematically convenient way of defining
automata, and it makes it easy to distinguish between a deterministic and a nonde-
terministic automaton (part of the point of this problem!).

Okay, now for the answers!

(a) Allow the transition function to be any δ : Q× Σ → Q ∪ {undef}.
Why? In an incomplete automaton, we must allow for the possibility that δ(q, a)
is undefined: there might be no way to get from state q to any next state on input
a. In this case we want δ(q, a) to return some special symbol undef 6∈ Q.
Remark: Most DFAs that arise in practice are incomplete. However, it is of-
ten useful to assume completeness in proofs, and the minimization construc-
tion only applies to complete DFAs. Fortunately, any DFA can be completed by
adding the missing transitions: these transitions can go to a special “dead state”
that is not final and just loops back to itself on any input, so that it does not
accept anything.

(b) Allow the transition function to be any δ : Q× Σ → P(Q).
Why? In a nondeterministic automaton, δ(q, a) might return multiple next states—
i.e., a subset of Q rather than just one element of Q. Remember that P(Q) (some-
times written as 2Q) denotes the set of all subsets of Q.
Notice that this definition obviously allows incompleteness, since δ(q, a) could
return the empty set. Generally the term “complete” is only used when dis-
cussing deterministic automata.

(c) Allow the transition function to be any δ : Q× (Σ ∪ {ε}) → Q.

1As a practical matter, it is common to distribute the storage of δ across states. Each state qi stores a single
array δi, and the value δ[i, a] is actually stored in δi[a]. Advantages:

– No disadvantage: It is still easy for qi to decide where to go next by consulting δi.
– Good cache behavior: δi will still be in the cache if qi has been visited recently.
– Flexibility: Suppose the automaton is incomplete. If a given state qi has few outgoing arcs, then δi is

a sparse array. We can choose separately for each qi whether to store δi as an array (fast lookup), as a
linked list (compact storage and fast iteration), as both (extra storage but everything is fast), or as a hash
table (a compromise). The decision depends on the sparsity of δi and how often we perform lookup and
iteration operations on it.
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Then not only δ(q, a) but also δ(q, ε) is defined, so there are ε-labeled transitions.
Note that the automaton is now nondeterministic, since if it is at state q and the
next input symbol is a, it has a choice of reading a and going to δ(q, a), or reading
nothing (yet) and going to δ(q, ε).
To get a completely nondeterministic automaton with ε transitions, we would
declare δ : Q× (Σ ∪ {ε}) → P(Q).

(d) Allow the transition function to be any δ : Q×Σ → Q×K, where K is the set of
output strings or weights.
So δ returns both a next state and an element of K. If δ(q1, a) = (q2, 5), this means
that the a arc from q1 goes to q2 and has weight 5.
Another answer is to use two transition functions, δ : Q × Σ → Q (for the arc’s
destination) and δ : Q × Σ → K (for the same arc’s weight or output). This
is also correct but it would be harder to adapt this solution to nondeterministic
automata.

(e) How many 5-tuples fit the conditions of the definition? We were given Σ and Q.
We have an n-way choice for the initial state i. For each of the n states, we have
a 2-way choice about whether to make it final or not. Finally, of each of the nk
input pairs to δ, we have an n-way choice for the output.
Since all these choices are independent, there are n · 2n ·nnk = 2n ·nnk+1 different
options altogether. Asymptotically, it is en log 2+(nk+1) log n = eO(n log n) different
automata—quite a lot!

(f) ? In fact, “almost all” of these eO(n log n) automata describe distinct languages.
We’ll show a lower bound: there must be at least nn(k−1) different languages
recognized by these automata. Since k > 1 by assumption, this is fully eO(n log n)

distinct languages.
Let a be some arbitrary symbol in Σ. We will consider the set S of all automata
with the following properties:
• initial state I = q1

• final stateset F = {qn}
• for all i = 1, 2, . . . n, transition δ(qi, a) = qmin(i+1,n).

(That is, δ(q1, a) = q2, δ(q2, a) = q3, . . . δ(qn−1, a) = qn, and δ(qn, a) = qn.)
Because we are free to choose all the transitions on symbols other than a, we
have an n-way choice for each of n(k− 1) of the input pairs to delta, so there are
nn(k−1) = eO(n(k−1) log n) automata in this set. This is the same formula as in (1e)
except that it only counts k − 1 of the k symbols in the alphabet (since symbol a
is not free).
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It remains to be shown that all these automata describe different languages. For
this we need two key results about minimal automata (the assignment told you
where to find these).
First of all, an automaton is minimal iff no states can be merged. Every automa-
ton in S is minimal: the two states qi and qj (for i < j) can never be merged
because they are distinguishable—the suffix an−j can be accepted from qj but
not from qi.
Second, the minimal automaton for a language is unique up to isomorphism
(renaming of the states). Since any two automata in S are minimal, they can only
describe the same language if they are isomorphic. But renaming the states of an
automaton in S never gives a different automaton in S, since the properties of S
force the initial state to be named q0, force δ(q0, a) to be named q1, etc. It follows
that all the automata in S describe distinct languages, as desired.

(g) ?? The construction above doesn’t provide a tight lower bound for the case k =
1. (In fact, it says only that there must be at least 1 language; by completely
constraining the transitions on a ∈ Σ, it only allows one automaton!) So let’s
find better bounds.
The key insight is that for k = 1, the path from the initial state loops back on
itself after some number of steps j, giving a “lollipop” topology. (There may be
multiple lollipops but only one can be reached from the start state; the others
are irrelevant!) Here is an example with j = 6, which accepts the language
a + aa(aa)∗:

0 1
a

2
a

3a 4a

5

a

a

6 7
a

8
a

a
(a single disconnected DFA)

Why is this? Given any complete deterministic n-state automaton on Σ = {a},
define s0 ∈ Q to be the initial state, s1 = δ(s0, a) ∈ Q, s2 = δ(s1, a) ∈ Q, etc. Since
Q is finite, eventually we will run out of states: let j be the smallest integer such
that sj = si for some i < j. (In the example above, s6 = s2 = state 2.) Notice that
j ≤ n.
The language recognized by the automaton is completely determined by j, i, and
the choice of final states among s0, s1, . . . sj−1. Since i, j ≤ n, this immediately
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gives a weak upper bound of n2 · 2n, which is eO(n).
Can we match this asymptotically with an eO(n) lower bound? Yes. Consider
just automata for which i = 0 and j = n, so that the n states form a simple cycle.
There are 2n such automata, which differ according to the choice of final states.
Any two such automata recognize different languages, since they must disagree
on the finality of some state sp, and then one accepts the string ap while the other
does not.
The problem is rather harder if one allows nondeterministic automata (which
was actually what I had in mind, hence the ?? rating, but of course I actually
asked about deterministic ones!).

To summarize the answers to the last two questions, there are eO(n) different lan-
guages recognized by n-state DFAs if the alphabet has size k = 1, or eO(n log n) if the
alphabet has size k > 1 (indeed the exponent increases linearly with k).

(Technically speaking, I should have been writing Θ() rather than O() throughout this
answer, since I’m giving exact asymptotic behavior and not merely an upper bound.
Alas, this distinction is commonly ignored outside the algorithms community.)

2. (no right answer so long as you wrote something that showed you did the tutorial, in
which case you got full credit!)

3. (a) 1(0+1)∗00: correct except that it rejects 0. Note that the author of this expression
decided that 0100 shouldn’t count as a binary number because it starts with 0.

(b) (0 + 1)∗100: rejects all numbers divisible by 8 (e.g., 1000).

(c) (0 + 1)∗00 + 0: correct (unless you think that ε is an allowable binary representa-
tion of 0).

(d) ∗00: not a regular expression. (I suspect the author was using ∗ in the Unix shell
sense of ?∗, i.e., any sequence of characters.)

(e) (1∗0∗)∗00: equivalent to (0 + 1)∗00, which is correct except that it rejects 0.

4. The following automaton corresponds to (3c):

0

1
eps

3

eps

2
0

0
1

4
0

5
0
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And here it is determinized, using fsmdeterm :

0

1
0

2
1

0

1

0

1

5. (a) wrong: rejects 11

(b) wrong: rejects 1001

(c) right: keeps track of (odd sum − even sum (mod 3)), and odd vs. even posi-
tion in string

(d) right: merges two states from previous answer. These states can be regarded as
(odd sum − even sum ≡ 0 (mod 3), odd position) and (odd sum − even sum
≡ 0 (mod 3), even position).

(e) wrong: accepts 10

6. (a)

0

0

1
1

1
2

0

0

1

(b) The refpixes that reach state i are the binary numbers that are congruent to i
(modulo 3).
Let’s write 〈w〉 to mean the number represented by string w. So the claim is that
if 〈w〉 ≡ i, then w reaches state i.
This claim can be justified by induction on the length of the refpix string. The
claim is true for ε. How about longer strings? To show just one of six cases,
suppose the longer string has the form w0 and 〈w〉 ≡ 2 (mod 3). Then 〈w0〉 ≡
2〈w〉 ≡ 2 · 2 ≡ 1 (mod 3), so we must show that w0 reaches state 1. This is true
because w reaches state 2 by inductive hypothesis, and there is a 0 arc from 2 to
1. The other cases are similar.
A consequence of the claim is that refpixes that are divisible by 3 reach the final
state, 0, and others do not (since the automaton is deterministic). So the automa-
ton correctly tests divisibility by 3.
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(c) ? In general, divisibility by k in base b can be decided by a k-state DFA. The states
are numbered 0, 1, . . . k−1; a refpix that is congruent to i (modulo k) reaches state
i. This is arranged by the following arcs: δ(i, d) = j iff i·b+d ≡ j (mod k). (This
leads to an attractively regular pattern.) The proof of correctness is as above.
The above automaton is not always minimal. For example, we saw in prob-
lem (4) that the case k = 4, b = 2 can be handled by a DFA with fewer than 4
states. In that machine, states 0, 1, and 2 respectively correspond to refpixes that
are congruent to 2, 0, and either 1 or 3. In other words, the “1” and “3” states
have been merged.2

If k and b are relatively prime, then the k-state automaton is minimal (it can be
shown that any state pair is distinguishable). Otherwise it is not unless k = 2.
I’ve checked the minimal size for a variety of k and b, and the pattern seems to
be complicated, although there are subpatterns (based on the prime factors of k
and b) that are easy to pick out.

7. (a)

0

1:0
20:1

1

eps:1

0:0
1:1

which could also be written

:1

1:0

0:1

0:0
1:1

If the automaton is in the first state, it still has to add 1 to the rest of the string,
either because it is in the start state or it is propagating a carry bit. Notice that
runs out of input in the first state, it still has the obligation to output a 1 (e.g.,
111 + 1 = 1000); hence the final-state output at this state, which makes the trans-
ducer subsequential rather than sequential.
If the automaton is in the second state, it has discharged its obligation and can
just copy the rest of the string.

(b) An equivalent regular expression is (1 : 0)∗((ε : 1) + (0 : 1)(? :?)∗). You can think
of this as zeroing out the initial string of 1’s and then adding 1 to what’s left,
which is easy because it’s either ε or starts with 0.

(c) The reversed transducer cannot be determinized. In fact, the fsmdeterminize
program does not halt—it deliberately omits the (polynomial but expensive)

2The start state is 0 rather than 1 because the author of regular expression (3c) decided not to allow ε as a
binary representation of 0.
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check for this condition.
Why is determinization impossible? It’s because the transducer needs an un-
bounded amount of input lookahead to produce the correct output. (Note that
in general a transducer can get a bounded amount of lookahead by postponing
the output: i.e., have ε outputs for a while until it gets to a good state, then pro-
duce the postponed output. Essentially it is using the states to keep track of the
postponed output—but there are limits to this as it has finitely many states!)
To be formal about this case, suppose we had a deterministic (sequential) ver-
sion. Because it’s deterministic, it reads a string on only one path, so that path
must produce the correct output. Consider that 01n−20 7→ 01n−21, whereas
01n−21 7→ 10n−1. On these examples, it cannot produce the correct first output
symbol until it has read n input symbols—so it must wait till then to produce any
output at all, and must then produce exactly n output symbols. But with only
finitely many states, it cannot possibly remember (for arbitrary large n) how
many output symbols to produce. So there is no such deterministic transducer.
Even though the reversed transducer is not determinizable, it has only one out-
put per input (the word I was looking for was “unambiguous”). It may take
multiple paths, but only one will be consistent with the rest of the input; the
others will not reach a halt state.

(d) The original transducer recognizes the relation {(w,w + 1) : w ≥ 0}.3 The in-
verted transducer therefore recognizes the relation {(w + 1, w) : w ≥ 0}. This
relation is a function on positive natural numbers. It does not map 0 to anything,
because 0 does not have the form w + 1 for any w ≥ 0.
It is worth noting that the inverted relation is not unambiguous, because the
original relation accepts multiple representations of the same number. The in-
verted transducer maps 1 to both 0 and ε, and it maps 0001 (= 8) to both 111 and
1110.

(e) Multiplication by a fixed value k can be implemented deterministically from
right to left, using k states to remember the carry (an integer in [0, k − 1]) from
one position to the next.
While this transducer can be reversed in order to do multiplication from left to
right, the reversed transducer cannot be determinized. To see this, notice that in
base ten, 33333333 × 3 = 99999999 but 33333334 × 3 = 100000002, and argue as
in (7c).

3An abuse of notation, since it blurs the distinction between the string w and the number 〈w〉 that it
encodes.
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