
600.405 — Finite-State Methods in NLP
Assignment 1: Getting Started

Prof. J. Eisner — Fall 2000
Handed out (behind schedule): Fri., Nov. 10, 2000

Due: Preferably at the Tue., Nov. 14 lecture, for your good;
but will accept until noon on Friday, Nov. 17

(to NEB 224 mailbox or jason@cs.jhu.edu).

A number of important ideas and nuances will be introduced through the homework
exercises rather than in lectures. So even if you’re just sitting in, I encourage you to
consider and discuss the theoretical questions, and to try some of the practical exercises,
since they will help you develop your intuitions.

For enrolled students: As stated on the course web page, you are encouraged to work
in pairs on the homework, provided that each of you makes a real effort on each problem;
that you indicate who you worked with; and you write up your work separately.

You are welcome to send me questions and even to use the class mailing list for
discussion, within reason.

The ? symbol denotes a difficult problem. It may be iterated, i.e., the difficulty level
is indicated as an element of ?∗. Aren’t regexps useful? :-)

1. Recall that a complete deterministic finite-state automaton (complete DFA) is spec-
ified as a tuple (Σ, Q, i, F, δ), where

• Σ is the alphabet;

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• δ : Q × Σ → Σ is the transition function. For example, δ(q1, a) = q2 means
that the a arc from state q1 goes to state q2.

jason@cs.jhu.edu
http://www.cs.jhu.edu/~jason/405

(a) The term complete means that from each state, there exist |Σ| different arcs,
one to read each symbol in Σ. How would you have to change the definition
above so as to allow incomplete automata with fewer than |Σ| outgoing arcs
per state?

(b) How would you have to change the definition to allow nondeterminism—i.e.,
multiple arcs leaving the same state and reading the same symbol?

(c) How would you change the definition to allow ε-transitions, i.e., transitions
that read the empty string?

(d) How would you change the definition so as to associate an output string or
weight with each arc?

(e) For a fixed alphabet of size k = |Σ|, how many distinct complete DFAs are
there with the state set Q = {q1, q2, . . . qn}? (You may count unequal automata
as distinct even if they are isomorphic.)

(f) ?Some of the automata in the previous question are equivalent in that they
accept the same language (set of strings). Assume k ≥ 2. Asymptotically
(i.e., for large n), about how many different languages are accepted by such
automata? Can you get reasonably tight lower and upper bounds? Give your
answer in asymptotic (“big-Oh”) form: O(f(n)) or eO(f(n)), where k appears as
a constant in f(n).1 (Note: You may want to review the simplest minimization
algorithm2 or at least try problem 6 first.)

(g) ?? Extra credit: Same question for k = 1.

2. Learn the three software packages, in order, by following the instructions at http:
//www.cs.jhu.edu/˜jason/405/software.html . What was the most inter-
esting thing you learned or realized about finite-state methods during this exer-
cise? Also, what do you think of each package—what’s good and what’s annoy-
ing?

(a) FSA Utilities

(b) xfst

(c) fsm + lextools

1Note: z = eO(f(n)) means that log z = O(f(n)). This notation is useful because e2x+5 6= O(ex) but
e2x+5 = eO(x).

2See Hopcroft & Ullman §3.4. There is also a nice concise illustrated explanation at http://www.cs.
engr.uky.edu/˜lewis/essays/compilers/min-fa.html .

2

http://www.cs.jhu.edu/~jason/405/software.html
http://www.cs.jhu.edu/~jason/405/software.html
http://www.cs.engr.uky.edu/~lewis/essays/compilers/min-fa.html
http://www.cs.engr.uky.edu/~lewis/essays/compilers/min-fa.html

For the remaining problems on this assignment, you may use the tool of your
choice. (But you can do most of the work this week without any software at all.)

3. Your questionnaire asked:

Write a regular expression that accepts only binary numbers that are di-
visible by 4.

Here are some of the answers from the class. For each answer, say whether it is a
correct answer. If not, give a (short) string on which the regular expression does
the wrong thing. You may use the software tools to help you.

(a) 1(0 + 1)∗00

(b) (0 + 1)∗100

(c) (0 + 1)∗00 + 0

(d) ∗00

(e) (1∗0∗)∗00

4. Draw a finite-state automaton that accepts the above language. If it is not deter-
ministic, also draw a deterministic (and preferably minimal) version. Produce at
least one of these drawings by using the software tools.

5. Your questionnaire asked:

A binary number is divisible by 3 iff the number of 1’s in even positions
= the number of 1’s in odd positions (mod 3). For example, 1010111 =
87 = 29 · 3 has four 1’s in even positions and one 1 in an odd position.
Draw a finite-state machine that accepts only binary numbers that are
divisible by 3.

Here are some of the answers from the class. For each answer, say whether it is a
correct answer. If not, give a (short) string on which the machine does the wrong
thing.

(a)

S

0

1

0

1

1

0

3

(b)

S

1

0

1

0

(c)

S

0

1

0

1

1

0

1
0

010

1

(d)

S

0
1

1

1

0

1

0
0

1
0

1

4

(e)

S

1

0

0

1

1

0

1

0

1

0
1

0

0

1

0

1

1

0

6. (a) The minimal DFA for problem 5 is not necessarily shown above; what is it?
(My first and second guesses accepted the right language but weren’t mini-
mal!) You may use the Myhill-Nerode theorem to help you construct it and
prove that it is minimal.3 If you have trouble seeing the answer or want to
check your work, you may use the software tools to help you (e.g., to mini-
mize or check an automaton).

(b) Now, for each state in your DFA, succinctly describe the class of prefixes on
which the DFA reaches that state. Does your description imply that the DFA
correctly tests divisibility-by-3? Can the correctness of your description be
proved by induction, as desired?

(c) ? In general, divisibility by k in base b can be decided by a DFA. Can you say
anything about how to construct the minimal DFA to perform this task, and
how many states it will have?

7. (a) Write a finite-state transducer that deterministically reads a binary number n
from right to left (i.e., least significant bit first) and outputs (only) the binary
representation of n + 1, also from right to left. Test it using software.

3Given an arbitrary language L, two strings u and v are said to be L-indistinguishable if (∀x ∈
Σ∗)ux ∈ L ⇔ vx ∈ L. Only then could a DFA accepting L correctly reach the same state on both u
and v. Myhill-Nerode says that L is regular iff L-indistinguishability partitions Σ∗ into finitely many
equivalence classes. If so, the minimal DFA for L has one state per equivalence class; it reaches that state
when reading any member of the class. Again, see Hopcroft & Ullman §3.4.

5

(b) One way to solve the above is to write and compile an appropriate regular
expression. Do so and test using software.

(c) Reverse your transducer (i.e., reverse the direction of each arc, or simply re-
verse the regular expression and recompile) so that it reads and writes binary
numbers from left to right. Can this transducer be determinized? (Try it in
software!) Why or why not? If it is nondeterministic, why doesn’t it have
multiple outputs per input?

(d) Invert your transducer (i.e., exchange the input and output labels on each
arc). What relation does the resulting transducer implement? What happens
on a zero input?

(e) Do you think that base-b multiplication by an arbitrary fixed k can be im-
plemented with a finite-state transducer? Does right-to-left vs. left-to-right
matter?

6

