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Thirty Categorization Results in Search of a Model

J. David Smith and John Paul Minda
State University of New York at Buffalo

One category structure dominated in the shift toward exemplar-based theories of categoriza-
tion. Given the theoretical burden on this category structure, the authors reanalyzed 30 of its
uses over 20 years in 8 articles. The authors suggest 4 conclusions. (a) This category structure
may encourage exemplar-memorization processes because of its poor structure, the learning
difficulties it canses, and its small, memorizable exemplar sets. Its results may only generalize
narrowly. {b) Exemplar models have an advantage in fitting these 30 data sets only because
they reproduce a performance advantage for training items. Other models fit equally well if
granted this capacity. (¢) A simpler exemplar process than assumed by exemplar models
suffices to explain these data sets. (d) An important qualitative result predicted by exemplar
theory is not found overall and possibly should not even be expected. The authors conclude
that the data produced by this category structure do not clearly support exemplar theory.

Categorizing objects into psychological equivalence
classes is a basic cognitive task. Historically, some descrip-
tions of categorization were prototype-based—humans were
supposed to average their exemplar experience into a
category prototype, compare new items to it, and accept the
new items as category members if similar enough (Homa,
1984; Homa, Rhoads, & Chambliss, 1979; Homa, Sterling,
& Trepel, 1981; Mervis & Rosch, 1981; Posner & Keele,
1968, 1970; Rosch, 1973, 1975; Rosch & Mervis, 19735).

However, 20 years ago some evidence began to suggest
that prototype theory might not account completely for
humans’ categorization processes. In influential articles,
Medin and his colleagues argued that prototypes are an
insufficient organizing principle for categories, that proto-
type models sometimes offer poor descriptions of humans’
categorization performance, and that humans learn catego-
ries that would be unlearnable if categorization depended on
prototypes (Medin, Dewey, & Murphy, 1983; Medin &
Schaffer, 1978; Medin & Schwanenflugel, 1981; Medin &
Smith, 1981). ,

Thus, Medin and his coworkers proposed instead that
exemplar-based processes underlie categorization and that
exemplar-based models of categorization describe categori-
zation performance better. These models assume that stored
memories of the specific exemplars encountered in training
form the representational core of a category. These models
assume that these stored memories become the comparative-
reference standard for categories, so that new tokens are
placed into the category with the most similar stored
exemplars, By making these assumptions, Medin's exemplar
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model—the context model—granted participants exemplar-
based strategies that were powerful enough to master poorly
structured categories and to learn exceptional items within
categories. Nosofsky generalized the context model in a
series of articles, and it has had a profound influence on
categorization theory and research (Lamberts, 1994, 1995;
Medin, 1975; Medin et al., 1983; Medin & Schaffer, 1978;
Medin & Smith, 1981; Medin, Altom, & Murphy, 1984;
Nosofsky, 1984, 1987; Palmeri & Nosofsky, 1995; Smith &
Minda, 1998; Smith, Murray, & Minda, 1997).

One category structure dominated the science that moti-
vated the shift toward exemplar-based descriptions of catego-
rization, Table 1 shows this category structure. It contains
five A exemplars and four B exemplars that are used in
training. For this reason, we refer to it as the 54 category
structure. Seven additional itemns are reserved for measuring
transfer performance. The logical structure shown in Table 1
has been instantiated by using geometric designs, Brunswick
faces, yearbook photographs, and line-drawn rocketships.
This stimulus set was featured in the article that introduced
the context model to human psychology (Medin & Schaffer,
1978) following Medin’s (1975) important comparative
monograph. It dominated the early papers and findings that
favored exemplar-based categorization (Medin et al., 1984;
Medin et al., 1983; Medin & Smith, 1981). It was crucial in
Nosofsky’s (1992} critique of prototype models and in his
further explorations of the context model (Nosofsky,
Kruschke, & McKinley, 1992; Nosofsky, Palmeri, & McKin-
ley, 1994; Palmeri & Nosofsky, 1995),

Given the critical role this category structure has played in
asserting exemplar theory in the categorization literature, it
is important to interpret carefully the results it yields and to
be certain that the assumptions of exemplar theory are
warranted and necessary regarding it. In that way, one may
establish whether the 54 category structure bears well the
burden of supporting exemplar theory, or whether that
burden should be placed on other category structures and
category tasks that have seemed to show exemplar theory’s
worth.
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Table 1
The 5-4 Category Structure
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Accordingly, the present article revisits the large body of
data on the 5-4 category structure, including 30 data sets
reported in eight articles (Lamberts, 1995; Medin et al,,
1984; Medin et al., 1983; Medin & Schaffer, 1978; Medin &
Smith, 1981; Nosofsky et al., 1992; Nosofsky et al., 1994;
Palmeri & Nosofsky, 1995). These 30 data sets represent
essentially all the results using this category structure,
making this a comprehensive survey and a deliberately
nonselective one. Using this comprehensive set of results
with the most influential category structure in the literature,
we ask whether these data encourage the general assumption
that humans categorize by using systematic exemplar-to-
exemplar comparisons based in specific exemplar traces that
form the representational cores of categories.

" Te do so, we explore the fits of many models that have
been used in the literature, and consider the reasons that
some fail to fit the 54 data whereas others succeed. We
explore the convergences among the successful models to
see if they have implications for interpreting performance in
the 54 category task. We consider the present status of the
primary result within the 5—4 data that has suggested that
exemplar theory’s assumptions are qualitatively cotrect—
not just quantitatively better. Finally, we consider the place
of the 54 category task and related tasks in the larger space
of category structures and categorization phenomena.

Method
Category Structure, Stimuli, and Data Sets

Category structure, Table 1 shows the category structure used
to collect the 30 5—4 data sets. The stimuli are derived from the
category prototypes 1 1 1 1 and 0 0 0 0. Category A has four
exemplars that share three features with the Categary A prototype
and one exemplar that shares two features. Thus, Category A has no
exceptional exemplars (sharing more features in common with the
opposing prototype) but has one ambiguous exemplar (sharing

features equally with both prototypes). Category A exemplars share
an average of 2.8 features out of 4 with their prototype; they share
an average of 2.4 features with each other (including their perfect
self-identities). The features in Category A are .70 predictive of
category membership on average. This means that a rule based on
any one feature would work only about 70% of the time.

The Category B exemplars share 2, 2, 3, and 4 features,
respectively, with their prototype. Thus Category B also has no
exceptional exemplars, but half its exemplars are ambiguous.
Category B exemplars also share an average of 2.8 features out of 4
with their prototype and 2.4 features with each other (including
their perfect self-identities). The features in Category B are .69
predictive of category membership on average.

Across categories, the four features are .77, .55, .77, and .66
predictive of catégory membership, No feature is perfectly diagnos-
tic, but all four carry at least minimal information. The second
dimension does carry minimal informaticn, for it can only catego-
rize comectly five of the nine training exemplars. An adaptive
participant might learn to ignore this confusing stimulus dimen-
sion and allocate more attention to Dimension 4 (with .66
predictiveness) and especially to Dimensions 1 and 3 (with .77
predictiveness).

To derive an overall index of within-category coherence and
between-category  differentiation, one can divide within-category
similarity by between-category similarity to find the structural ratio
(Homa et al., 1979, pp. 13-14; Smith et al,, 1997} Given that the
exemplars share 2.4 features with each other within category
(including their self-identities) and 1.6 features across categories,
one can calcvlate that the structural ratio for this category structure
is quite low—1.5. A structural ratio of 1.0 would imply no
differentiation—that is, a complete overlap of the categories in
muitidimensional perceptuai space. Structural ratios as high as 3.0
are easy to arrange,

This low index of category differentiation correctly reflects that
the individual features are only 70% diagnostic, that exemplars are
nearly as similar across categories (sharing 1.6 features) as within
categories (sharing 1.9 features if one excludes self-identities), and
that three of the nine items are ambiguous because they share
features equally with both prototypes. Thus the two categories
within themselves are poor assemblages with a weak family
resemblance, and they are poorly differentiated from each other.
There were constructive methodological reasons for creating
categories like these. Still, the fact of poor differentiation may
constrain the interpretation of the results they produce, We discuss
this problem and the psychological impact of poor category
structure below. L

However, the 5—4 categories shown in Table 1 do have the
characteristic of being linearly separable (1.S). LS categories are
those that can be partitioned by a linear discriminant function, and
for which one can simply sum the evidence offered separately by
each feature of an item and -use that sum to decide correctly
category membership. For LS categories, there is a way to allocate
limited attention across the four dimensions that lets one categorize
accurately all the training exemplars. For example, if one allocated
40%, 0%, 40%, and 20% of one’s attention to Dimensions 1, 2, 3,
and 4, respectively, the evidence favoring a Category A response
would be, for training items Al to B9 as shown in Table 1, 0.80,
0.80, 1.00, 0.60, 0.60, 0.40, 0.40, 0.20, and 0.00. That this evidence
base is greater than (.50 for the five Category A exemplars and less
than 0.50 for the four Category B exempiars. signifies that this
attentional allocation would correctly categorize all the stimuli.
The fact of linear separability bears on what follows hecause it
means that a prototype-based strategy applied appropriately could
categorize correctly all the training exemplars. That is, this
category structure does not force participants to desert a prototype-
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based approach and adopt an exemplar-based approach instead. It
leaves both strategies viable.

Stimuli. The 5-4 category structure has been instantiated in a
variety of specific stimulus domains—geometric forms (Medin et
al., 1984; Medin & Schaffer, 1978; Nosofsky et al., 1992);
Brunswick faces (Lamberts, 1995; Medin & Schaffer, 1978; Medin
& Smith, 1981), yearbook photos (Medin et al., 1983); and
line-drawn rocketships (Nosofsky et al., 1994; Palmeri & Nosof-
sky, 1995).

Dara sets.  Appendix A describes various aspects of the 30 data
sets (source, experimental or training condition, stimulus materials,
and so forth). Appendix B provides a resource for modelers in this
area by summarizing the 30 performance profiles. All 30 profiles
are reported as Category A response probabilities in the stimulus
order of Table 1 (Al to T16). Authors in the original sources
adopted a variety of reporting techniques and stimulus orders.

Formal Modeling Procedures

The context model. In evaluating the exemplar model, we

focused on the context model originated by Medin (1975, see also
Medin et al., 1983; Medin & Schaffer, 1978; Medin & Smith, 1981)
and generalized by Nosofsky (1984, 1987). In the context model,
the to-be-classified item in the 5-4 category structure is compared
to the five A exemplars (including itself if it is an A) and to the four
B exemplars (including itself if it is a B), yielding the overall
similarity of the item to Category A exemplars and Category B
exemplars. Dividing overall A similarity by the sum of overall A
and B similarity essentially yields the probability of a Category A
response.
‘We calculated the similarity between the to-be-categorized item
and any exemplar in three steps as follows. First, we compared the
values (1 or 0) of the item and the exemplar along all four
dimensions. Matching features made a contribution of 0.0 to the
overall psychological distance between the stimuli; mismatching
fearres contributed to overall psychological distance in accor-
dance with the attentional weight their dimension carried. In the
present model, each dimensional weight ranged from 0.0 to 1.0,
and the four weights were constrained to sum to 1.0.

Second, this raw psychological distance between item and
exemplar was scaled using a sensitivity parameter that could vary
from 0.0 to 20.0. Larger sensitivity values magnify psychological
space, increasing the differentiation among stimuli, increasing
overall performance, and increasing the value the context model
places on exact identity between the item and an exemplar.
Formally, then, the scaled psychological distance between the
to-be-classified item £ and exemplar f is given by

N
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where x; and x; are the values of the item and exemplar on
dimension &, wy is the attentional weight granted dimension %, and ¢
is the sensitivity parameter.

Third, we calculated the similarity n,; between the item and
exemplar by taking m; = ™%, with d; the scaled psychological
distance between the stimuli,

‘We repeated these three steps to calculate the psychological
similarity between a to-be-categorized item and each A and B
exemplar. Then, summing across the Category A and Category B
exemplars, we calculated the total similarity of the item to
Category A and to Category B members, These quantities can be
used to produce directly the probability of a Category A response

(R,) for stimulus i (5;) by taking
A
P(R,[S) = : @)
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This equation means that one sums up the similarity the to-be-
categorized item has to each member of the A category and divides
this by the similarity the to-be-categorized item has to all the
members of both the A and B categories. Repeating this process for
each of the 16 items, one would derive the performance profile
predicted by the model. However, for reasons we describe later, we
added an additional guessing-rate parameter to the context model
as follows. We assumed that some proportion of the time partici-
pants simply guessed A or B haphazardly and that otherwise
participants used exemplar-based categorization in the way just
described. Others have proceeded similarly in granting the context
model a guessing parameter (Lamberts, 1994, 1995; Smith &
Minda, 1998). With that parameter added, the context model had
six parameters (five free parameters)—four dimensional weights
constrained to sum to 1.0, a sensitivity parameter, and a guessing
parameter.

To find the best-fitting parameter settings of the context model,
we seeded the space with a single parameter configuration and
calculated predicted categorization probabilities for the 16 stimuli
according to that configuration. The measure of fit was the sum of
the squared deviations between the 16 predicted probabilities and
the 16 observed categorization probabilities of some study’s
performance profile. We minimized this measure during an analysis
by using a fine-grained hill-climbing algorithm that constantly
altered slightly the provisional best-fitting parameter settings and
chose the new settings if they produced a better fit (i.e., a smaller
sum of squared deviations between predicted and observed perfor-
mance). To ensure that lecal minima were not a serions problem in
the present parameter spaces, we repeated this procedure by
seeding the space with four more quite different configurations of
the exemplar model and hill-climbing from there. The variance
among the five fits tended to be very small, indicating that the
minima we found were close to global ones.

The additive prototype model. We followed the influential
research of Medin and his colleagues (Medin & Schaffer, 1978,
Medin & Smith, 1981) by evaluating the simple additive prototype
model that has been so prominent, That is, we supposed that each
to-be-categorized item would be compared to the category proto-
type along the four stimulus dimensicns and that matching features
would simply add to prototype similarity in the amount of their
dimension’s weight, In the simplest case, the item’s prototype
similarity could be taken to be the probability of a correct
categorization and its complement, the probability of an error.
However, we added an additional guessing parameter to the
prototype model as we did for the context model and for every
model considered in this article. Thus we assumed that some
portion of the time participants simply guessed A or B haphazardly
and used additive prototype-based similarity otherwise (see also
Medin & Smith, 1981). The guessing parameter is especially
important for modeling participants’ sometimes poor performance
given the poorly differentiated 54 category structure. Without it,
for example, the category prototypes (Stimuli B9 and T12), which
of course have perfect prototype similarity, would be predicted to
be categorized perfectly. With the guessing parameter added, the
additive prototype model had five parameters (four free param-
eters)—one guessing parameter and four dimensional weights
constrained to sum to 1.0. For the additive prototype model, and for
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all the models described below, we hill-climbed, found best-fitting
configurations, and avoided local mirima by using the procedures
already described for the context model.

The mulrtiplicative protorype model. The additive prototype
model is at an inherent fitting disadvantage because its additive
similarity calculations are so simple. It lacks any capacity to allow
psychological similarity to decrease exponentially (not linearly)
with increasing distance between stimuli. It lacks any sensitivity
parameter that might be appropriate for capturing knowledge gains
and performance improvements during leamning. This is particu-
larly important when considering the 30 54 data sets because
researchers have often only considered mature, task-final perfor-
mance. Consequently, the prototype model's failures might not
always be due to participants’ reliance on exemplar-based pro-
cesses instead of prototype-based processes. They might some-
timés be due to the less delicate and sensitive nature of the
prototype model’s calculations.

Accordingly, Nosofsky (1987, 1992) described a prototype
model that incorporated exponentially decreasing similarity func-
tions and a sensitivity parameter. In this prototype model, increased
sensitivity exaggerates the closeness of category members to their
own prototype relative to the opposing prototype, strengthens the
evidence base supporting a correct categorization, and increases the
estimated percentage correct.

In the multiplicative prototype model, the to-be-classified item
in the present tasks would be compared only to the A and B
prototypes to yield the overall similarity of the item to Category A
and Category B, We calculated the similarity between the to-be-

ized item and a prototype in three steps as described for the
context model. First, we determined the psychological distance
between the item and prototype by summing the weights of the
mismatching features between the two, We then scaled this raw
psychological distance between item and prototype by using a
sensitivity parameter that could vary from 0.0 to 20.0. Formally,
then, the scaled psychological distance between the to-be-classified
item i and the prototype was given by

dI'P::c

N
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Here, x; and P, are the values of the to-be-classified item and the
prototype on dimension k, w, is the attentional weight granted
dimension &, and ¢ is the freely estimated sensitivity parameter.
Third, we calculated the similarity m; between the item and
prototype by taking 1, = e, with d;, representing the scaled
psychological distance between the stimuli.

Dividing Category A similarity by the sum of Category A and
Category B similarity, one could essentially derive the multiplica-
tive prototype model’s predicted probability of a Category A
response for stimulus i by taking

P(R,|S) = W *
Al TI + )

iz, T Nirg

except that once again we added a guessing parameter to the model.
Thus tbe multiplicative prototype model had six parameters—a

guessing parameter, a sensitivity parameter, and four dimensional
wetghts constrained to sum to 1.0.

The gamma model. Research has recently suggested that exemplar
procesging, as originally conceived by exemplar theorists and
instantiated in 20 years of exemplar models, may be insufficient to
explain what individual participants are doing {Ashby & Gott,
1988; Maddox & Ashby, 1993; Smith & Minda, 1998). Therefore,
researchers have occasionally modified the standard context model

profoundly by adding on the gamma parameter (Maddox & Ashby,
1993; McKinley & Nosofsky, 1995). Gamma isdervenes by allowing
the quantities in the choice rule to be raised to whatever power best
recovers participants’ actual performance profiles. That is, whereas the
choice rule that long served category models was

E My

P(Ry|S) = )
* 2 ny + 2 .
the augmented version is
v
P(R.|S) = )
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In this article we address the gamma model only briefly. We
show that it represents no fitting advantage over the standard
context medel in fitting the 30 54 performance profiles that
represent the aggregate performance profiles for whole groups.
Probably the reason the gamma model offers no fit advantage is that
aggregating performance systematically washes out the categoriza-
tion idiosyncrasies of the individual participants and creates
hemogeneous performance profiles that the standard context model
(withont gamma) fits comfortably (Maddox & Ashby, 1993; Smith
& Minda, 1998; Smith et al., 1997). The gamma parameter appears
to be necessary if one wishes to model individual performance
profiles instead, and this is why gamma was invented. In fact, one
possible reason the context model seemed so apt early on is that it
was often used to model the aggregate performances that suited it
best {(Smith & Minda, 1998), Smith and Minda discussed other
theoretical concerns about gamma.

'With the guessing parameter added, the gamma mode] had seven
parameters—a guessing parameter, a gamma parameter, a sensitiv-
ity parameter, and four dimensional weights constrained to sum to
1.0.

The mulripiicative prototype model (twin sensitivities). One
instructive approach to allowing a prototype model to cope with the
5—4 data sets is to grant the possibility that participants process old,
training items more easily or more fluently than they do new,
transfer items. Intuitively, this might mean that practice lets the
prototype-comparison processes run more smoothly, or the proto-
type-based algorithm be applied more skillfully, for old items than
for new ones. It might mean that practice creates stronger
connections between old items and their prototypes, whereas new
items are less strongly connected to their prototype. This global
old-new processing difference can be incorporated into a prototype
model by assuming that participants respond to old items with a
higher level of sensitivity and to new items with a lower level of
sensitivity. Formally, one accomplishes this by simply granting the
model two parameters, ¢, and c,, that apply to old items and new
items in thé distance equation of the prototype model as follows:

N
Olditems: dp=c, 2 wilxg — P,J}, 7
=t
N
New items: djp = ¢, [E w|xa — Pk[l. (B
et
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In all other respects, this model is identical to the multiplicative
prototype model (i.e., it has the identical distance-to-similarity
transformation and choice rule),

Witk the guessing parameter added, this model had seven
parameters—a guessing parameter, two sensitivity parameters and
four dimensional weights constrained to sum to 1.0.

Prototypes combined with exemplar memorization: A mixture
model. Another instructive approach to allowiag a prototype
model to cope with the 5-4 data is to grant the possibility that
participants partially memorize the old, training exemplars after all
the practice with them. This possibility can be explored by using a
model that mixes prototype-based processing and exemplar memo-
rization, The mixture model evalvated here received some early
attention (Medin et al., 1983; Medin & Smith, 1981). It assumes
that participants base their classification decisions either on the
simple, additive similarity of a given stimulus to the prototype (in
which case they will strictly obey typicality gradieats), on random
guesses (in which case they will place stimuli into Categories A or
B haphazardly), or on the recognition of memorized specific
exemplars (in which case they will definitely categorize the item
correctly). The key aspect of fitting data using the mixture model is
to estimate the balance among these three processes that best
accounts for any performance profile.

Note that the mixture model’s exemplar process is simple
memorization—that is, individual training exemplars are stored,
self-retrieved, and self-boosted toward correct categorization. In a
sense, each old item is compared only to itself in the exemplar
process that aids a correct categorization decision. This process is
quite different from the context model’s exemplar process. The
context model assumes that a to-be-categorized item is compared
to all the training items of both categories on the way to a
categorization decision, In fact, the context model’s systematic
exemplar-to-exemplar comparison processes have seemed implau-
sible to some (for a discussion, see Palmeri & Nosofsky, 1995, p.
548), making it useful to see whether other kinds of exemplar
processes suffice, too.

The mixture model evaluated in the present article contained five
free parameters——a guessing parameter, an exemplar-memorization
parameter, and a prototype-processing parameter constrained 1o
sum to 1,0, and four dimensional weights also constrained to sum
to 1.0,

Results
Model 1: The Trouble With Prototypes

Figure 1A shows the crucial phenomenon—the failure of
a simple prototype model to capture performance on the 5-4
category structure. To create this figure, we first averaged the
30 observed performances on each of 16 stimuli into the
composite observed performance profile that is shown in
Figure 1A and in all succeeding similar figures as the solid
line. The performance profiles are given here and throughout
in the stimulus order shown in Table 1 and in Appendix
B—that is, Stimuli 1 to 5, 6 to 9, and 10 to 16 refer,
respectively, to the Category A training exemplars, the
Category B training exemplars, and the new, transfer items
not seen in training. Categorization performances are given
throughout as proportions of Category A responses. Cat-
egory B’s training exemplars appropriately elicit low rates of
Category A responses because they are mostly called Bs.

Next, we modeled each individual data set using the
additive prototype maodel that figured so heavily in the early
demonstrations of the prototype model’s failure and the

exemplar model’s superiority (Medin et al., 1983; Medin &
Schaffer, 1978; Medin & Smith, 1981), For every data set,
we found the best-fitting configuration of the prototype
model, and this best-fitting configuration implied a predicted
profile of 16 response proportions. Averaging the 30 pre-
dicted profiles produced the composite predicted profile
shown by the dotted line in Figure 1A. (Succeeding similar
figures contain composite predicted profiles that were pro-
duced and are displayed in the same way.) In this way, if the
individual best-fitting profiles fit their individual observed
profiles well, the predicted and observed composites will
also fit well. But, as the individual best-fitting profiles fit
less well, the predicted and observed composites may begin
to diverge in a consistent way that can be interpreted
meaningfully.

This divergence is clearly shown in Figure 1A. The
additive prototype model fails to recover the data well. One
useful measure of fit is the average absolute deviation
(AAD), which summarizes how much on average the
predicted response proportions diverge from the observed
response proportions for each of the 16 stimuli in the task.
On average, in fitting the 30 data sets, the prototype model
erred by .091 per stimulus. A second useful measure of fit is
the sum of the squared deviations (SSD) of predicted
Tesponse proportions from observed response proportions.
On average, in fitting the 30 data sets, the SSD over 16
stimuli was .224 for the additive prototype model. A third
useful measure of fit is the percentage of variation in the
observed profile that was accounted for by variation in the
predicted profile (PVA). On average, in fitting the 30 data
sets, the additive prototype model accounted for 83.8% of
the variance in each study’s observed performance profile.
Table 2 provides these fit measures for the models consid-
ered in the present article. These fit measures for the pure
prototype model are only moderately good, and the reader
should note this carefully. In the present article, we focus on
the relation of the 30 data sets to exemplar theory. As we do
$0, one must not forget that pure prototype models deserve
definite criticism, for they behave poorly according to these
criteria of fit.

Beyond the quantitative criteria of fit, the character of the
prototype model’s failure is also clear. The observed and
predicted profiles diverge in a theoretically suggestive way.
Time after time (i.e., data set after data set), the prototype
model predicts that participants will do less well than they
do on the Category A and B training items (Stimuli 1-5 and
6-9, respectively). Remember that for the Category B items
the low observed Category A response rates as graphed
imply high rates of correct B responses—higher than the
prototype model can predict. In contrast, the prototype
model predicts participants’ performance on the transfer
items (Stimuli 10-16) well. To confirm this, we calculated fit
measures separately for the old and new items and found that
the prototype model erred two or three times as much in
predicting old-item performance as it did in predicting
new-item performance, because it cannot handle the levels
of old-item performance that participants actually show.
Something about those old, familiar traces leads to their
good performance and that something cannot be simple
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A. Additive Prototype Model Table 2 _
1= Measures of Fit

Model AAD SSD PVA

Additive prototype 0.091 0.224 0.838

Multiplicative prototype 0.069 0.137 0.850

Context 0.047 0.062 0.941

Additive exemplar 0.144 0.490 0.664

Fixed low sensitivity 0.149 0.529 0.637

Gamma 0,045 0.055 0.944

Twin sensitivity 0.043 0.054 0.946

Mixture 0.046 0.052 0.944

Nate. AAD = average absolute deviation; SSD = sum of squared
deviations; PVA = percentage of variance accounted for.

r Tt rrrr1rrrririrrri resemblance to the prototype. Remember that we are
12345867 88 10111213141516  illustrating this effect with only one category structure.
Stimulus However, we believe that this effect would also occur with

many other category structures and transfer sets that have
been used in the literature.

The prototype model’s problem springs from its cognitive
psychology (i.c., the processes and representations it as-
sumes). By assuming -that all items {old and new) are
referred to the category prototypes, it assumes that all items
will equivalently obey the typicality gradients in the task. It
bas no way to treat training exemplars specially by accord-
ing them any processing fluency or performance advantage.
Clearly, the model with the right cognitive psychology (i.e.,
with the right assumed processes and representations to fit
buman psychology and human performance) will have a
way to reproduce the observed old-item advantage.

B. Multiplicative Prototype Model

Model 2: A Sophisticated Prototype
Model Cannot Help

The sophisticated multiplicative prototype model has the
same problematic cognitive psychology. Table 2 shows that
including multiplicative similarity computations and a sensi-
. tivity parameter did help this model fit seemingly better than

Stimulus the additive prototype model. But this improvement is
cosmetic, as one sees on examining the character of the
multiplicative prototype model’s fit (Figure 1B). Remember
that the additive prototype model fit old-item performance

C. Context Model poorly, but new-item performance well, Here the availability
of the sensitivity parameter lets the multiplicative prototype
model reach somewhat higher and lower to predict good
performance on Category A and Category B training exem-
plars, respectively. But it also starts to miss the transfer items

Figure 1 (left). A: The composite observed performance profile
produced by averaging the 30 data sets (solid line). Stimuli 1-5,
6-9, and 10-16 denote the training exemplars of Category A, the
training exempiars of Category B, and the transfer items, respec-
tively. Also shown is the average of the best-fitting predicted
performance profiles found when the 30 data sets were fit
individually using the additive prototype model (dotted line). B:
T T T T T T T I T 171711 The;i same observed profile shown with tl(';:]'3 To%poTs;te predictid
profile of the multiplicative prototype model. C: The same ob-
123456780910111213141518 served profile shown with the composite predicted profile of the
Stimulus context model. |
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more by overreaching them (i.e., by predicting they will be
performed more extremely in both directions than they are).
To confirm this, we calculated fit measures separately for the
old and new items and found that the multiplicative proto-
type model erred about the same amount in predicting
performance on both. The multiplicative prototype model
spreads its error evenly over the training and transfer items.
Still, the fundamental problem of a prototype psychology
remains. Whatever sensitivity this model assumes, it treats
all stimuli with that sensitivity. It can no more treat old and
new items differentially than can the additive prototype
model. It can split the difference between the old and new
items, but it cannot predict that difference. The appropriate
model must be able to.

Model 3: The Solution Provided by the Context Model

The solution Medin and his coworkers found to this
problem was to assume that the primary representations
underlying Categories A and B were the old, training
exemplars themselves, rather than prototypes that had been
abstracted from them (Medin & Schaffer, 1978). By making
this theoretical choice, Medin introduced the important
possibilities that categorization can be based on exemplar
storage, not prototype abstraction, and on item-exemplar
comparisons, not item--prototype compartsons. The categori-
zation literature has not been the same since.

Figure 1C shows why. The context model predicts well
every general aspect of performance—performance on both
categories’ training exemplars, performance on transfer
items, the old—new performance gap, and so forth. Table 2
shows that in all quantitative respects the context model did
2 better job fitting the 30 data sets than did either prototype
model. Indeed, for all three fit indices, the context model fit
significantly better than did the additive prototype model:
1(29) = 6.48, p < .05, for AAD; $(29) = 4.98, p < .05, for
SSD; and #(29) = —5.45, p < .05, for PVA.

Nosofsky (1992} carried out a survey similar to the one in
the present article. He compared the success of various
models in fitting some of the 54 data sets that were
available then. He also included the additive prototype
model, the multiplicative prototype model, and the context
model. He also found both prototype models wanting by
criteria of fit. To this point, his smaller survey of the
literature converges with ours. In particular, the reader
should note the context model’s excellent indices of fit. For
as we focus on the relation of these 30 data sets to exemplar
theory, one must not forget how well the exemplar model
performs in fitting them.

One reason the context model fits these data patterns so
well is that it assumes that the old training exemplars are
stored in memory as the representational cores of the two
categories. On their reappearance as stimuli in the tansfer
phase of the experiment, they naturally trigger themselves
in memory and receive by virtue of this identity match a
strong pull or resonance from self-retrieval that causes them
to be categorized highly accurately. The transfer items
receive only the weaker pull exerted by training items of
both categories that they may be similar to but never
identical to. As a consequence, their performance disadvan-
tage is predicted.

In fact, one can show intuitively that the context model,
by positing exemplar storage and exemplar-to-exemplar
comparisons, will be able to produce the required old-new
performance advantage. The probability of a Category A
response for a transfer item is closely related to the summed
similarity of the to-be-categorized item to the A exemplars
divided by the summed similarity of the to-be-categorized
itemn to the exemplars of both categories. Thus, the probabil-
ity of a Category A response for transfer Stimulus i is closely
related to the following quantity:

([Sim,-m + Simm;_ + Simm;; + Siml‘A4 + SimiAS] (9)
+ [SimiBﬁ + Slmm7 + Sim"Bs + SimiBD])'

In contrast, when calculating the Category A response
probability for a Category A training item, one of these
imperfect similarities will always be replaced by a perfect-
match identity. This will increase the numerator of the
decision rule proportionally more than the denominator and
will predict higher performance for old items than for new
ones. How much higher is a decision and a calculation that
the context model makes finely as it fits an observed
performance profile.

The central point, though, is the success of the context
model in predicting the old-new performance gap that
prototype models in principle cannot predict. This success in
fitting an early group of data sets brought exemplar theory
into sharp focus in the literature and brought prototype
theory into disfavor. Figure 1C shows that this success is
generally repeated across the 30 data sets. This success has
been repeated using other category structures, 100,

Yet the context model makes several important assump-
tions to reproduce the performance differential between
training and transfer items. It assumes, as other exemplar
models do, that specific exemplar traces (not prototypes)
form the representational cores of categories, It assumes, as
other exemplar models do, that token-exemplar compari-
sons, not token-prototype comparisons, are the basis of
category decisions. It even assumes that humans compare a
to-be-categorized item to all the stored members of relevant
categories in reaching a categorization decision. This assump-

!To ensure that our fitting procedures were stable across
different minimization criteria, we also fit all eight models te all 30
data sets using log-likelihood as the criterion for goodness of fit,
not the sum of the squared deviations (SSD). The resulting best
fitting solutions were practically identical in the two cases. For
example, for the context mode] fitting the 30 data sets, the 480
predicted performance levels (16 stimuli X 30 data sets) found by
the SSD minimization criterion and by the log-likelihood minimiza-
tion criterion correlated at .999. For the additive prototype model,
this correlation was .998. The best fitting parameter estimates
found by the two minimization criteria correlated extremely highly,
too. Given this close correspondence, we emphasize the SSD
minimization criterion in this article because it is more intuitive,
because it was generally used by others in modeling the 5—4
performance profiles, and because it is even discernible in the
graphs comparing observed and predicted performance,
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tion, that humans categorize a new dog by comparing it to all
the specific dogs they know, has not seemed natural to
everyone (see Palmeri & Nosofsky, 1995, for discussion).

The context model also assumes that the subjective
psychological space within which a category task is repre-
sented and performed can be expanded through a wide range
of magnification factors. This magnification is the role of the
sensitivity parameter ¢. Higher sensitivities magnify psycho-
logical space by increasing the differentiation among stimuli.
The context model also assumes that psychological similar-
ity decays exponentially as featural mismatches accumulate
between stimuli. This means that even the first featural
mismatch can create a large dissimilarity between stimuli.
This means that the context model can emphasize strongly
an exact match between stimuli, especially when its sensitiv-
ity parameter is set at a high level.

As we show now, this whole package of assumptions—
exemplar representations, systematic exemplar-to-exemplar
comparison processes, exponentially decaying similarity,
and the magnification factor expanding psychological
spacc—operates synergistically in allowing the context
model to fit successfully the data from the 30 5-4 perfor-
mance profiles. All these assumptions are needed.

Model 4: Exemplar Processes Alone Do Not
Work—An Additive Exemplar Model

Assuming exemplar representations and systematic exem-
plar-to-exemplar comparisons is not enough to account for
the 5-4 performance profiles. To show this, we fit a simple,
additive exemplar model to the 30 data sets. This model is
the twin of the additive prototype model, with the same lack
of exponential similarity decay and the same lack of a
sensitivity parameter. The models only differ in their assump-
tions about the representational cores of categories and
about the comparison processes that underlie categorization
decisions. Figure 2A shows that this exemplar model fits
these data poorly, and Table 2 summarizes its poor fit
indices. It falls far short of what the full-fledged context
model accomplishes. It even falls short of what the additive
prototype model accomplishes (Figure 1A). It is generally
acknowledged that exemplar processes are not the sole
source of the answer the full context model provides (Medin
& Schaffer, 1978; Nosofsky, 1992).

Figure 2 (right). A: The composite observed performance profile
produced by averaging the 30 data sets (solid line). Also shown is
the average of the best-fitting predicted performance profiles found
when the 30 data sets were fit individually using an additive
exemplar model (dotted line}. B; The same observed profile shown
with the composite predicted profile of the context model in
low-sensitivity configurations. To make this predicted profile, we
fit each of the 30 data sets with 21 versions of the context model in
which sensitivity was held at low levels (from 1.0 to 3.0 inclu-
sively, in steps of .10). The predicted profile shown is the average
of these 630 indjvidual predicted profiles. C: The same observed
profile shown with the composite predicted profile of the gamma
model.
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Maodel 5: The Context Model Denied Magnification
Power—Fixed Low Sensitivity

Even combining exemplar representations with exponen-
tially decaying similarity is not enough to account for the
5—4 performance profiles. The context model must have
extremely high sensitivities—that is, it must be allowed to
magnify psychological space enormously. Remember that
higher sensitivities magnify psychological space by increas-
ing the psychological differentiation among stimuli in an
uneven way that places more emphasis on exact identity
between a to-be-categorized item and an old exemplar. To
show the context model’s dependence on high sensitivities
in fitting the 30 data sets, we examined its performance
when sensitivity was kept low. To do so, noting that the
sensitivity parameter’s full range goes from zero to infinity,
we fit each of the 30 data sets with 21 versions of the context
maodel that had sensitivity fixed at all values from 1.0 to 3.0,
in steps of .10.

Figure 2B shows the predictions of the context model
averaged over 21 levels of sensitivity as it tried to fit the 30
data sets. It fits these data very poorly, and Table 2 confirms
this fact. It is obvious that the context model needs the
flexibility to choose much higher powers of magnification
for psychological space to account for these performance
profiles and probably others, too. In fact, over the 30 data
sets, the unconstrained context mode! estimated sensitivity
to be 8,19 (5D = 2.79). As we consider now the meaning of
high sensitivity and its role in fitting 54 data, remember that
this high sensitivity value was estimated only for the 30 54
data sets, that other category structures have produced lower
sensitivity estimates in the literature (Nosofsky, 1986, 1987,
1988; McKinley & Nosofsky, 1996), and that in these cases
the implications of high sensitivity might apply less strongly.

To explain the meaning of high sensitivity in the context
model, Figure 3 shows the relationship between shared
features and psychological similarity for two stimuli when
the exemplar-comparison system has 8.2 sensitivity. Whereas
identical stimuli share 100% similarity, the expansion of
psychological space caused by high sensitivity leaves even
two items that share all but one feature with only 13%
similarity instead. In this psychological space, only exact
identity produces strong similarity. The meaning of high
sensitivity can also be illustrated by using the 30 5-4 data
sets. To do so, we fixed the dimensional weights in the
context mode] at the values obtained on average when the
context model fit the 30 data sets. We fixed sensitivity at 8.2.
Under the context model’s description, same-category exem-
plars in the 5-4 task are only 5% similar to each other.

This makes one wonder how, if the context model’s
description is right, participants glue objects that are 95%
dissimilar into categories, or whether they even do. Given
nine such disparate stimuli, all distant neighbors in psycho-
logical space, participants might just pursue an exemplar-
memorization strategy that attaches the correct A or B label
to each unique exemplar. Old items would then be catego-
rized just by being recognized, not by being systematically
compared to all the training items. Notice that categorization
by exemplar recognition would involve 100% similarity, not
5% similarity. By the context model’s own description of
processing in the 5-4 task, exemplar-memorization events

Exempiar-to-Exemplar Similarity
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Figure 3. The relationship between similarity and the number of
shared features between exemplars when we set the context
model’s sensitivity parameter at 8.2, assumed that attention was
distributed homogeneously, and calculated similarity between two
four-dimensional exemplars.

have 20 times the impact on the system that exemplar-
comparison events have,

In fact, in the original experiments that motivated exem-
plar theory, Medin and his coworkers considered the possi-
bility that participants might adopt just such an exemplar-
memorization approach (Medin & Schwanenflugel, 1981, p.
365). If so, the categorization task would degenerate into an
identification task in which participants would rotely associ-
ate whole instances and their labels but would have no sense
of organized categories as they applied the labels. Below, we
consider further the important effects and implications of
high sensitivity in the context model.

In any case, Model 5 joins Model 4 in showing that
exemplar processing alone is insufficient to give a model the
flexibility it needs to fit the 54 data sets well. Instead, the
context model needs to be granted all of its assumptions—
exemplar storage, systematic exemplar-to-exemplar compari-
sons, exponential similarity decay, and the extreme magnifi-
cation of psychological space. These assumptions change
traditional thought about the representations and processes
underlying humans’ categorization, and this is why it is
important to keep evaluating those assumptions.

In fact, it is useful to keep in mind that the comparison -
between the context model and the prototype model was not
historically only about one contrast (exemplar-based cat-
egory representations for the context model; prototype-
based representations for the prototype model). Rather, the
comparison was about multiple contrasts (exemplar storage,
systematic exemplar-to-exemplar comparisons, the magnifi-
cation of psychological space, exponentially decaying simi-
larity for the context model, prototype storage, item-
prototype comparisons, additive similarity, and linearly
decaying similarity for the prototype model). Although the
termm exemplar theory is ubiquitous now, it selectively
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emphasizes some of the context model’s assumptions and
not others, and therefore it potentially misleads, In particy-
lar, we have just seen that the extreme magnification
required by the context model to fit the 30 54 data sets
could speak against the exemplar-comparison processes of
the context model and for a simpler exemplar-memorization
process. This recommends the consideration of alternative
exemplar processes in category research, and we return to
this issue below.

Model 6: The Gamma Model—Too Much Firepower
for the Job

The standard context model sometimes fits group perfor-
mance when it fails to fit individual performances (Ashby &
Gott, 1988; Maddox & Ashby, 1993; Smith et al., 1997).
This failure has implications for theory in categorization
research (Smith & Minda, 1998), and it has led the context
model to be augmented by the gamma parameter (Maddox
& Ashby, 1993; McKinley & Nosofsky, 1995). Here,
because the 30 data sets do represent composite group
performances, it seemed likely that gamma would not be
required. In fact, the gamma model fit the 30 data sets just
like the standard context model does—quantitatively (Table
2) and qualitatively (compare Figures 1C and 2C). The
average best-fitting gamma over the 30 data sets was only
1.75, underscoring the minimal requirement for it.

Model 7: Prototypes, But Extra Old-Item
Sensitivity—A Twin-Sensitivity Model

Even without gamma, the context model makes four
assumptions to capture the 5-4 performance profiles. We
now ask whether these assumptions are necessary to de-
scribe the 54 performances or whether there is a viable set
of assumptions that preserves prototypes as the representa-
tional cores of categories. Models 7 and 8 address these
questions.

One approach is to extend slightly the multiplicative
prototype model (Model 2), by assuming that participants
apply prototype-based algorithms to the old items with
special ease and fluency because practice and repetition has
left them skilled at doing so. Accordingly, we fit to all 30
data sets a multiplicative prototype model that featured one
level of sensitivity for the old, training items {acknowledg-
ing that these might be processed more fluently) and one
level of sensitivity for the new, transfer items (acknowledg-
ing that these might be processed less fluently).

This twin-sensitivity model fits the 30 performance pro-
files well (Figure 4A) and slightly better than the context
model (Table 2) does. Perhaps exemplar-to-exemplar com-
parisons are not the key to explaining the 54 performances.
Perhaps a variety of models can explain the 5-4 perfor-
mances successfully if only they are granted the capacity to
show a special fluency regarding old items.

Model 8: Combining Prototypes and Exemplar
Memorization—A Mixture Model

Another approach is to assume that the 54 performance
profiles reflect prototype-based processing augmented by

A. Twin-Sensitivity Prototype Model
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Figure 4. A: The composite observed performance profile (solid
line) shown with the composite predicted performance profile
(dotted line) of a multiplicative prototype model that allowed
differential sensitivity to old and new items. B: The composite
observed profile shown with the composite predicted profile of a
model that combined prototype-based processing with exemplar
memorization.

the partial memorization of the training items and their
correct category labels after all the practice. Accordingly, we
examined a simple intermixture of prototypes and exemplar
mermorization that was adopted in some early studies (Medin
et al., 1983; Medin & Smith, 1981). The mixture model's
exemplar process gives a simple performance boost to alt the
old items as if they had been partially memorized. Smith and
Minda (1998) showed that this model offers insights even in
cases where pure prototype models and pure exemplar
models fail.

“Figure 4B shows the composite observed and predicted
performance profiles when this mixture model was fit
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individually to all 30 data sets. It also fits the data well and
slightly better than the context model does (Table 2).

Which Data Sets Should Be Modeled Comparatively?

In the preparation of this article, a reviewer raised a
concern about which, if not all, of the 5-4 data sets it was
appropriate for us to include in our analyses, and about
which, if not all, of the 54 data sets the exemplar model
might be expected to fit successfully. This concern has
implications for interpreting the 54 data and for theory in
the field.

The reviewer’s concemn was that the exemplar model
cannot be fairly expected to fit comfortably the data
produced when participants are operating under a deadline
(as in Lamberts, 1995), or the data produced at earlier stages
of learning (as in Nosofsky et al., 1992), or the data
produced under rule-plus-exception instructions (as in the
conditions of Medin & Smith, 1981, and Palmeri & Nosof-
sky, 1995, that encouraged participants to use one feature as
a rule to categorize the stimuli and to memorize the
exceptions to that rule), or the data produced under prototype-
based instructions (as in the conditions of Medin & Smith,
1981, that encouraged participants to develop a general idea
about the categories). If not, then it might not be appropriate
for us to compare the fit of the exemplar model to the fit of
other models regarding these data sets.

Before addressing this concern, we point out that theoreti-
cal implications would attend the need to exclude data sets to
isolate the situations that the exemplar model describes well.
This need would suggest that the exemplar model may not
handle well different deadline conditions (Lamberts, 1995),
different stages of learning (Nosofsky et al., 1992), or
different instructional sets (Medin & Smith, 1981; Medin et
al, 1983; Medin et al., 1984; Palmeri & Nosofsky, 1995).
This would narrow exemplar theory’s influence within the
categorization literature, leaving it applicable only to some
of the possible experimental paradigms. This would narrow
exemplar theory’s influence in the study of real-world
categorization, which naturally features different deadline
conditions, stages of learning, and instructional sets. In both
respects, the need to restrict data would limit the comprehen-
siveness of exemplar theory, require additional theories to
handle additional data, and recommend a broader theory that
could span procedural and temporal variations.

So it seemed important to address the concern about
which data sets count. To do 50, we temporarily excluded
from consideration the three deadline conditions of Lam-
berts (1995), the early stages of learning from Nosofsky et
al. {1992), the seven conditions that used prototype-based
instructions, and the two conditions that used rule-plus-
exception conditions. We also excluded the data set that
sampled exemplars from an infinite pool without replace-
ment, because this left the old items presented at transfer
perceptually different from the old items presented during
training. At the same time, we addressed the additional
concern that we had somehow weighted some articles in the
literature artificially heavily, for example, by including
multiple data sets from them. In total, 18 of the 30 data
sets—3,4, 5, 6,11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 25, 27,

28, and 29—were set aside, leaving only the 12 that most
heavily favored exemplar processing because they featured
highly repetitive training on the same nine exemplars and
because they assessed performance at task’s end when
specific exemplar traces most dominate categorization (Smith
& Minda, 1998). Just as before, we averaged the 12
observed profiles intc a composite observed profile and the
12 best-fitting profiles of each mode! into a composite
predicted profile. Figure 5 duplicates Figure 1, but with just
12 data sets included, showing the relationship between
observed and predicted performance for the additive proto-
type model, the multiplicative prototype model, and the
exemplar model. Figure 6 duplicates Figure 4, but with just
12 data sets included, showing the relationship between
observed and predicted performance for the twin-sensitivity
prototype model and the mixture model.

All the analyses based on the exclusive group of 12 data
sets are identical to those based on the inclusive group of 30.
The two observed profiles are nearly identical. The additive
prototype model fails just as before. The multiplicative
prototype model fails again by trying to split the difference
between performance on the old and new items. The
exemplar model, the twin-sensitivity prototype model, and
the mixture model all fit well again. In fact, all the fits and
misfits are so similar to those based on 30 data sets that
careful scrutiny is required to see the differences.

In our view, it is instructive and constructive that the 12
data sets that most favor exemplar theory behave identically
to the 30 data sets that sample the conditions of categoriza-
tion more broadly. This means that the 30 data sets do form a
coherent body of data. This means that one can treat the data
inclusively and work toward an overall description of them.

Interpreting Performance in the 5—4 Task

To work toward this overall description, we now consider
the convergences among the three equivalently successful
models in this article—the mixture model, the twin-
sensitivity model, and the exemplar model—to see if these
convergences have implications for interpreting perfor-
mance in the 54 task. In this section, we show that the 5-4
data pose one principal empirical, formal, and psychological
problem—the performance advantage of old, training items
over new, transfer items. We show that each successful
model includes a mechanism that grants old items this
simple, global performance boost, but that these mecha-
nisms rest on different representational and processing
assumptions. The mixture model assumes prototype-based
processing supplemented by partial old-item memorization.
The twin-sensitivity model assumes prototype-assimilation
processes of greatet fluency and skill for the old items. The
exemplar model assumes categories that are prototypeless
collections of instances and assumes that to-be-classified
items are systematically compared to the stored exemplar
traces that form the two categories. That these different
mechanisms describe equally well 54 data has an important
implication. It means that interpreting the 54 data sets does
not require the purely exemplar-based representations and
the systematic exemplar-to-exemplar comparison processes
of exemplar theory. It means that the 30 54 data sets do not
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selectively support the assumptions of exemplar theory.
Because this section raises controversial issues, we stress
that it does not represent a criticism of exemplar theory per
se. Indeed, exemplar theory remains one of the several
possible formal descriptions of performance in the 5—4 task.
Rather, this section shows only that the body of data that
most strongly motivated exemplar theory does not particu-
larly do so. But other successes of exemplar theory might
sustain it even without the support of these 30 results.

The six panels of Figure 7 allow these points to be made
directly. Consider first Figure 7A. It shows the failure of the
mixture model when we capped the exemplar-memorization
parameter at 0.0 and denied the model any special way to
cope with the practice effect on old items. (This constrained
version of the mixture model is formally identical to Model
1, the additive prototype model.) This unsuccessful model
fits new-item performance (Stimuli 10-16) but undershoots
old-item performance (Stimuli 1-9). Reaching up to fit
old-item performance is the principal fitting problem regard-
ing the 54 data sets. So this model needs a way to
selectively target old-item performance and raise it. The
exemplar-memorization parameter provides this (Figure
7B). Over 30 data sets its average value was .50 when the
mixture model was unconstrained.

Formally, this parameter simply acknowledges a practice
effect by selectively increasing old-item performance. This
selective increase is clear in the graphs and it is guaranteed
because the parameter only applies to the old items,
Psychologically, this parameter might reflect that partici-
pants partially memorize old items and use recognition-
based categorization processes to supplement prototype-
based categorization processes. So this model does see a role
in categorization for exemplar representations, but its assump-
tions still differ profoundly from the assumptions of exem-
plar theory and the context model. The mixture model still
grounds categories in prototypes. Prototype-based process-
ing still governs categorization much of the time. The
mixture model does not assume, as exemplar theory does,
that categories are prototypeless collections of instances.
Nor does it assume, as the context model does, that
systematic exemplar-to-exemplar comparison processes un-
derlie categorization. Instead, the mixture model just embod-
ies the intuitive idea that people know generally what dogs
are, but know specifically their own dogs best.

Consider next Figure 7C. It shows the failure of the
twin-sensitivity prototype model when we capped sensitiv-
ity at a level that let the medel fit new-item performance
well. (We chose this level of sensltmty, 1.5, to let the
constrained twin-sensitivity model fit new-item performance
exactly as well as the constrained mixture model did.) This

Figure 5 (left). A: The composite observed performance profile
produced by averaging a testricted set of 12 of the 54 data sets
(solid line). Also shown is the average of the best-fitting predicted
performance profiles found when the 12 data sets were fit
individually using the additive prototype model (dotted line). B:
The same observed profile shown with the composite-predicted
profile of the multiplicative prototype: model. C: The same ob-
served profile shown with the composite predicted proﬁle of the
context model.
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Figure 6. A: The composite observed performance profile pro-
duced by averaging a restricted set of 12 of the 5-4 data sets (solid
line) shown with the composite predicted performance profile
(dotted line) of the twin-sensitivity prototype model. B: The same
observed profile shown with the composite predicted profile of the
mixture model.

cap let us examine the behavior of the twin-sensitivity mode]
when it is denied any special way to cope with the principal
formal problem posed by the 54 data sets—the practice
effect on old items. This unsuccessful model fits new-item
performance but undershoots old-item performance. It too
needs a way to selectively target old-itern performance and
raise it. The old-item sensitivity parameter provides this
(Figure 7D). Over the 30 data sets, its average value was
7.09 when the twin-sensitivity model was unconstrained.
Formally, this parameter just selectively increases old-
item performance. This selective increase is clear in the
graphs, and it is guaranteed because this parameter applies
only to the old items. Psychologically, this parameter might

mean that practice increases the skil! with which old items
are assimilated to their appropriate prototype, leading to
higher levels of performance on them, whereas the new
items are assimilated to prototypes less skillfully, leading to
lower levels of performance on them. It seems intuitive that
often-repeated comparisons to a prototype would run off
more smoothly than first-time comparisons to a prototype.
But once again this model grounds categories in prototypes
and categorization in prototype-based processes. All compari-
sons are made to the prototype, some are just made more
fluently. This model clearly does not assume, as exemplar
theory does, that categories are prototypeless collections of
instances or that systematic exemplar-to-exemplar compari-
son processes underlie categorization.

There are important similarities between the mixture
model and the twin-sensitivity model. Both acknowledge
that the old exemplars have a special status as to-be-
categorized items. (They must, because the old-itern perfor-
méance advantage is the main empirical fact of the 54 data
sets.) Now one can attribute this processing advantage (as in
the twin-sensitivity model) to fluency, priming, the strength
of connection to the prototype, or the ease and skill of
assimilation to it. Or one can attribute this processing
advantage (as in the mixtore model) to the item’s familiarity,
memorization, or explicit recognition. But because there are
close connections in the psychological literature between
these two sets of variables, one can choose whether to
highlight or downplay the processing distinction between
the models. One principled distinction could be that under a
memorization interpretation, the exemplars would be stored
with their category labels, so that self-retrieval directly
supported a correct categorization decision that could supple-
ment other categorization strategies. In contrast, under a
fluency interpretation, the well-practiced old exemplars
would be processed fluently through to a connection with a
prototype that itself had a category label—here the exem-
plars would not be stored with their category labels. For us,
though, the critical point is that both models are similar for
acknowledging prototype representations and prototype-
based comparisons, for restricting the effect of any exemplar
process to the old items only, and for contrasting sharply
with the purely exemplar-based representations of exemplar
theory and the systematic and comprehensive exemplar-to-
exemplar comparisons of the context model.

Finally, consider Figure 7E. It shows the failure of the
exemplar model when it is granted only the sensitivity that
lets it fit new-item performance well. (We chose this level of
sensitivity, 4.0, to let the constrained context model fit
new-item performance exactly as well as the constrained
mixture model and constrained twin-sensitivity model did.)
This cap allowed us to examine the behavior of the exemplar
model when it is denied any special way to cope with the
practice effect on old items. It fits new-item performance but
undershoots old-item performance—just as the other models
do. It also needs an extra adjustment to selectively target
old-item performance and raise it. High values of the
sensitivity parameter provide this (see Figure 7F). Over the
30 data sets, its average value was 8.19 when the context
model was unconstrained.

One can see from Figures 7E and 7F that the success of
the exemplar model is not assured by its exemplar represen-
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Figure 7. A: The composite observed performance profile from the 30 data sets (solid line) shown
with the composite predicted performance profile of the mixture model (dotted line) when the value
of the exemplar-memorization parameter (S) was constrained to be 0.0. B: The same observed profile
shown with the composite predicted profile of the mixture model when the value of the
exemplar-memorization parameter was unconstrained. C: The same observed profile shown with the
composite predicted performance profile of the twin-sensitivity prototype model when we
constrained both of its sensitivity parameters to be less than or equal to 1.5. D: The same observed
profile shown with the composite predicted performance profile of the twin-sensitivity protototype
model when the value of both sensitivity parameters was unconstrained, E: The same observed
profile shown with the composite predicted performance profile of the context model when we
constrained the value of its sensitivity parameter to be less than or equal to 4.0. F: The same observed
profile shown with the composite predicted performance profile of the context model when the value
of its sensitivity parameter was unconstrained.
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tations or its systematic exemplar-to-exemplar comparisons.
Rather, its success is assured by the formal mechanics of
high sensitivity. High sensitivity just selectively increases
old-item performance. This selective increase is clear in the
graphs, and one can also show formally that increases in
sensitivity beyond 4.0 (in the case of 54 performances) act
nearly exclusively to raise old-item performance. In essence,
the context model has a second sensitivity that applies only
to old items, just as the twin-sensitivity model does. In
essence, the context model has an old-item parameter, just as
the mixture model does.

Taken together, the six graphs of Figure 7 show that
performance in the 54 task, whether on the new, transfer
items or the old, training items, really has no particular
representational or process implications. All three models,
whether they assume prototype or exemplar representations,
explain new-item performance equivalently well and easily.
All three confront the selective training boost to old items
and incorporate a mechanism that reproduces that boost. But
the boost—whether it is modeled in a way that is grounded
in pretotypes or exemplars, and whether it is attributed to
memorization, skilled prototype assimilation, or high sensi-
tivity—only acknowledges that participants perform better
on old items. It does not confirm the purely exempiar-based
categories of exemplar theory. It does not confirm the
systematic exemplar-to-exemplar comparisons of the con-
text model. In fact, those exemplar representations and
exemplar processes are demonstrably as insufficient (Figure
7E) as are the assumptions of the prototype models (Figures
7A and 7C) unless they are supplemented (Figure 7F) by the
same old-item boost that the prototype models need (Figures
7B and 7D). In all three cases, the boost is the thing; the
underlying representation and process remains undeter-
mined and unknown. Therefore, one sees that the 30 54
data sets, when described by formal models, are silent on the
matter of whether categories are represented in a way that is
based on prototypes or in 2 way that is based on exemplars.
As a result, these 30 data sets cannot be judged to selectively
support exemplar theory. To the contrary, assuming pro-
totoype-based representational cores is still perfectly appro-
priate regarding the 30 54 performance profiles, if only one
assumes that participants also memorize or gain fluency with
the training items.

In fact, one might even prefer the prototype-based descrip-
tion, because both memorization and practiced skill ground
the old-item advantage in intuitive psychological processes.
All of us know that we memorize things and get better with
repetition and practice. In contrast, the exemplar model’s
global sensitivity parameter is less grounded in intuitive
psychological processes like these. In fact, high sensitivity
in the exemplar model is even potentially misleading
regarding the 5-4 data sets because it seems to apply to all
the items but really applies selectively to the old items—just
as an old-exemplar parameter does. Maybe the simplest
interpretation of the 5-4 performances is that something
changes in the processing of the old items to grant them their
performance advantage. Saying that old items become
practiced or memorized addresses this possibility more
clearly than does saying that sensitivity increases globally
from four to eight.

But even stopping short of any preference for a prototype-
based description, one sees that the profound theoretical
shift from prototype-based to exemplar-based representa-
tions that the 5-4 category structure motivated was not
necessary to explain these data. Furthermore, regarding the
30 5-4 performance profiles, one need not assume the
systematic exemplar-to-exemplar comparisons that the con-
text model does, in which a to-be-categorized item is
compared systematically to all the Category A exemplars
and to all the Category B exemplars, and then placed into the
category with the more similar stored exemplar traces. A
simpler exemplar process suffices—old-item fluency or
memorization or recognition. That is, it is sufficient to say
that old items simply self-retrieve and boost their own
performance. There is no reason to say that any item is ever
compared to many exemplars in the processing that pro-
duces a categorization decision. In fact, even the context
model’s description makes it clear that exemplar-memoriza-
tion events have 20 times the impact on the system that
exemplar-comparison events do. Even the context model’s
description makes it seem implausible that participants
would try to scrape together the 5% similarities of exemplar
comparisons when they could use instead the 100% similari-
ties of self-retrieval,

If the good fit of the exemplar model in these 30 cases is
just about a practice effect, if it is just about memorization or
old-item fluency, then it would be useful for theory to say so.
For then the good fit is not about systematic exemplar-to-
exemplar comparisons, and the context model’s description
of humans’ processing in the 5-4 task is incorrect. There are
important psychological differences between these two
process interpretations. For example, the memorization
interpretation leaves open the theoretical possibility that
categories are grounded in prototypes. Put another way, the
simpler exemplar process avoids making unnecessary repre-
sentational commitments about the cores of categories. The
context model’s exemplar process makes representational
commitments that are unnecessary regarding the 5—4 data.

This discussion raises a theoretical concern about exem-
plar theory. The concern is that higher and higher sensitivity
in the context model can quietly change its fundamental
character from one that features exemplar-to-exemplar com-
parisons to one that features exemplar memorization. High
sensitivity can stretch psychological space until the exem-
plars become such distant neighbors that of course they do
not contribute to each other’s categorization, but only to
their own. It is well recognized that high sensitivity stretches
psychological space and tightens the circle of exemplar
generalization so that fewer exemplars contribute to process-
ing (e.g., Kruschke, 1992; Lamberts, 1994). It is insuffi-
ciently recognized that the gquantitative stretch of high
sensitivity may finally change the exemplar model’s qualita-
tive character—turning an exemplar-generalization model
into an exemplar-memorization model,

However, as we raise this concem, we also note that there
are limits on its present extension, We do not know how
broadly the idea of prototypes combined with exemplar
memorization will be applicable, because here we are
exploring only one category structure, albeit an important
one, and 30 influential data sets within the literature. The
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context model has had significant successes regarding other
category structures, too. Regarding one of these successes,
Smith and Minda (1998) showed that the idea of prototypes
combined with old-item fluency has utility in describing
performance on the class of nonlinearly separable category
structures that had . seemed to favor the context model.
Minda and Smith (1999) showed that the idea of prototypes
combined with the simpler exemplar process described data
from many different category structures that varied widely in
structural ratio, in stimulus complexity, and in category size.
Even so, future research must still establish how far this idea
extends.

We also point out that our claims about simplicity and
complexity are only about the exemplar processes in the
mixture model and in the context model. Exemplar memori-
zation is simpler than the systematic exemplar-to-exemplar
comparisons assumed by the context model. In fact, an
emphasis on old-item fluency could help exemplar theory
temper its most controversial assumption (that all exemplars
are remembered and used in category decisions). However,
viewed more broadly, the mixture model's description of
processing in a category task is not simpier than the context
model’s description. Formally, the mixture model and the
context model have the same number of free parameters; the
twin-sensitivity model has one more. Psychologically, the
mixture and twin-sensitivity models could even be viewed
as being more complex than the context model because they
both invoke prototypes and a simple exemplar process,
whereas the context model uses a single representational
system more complexly. Future research will have to
establish whether and when it is useful to include both
prototypes and simple exemplar processes in an overall
theory of category learning. For example, in Smith and
Minda (1998) there appeared to be an interesting psychologi-
cal transition during category ]earnmg—from prototype-
based processing to prototype-based processing combined
with memorization or fluency—that a purely exemplar-
based model could not emulate and could never in principle
illuminate.

The A2 Advantage

" Is there an A2 advantage? Onme result from the 54
category structure deserves special attention, because it
might provide crucial support for exemplar theory and for
the context model's systematic exemplar-to-exemplar com-
parisons (Medin et al., 1984; Medin & Schaffer, 1978;
Medin & Smith, 1981; Nosofsky, 1992; Nosofsky et al.,
1992; Nosofsky et ai., 1994). So we now consider the
relative performance of participants on Stimuli A1 (111 0)
and A2 (1 0 1 0). This stimulus pair is important because Al
seems more prototypical than A2. It is more similar to the
Category A prototype (1 1 1 1) than is A2, which shares
features equally with both prototypes. In fact, Al is identical
to A2 except for its additional prototypical feature in
Dimension 2. This is why prototype models generally
predict an Al performance advantage in the 54 task.

However, because of Medin's careful choice of the other
stimuli, the context model predicts a performance advantage

for Stimulus A2. This is why. Stimulus A2 (1 0 1 0) is highly
similar (3 features shared) to two other Category A exem-
plars (A1,1110; A3,101 1) and no Category B exemplars.
If participants really do make the systematic exemplar-to-
exemplar comparisons assumed by exemplar theory, A2 will
seem to be a strong Category A exemplar and will seidom be
miscategorized into Category B. Stimulus A1 (111 0) is
highly similar to only one other Category A exemplar (A2,
1 0 1 0) but two Category B exemplars (B6, 1 1 0 0; B7,
0 1 1 0). If participants really do make the systematic
exemplar-to-exemplar comparisons assumed by exemplar
theory, A1 will seem to be a weak Category A exemplar and
will often be miscategorized into Category B. The con-
straints involved in contrasting prototype-based and exem-
plar-based similarity explain the 5-4 category structure’s
poor differentiation and ambiguous items.

To illustrate this prediction of the context model, we
found the average Al and A2 performances of 2,500
simulated samples of 16 exemplar-based processors (Figure
8A). Appendix C contains the details of this simulation. On
average, samples of exemplar-based processors show an 8%
A2 advantage. They lie above the line of equal performance
on Al and A2,

In contrast, Figure 8B shows the 30 existing Al-A2
results. The overall result from the 30 data sets seems to be
that there are Al advantages and A2 advantages that are
scattered around equivalent Al-A2 performance. In fact,
real participants have shown no overall performance advan-
tage on A2. Al and A2 were performed equivalently over the
30 data sets (83.0% correct for Al, §D = 0.106; 81.8%
correct for A2, SD = 0.128).

Which data sets should show an A2 advantage? But
which data sets can fairly be included in a search for A2
advantages? Echoing the concern raised earlier, if exemplar
theory cannot be expected to describe the data produced
under deadline conditions, early in learning, or under
prototype-based or rule-plus-exception instructions, then
one might not expect A2 advantages under those conditions.
In fact, the concern is especially serious here, because the A2
advantage has been so critical in motivating exemplar theory
and has offered the main demonstration that exemplar
theory's predictions are qualitatively correct, not just guanti-
tatively better.

Accordingly, we first excluded 10 of the performance
profiles that might have been produced under instructional
sets that were less than ideal for fostering pure exemplar
processing (e.g., specific instructions to use a prototype-
based or rule-based strategy). On this basis, we set aside data
sets 4, 5, 6, 11, 12, 14, 15, 17, 18, and 25. Al and A2 were
still performed statistically equivalently (80.8% for Al,
SD = 0.117; 82.3% for A2, SD = 0,128), /(19) = —0.57, ns.

Next, we excluded eight data sets that related to early
stages of learning, to deadline conditions, or that might have
caused us to weight individual articles too heavily:(for
example, by including multiple data sets from them). On this
basis, we set aside data sets 3, 19, 20, 21, 22, 27, 28, and 25.
Al and A2 were still performed statistically equivalently
(82.3% for Al, SD = 0.095; 80.5% for A2, SD = 0.135),
#(21) = 0.67, ns.



THIRTY CATEGORIZATION RESULTS 19

A.
1-
o~
-4
o 0.8
=
=
E
= 0.6+
w
=
° -
@ 0.4+
o
c
©
g 0.2+
|
o
0 T 1 I T 1
0 0.2 0.4 0.6 0.8 1
Performance on Stimulus A1
B.
1= = -:_‘
® ...
i
B L
g 0 ° . ol F A
— . L ]
2 .
?n"'.n 0.6+ ‘ e
g o
@ 0.4
o
c
@
g 0.2
=
dﬂ_ %
0 T T T T 1
0 0.2 0.4 0.6 0.8 1

Performance on Stimulus A1

Figure 8. A: The Al-A2 performances of 2,500 simulated
samples each containing 16 configurations of the context model
(gray dots). See Appendix C for details. B: The observed A1-A2
performances from the 30 data sets (black dots).

To address both concerns simultaneously, we excluded all
18 data sets and focused on the 12 remaining, just as we did
in the remodeling that led to Figures 5 and 6. On this basis,
we set aside data sets 3, 4, 5, 6, 11, 12, 14, 15, 17, 18, 19, 20,
21, 22, 25, 27, 28, and 29. Al and A2 were still performed
statistically equivalently (78.2% for A1, SD = 0.097; 80.3%
for A2, SD = (.140), #(11) = —0.67, ns.

We point out again that theoretical implications would
attend the need to exclude existing data to show the effect
that exemplar theory predicts. This need would narrow the
scope of exemplar theory—in its research applications, in its
real-world applications, and in its comprehensiveness in
both spheres. However, the A2 analyses on 12 and 30 data
sets suggest identical conclusions. The earlier modeling on
12 and 30 data sets suggested identical conclusions. Accord-
ingly, it seems possible to treat the 5—4 data inclusively and
to try to explain them broadly. Equivalent performance on
Al and A2 is part of that broader data pattern.

This equivalence is important because the A2 result has
long been claimed to provide strong and definite support for
the systematic exemplar-to-exemplar comparisons assumed
by exemplar theory. But the result is not consistent, robust,
present overall, or even present within the 12 data sets that
should most favor exemplar theory. We do not rule out that
further research will occasionally find the A2 advantage. It
will. We do not rule out that further research could establish
the conditions that produce the A2 advantage robustly and
consistently. It may. This section only considers the present
status of the result. At present, the A2 advantage should
probably not be granted a place in the lore of the literature,
and exemplar theory should be defended on other grounds.
For example, one can rightly note that Al and A2 are only 2
of the 16 stimuli in the 54 task and that overall the exemplar
model does an excellent job of fitting the 5—4 data sets. Here,
though, the problem of the previous section arises again—
other models with different psychologies behind them fit as
well. The A2 advantage was so crucial theoretically because
it qualitatively favored exemplar theory's assumptions alone.
Letting that result go for the present is empirically cotrect
but has important theoretical implications.

Interpreting A2 advantages. Given the importance of
this issue, we consider specifically the six data sets that have
shown clear A2 advantages and show that these data sets
create theoretical tensions and fit nncomfortably even within
exemplar theory's own framework.

Research using the context model has emphasized that
participants attend adaptively to the different features in a
task and that the dimensional weights of the context model
reflect their attentional strategies (Nosofsky, 1984, 1986,
1991; Nosofsky et al, 1994). In fact, Nosofsky (1987)
demonstrated this in an elegant analysis using six different
category structures. Nosofsky (1984) also showed this using
a 5-4 data set (Data Set 6 in this article). Lamberts (1995)
also showed this using his 5—4 data (Data Set 30 in this
article). It is important if participants “distribute attention
among the component dimensions in a way that tends to
optimize performance” (Nosofsky, 1984, p. 109). It is
important if the context model successfully describes the
stretching and shrinking of psychological space that under-
lies these attentional shifts.

Figure 9A shows optimal attention in the 5-4 task, as
estimated by Lamberts (1995) and Nosofsky (1984). It
makes sense that participants should focus their attention on
Dimensions 1 and 3, for these features have the highest
diagnosticities (.77) and offer the best information for
solving the 54 category set. It makes sense that participants
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Figure 9. A. The dimensional weights of the context model that
optimize in the 5—4 task, as reported by Lamberts
(1995) and Nosofsky (1984). B. The prototype model's average
dimensional weights as it fit the data from the six 5-4 data sets that
showed A2 advantages larger than 10%. C. The context model’s
average dimensional weights as it fit exactly the same data,

should ignore Dimension 2, for this feature has the lowest
diagnosticity (.55) and offers almost useless information for
solving the 5-4 category set.

But adaptive attention has a crucial performance implica-
tion. If Dimension 2 is ignored, Stimuli A1 (1 1 10) and A2

(1 0 1 D) become functionally or formally equivalent
because they are identical in all other respects. Accordingly,
adaptive attention produces equivalent Al and A2 perfor-
mance—that is—no A2 advantage.

This makes it clear why A2 advantages fit uncomfortably
within the literature on exemplar theory, The literature
makes one expect adaptive attention and no A2 advantages,
but there they are. The A2 advantages go against the
literature’s claims of adaptive attention, but there they are,
Without judging how to resolve this tension, we point out
that A2 advantages create the tension and, instead of cleanly
supporting exemplar theory and the context model, raise
definite questions.

In particular, one wonders how participants are attending
when they show occasional A2 advantages. Figure 9B shows
the average dimensional weights offered by the
model as it fit the six data sets that showed an A2 advantage
that was greater than 10%. Figure 9C shows the average
dimensional weights offered by the exemplar model as it fit
exactly the same data. These figures underscore the theoreti-
cal trouble that A2 advantages cause. If one accepts exem-
plar theory's expectation of adaptive attention, one disbe-
lieves the exemplar model’s attentional description (Figure
9C) and believes instead the prototype model’s attentional
description (Figure 9B). If one accepts that A2 advantages
are the real and critical result, then one accepts the mal-
adaptive attentional policy (Figure 9C) but places a pro-
blematic result amidst the exemplar model’s most elegant
demonstrations.

Figures 9B and 9C also raise an interesting possibility
about future research in this area. The attentional descrip-
tions offered by the exemplar and prototype models for the
very same data differ in striking ways. One of these
descriptions is probably wrong, and this offers a possible
way to ask whether prototypes or exemplars ground perfor-
mance in the 54 task.

Specialized Commitments of the 5—4
Category Structure

In the final section of this article, we suggest that the 5-4
category structure samples only one of the interesting
regions in the universe of category tasks. It is a specialized
structure that for three reasons might favor a particular class
of information-processing strategies,

Poor category differentiation, We have already dis-
cussed that the 54 category structure contains features that
are poorly diagnostic of category membership, families of
exemplars that have a weak family-resemblance, and catego-
ries that overlap substantially in multidimensional percep-
tual space. Figure 10A shows the relatively impoverished
structure offered by the 54 task. The figure summarizes a
systematic search through the space of category structures
based on binary features to illustrate the range of category
differentiation that is available to category researchers.
Appendquescnbesthssmulaﬁon The star marks the
spot of the 54 category structure in this structural-ratio

space. The 54 task presents to participants a categorization
problem with nearly the minimum structure within catego-
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Figure 10. A: The range of category differentiation potentially
offered by four-dimensional category structures (dark gray dots),
six-dimensional category structures (medium gray dots), and
eight-dimensional category structures (light gray dots). See Appen-
dix C for details. The star shows the position of the 5-4 category
structure in this larger space of category differentiation. B: An
illustration of the ramge of exemplar availability offered by
category structures made from stimuli of different dimensionalities,
The star shows the position of the 5-4 category structure in this
larger space of category sizes.

ries and differentiation between categories. This is true not
only of the 5—4 category structure but also of many related
category structures that have been used in the literature.

This impoverished structure could lead participants to
focus on one dimension that categorizes most of the stimuli
(it probably would not be Dimension 2) and to try to
memorize the exceptions created by that focus. Poor struc-
ture could lead them to try to memorize all nine training
exemplars because strategies based in family resemblance
(whether grounded in exemplars or prototypes) will work
poorly. Thus, even though the impoverished category struc-
tures exemplified by the 5-4 category structure represent
one theoretically interesting kind of category structure, they
are not theoretically neutral: They may encourage some
information-processing strategies and defeat others. Thus,
even if the strategies elicited by the 5-4 task are partially
based in exemplar memorization, these strategies must be
generalized carefully and narrowly—perhaps only to other
poorly differentiated category structures.

Accordingly, we hope that existing research will be
complemented by research on regions of structural-ratio
space (hat contain categories with stronger family resem-
blance within categories and more differentiation between
categories (Smith & Minda, 1998). In pursuing this goal, it
may be useful for researchers to study stimulus spaces of
higher dimensionalities (Smith & Minda, 1998; Smith et al.,
1997). Figure 10A shows that four-dimensional stimuli
generally constrain the researcher to focus on poorly differ-
entiated category structures, whereas six- or eight-dimen-
sional stimuli let the researcher sample other regions of the
large space of possible category tasks,

Poor learnability. Poor differentiation may well have a
psychological impact on participants. The 5-4 category
structure is difficult to learn; participants often fail to reach
the preset learning criterion. For example, in Medin and
Schaffer (1978, Experiments 2 and 3) only 33 of 64
participants ever achieved one errorless run through the nine
training stimuli. In Medin and Smith (1981), only 36 of 96
participants ever achieved one errorless run. In contrast,
participants in other studies have met. a criterion of 36
errorless trials (Hartley & Homa, 1981), 70 trials (Homa et
al., 1981), or even 90 trials (Homa et al., 1979). The 5-4
category structure presents to participants a very difficult
categorization problem,

This difficulty could also encourage special categorization
strategies, possibly even exemplar-memorization strategies
once again. If so, it is interesting that participants have these
strategies available and turn to them when the category
going gets tough. But even if they do, it is important to
realize that these strategies may only generalize to equally
difficult tasks that provide equally constant error messages.

Small exemplar sets. The 54 category structure is also
specialized because it has only 9 training exemplars. Indeed,
its whole stimulus s¢t contains only 16 stimuli because just
four binary features are used. (This is why the 54 task has 7
transfer items.) As one increases the dimensionality of the
stimuli to six dimensions, to eight dimensions, and on, the
size of the available stimulus population and the size of the
possible categories grow exponentially, too. Figure 10B
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illustrates this point: The star marks the spot of the 54
category structure in the larger space of possibilities. The
54 structure, like many related category structures that
have been used in the literature, presents to participants a
categorization problem with pearly the minimum category
size and nearly the maximum exemplar repetition during
leaming. This repetition could encourage and support exem-
plar-memorization strategies, but once again these support-
ing conditions and the resulting exemplar-memorization
strategies would only generalize narrowly to other small-
category tasks. We emphasize that these tasks, these condi-
tions, and these strategies are no less interesting or important
than any others. However, a better research balance could be
achieved in the literature if there were more research
involving larger categories.

Smith and Minda (1998) illustrated the special strategies
elicited by small, poorly differentiated categories like those
of the 54 task. They studied the learning of these categories
and of larger, better differentiated categories. They fit a
mixture model (similar to Model 8 here) to the data at 10
stages of learning. The mixture model is useful in this case
because it combines prototype-based processing and exem-
plar memorization in the same model, and it gives them both
the chance to dominate if their operating characteristics fit
performance better. One can then watch the changing
strengths of the two processes as learning progresses and see
their different strengths for different category structures.

Figure 11A shows the mixture model’s estimates of the
levels of guessing, prototype use, and exemplar memoriza-
tion when the model tracked these parameter values through
the learning of larger, well-differentiated categories. The
mixture model’s description has prototype use quickly emerging
as the dominant process and staying dominant through 400 trials
of the experiment. Estimates of exemplar memorization
appear late in learning and never reach a very high level.

Figure 11B shows the same parameter estimates through
time as participants learned small, poorly differentiated
categories like those in the 54 category structure. This
trajectory through. parameter space is totally different.
Higher 1ates of guessing reflect the slowness with which
these poorly structured categories come into focus for
participants. Higher reliances on exemplar memorization
eventuate. Most striking is that prototype processing is never
the dominant categorization process under the description of
the mixture model.

Thus, the mixture model makes plain that different
category structures deflect participants into different regions
of strategy space and alter profoundly the course of category
learning. Homa (Homa et al., 1979; Homa et al, 198};
Homa & Chambliss, 1975) endorsed the claim that larger
exemplar pools foster the emergence of prototype-based
categorization strategies. Reed (1978) believed that both
larger categories and better differentiated categories would
have this effect (see also Smith & Minda, 1998). Likewise,
Medin knew that categories like those in the 5-4 category
structure could create a specific task psychology and elicit
specialized strategies (Medin & Schaffer, 1978; Medin &
Schwanenflugel, 1981). They might even turn a categoriza-
tion task into an identification~memorization task in which
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Figure 11. A: Median parameter estimates of the mixture model
fitting the performance of participants learning large, well-differentiated
category structures (Smith & Minda, 1998, Experiment 2). B: The same
for participants learning small, poorly differentiated category
structures (Smith & Minda, 1998, Experiment 3).

participants pair associatively whole exemplars and their
category labels but have no sense of coherent categories in
doing so. McKinley and Nosofsky (1995, p. 129) echoed this
possibility. Again, the suggestion is that the-5-4 category
structure might elicit an exemplar-memorization process. (in
possible contrast to the systematic exemplar-to-exemplar
comparison process assumed by exemplar theory).

By all accounts, then, the 54 category structure is
specialized, because it lies in the sparse, difficult, and poorly
differentiated corner of the larger space of category struc-
tures and because it likely elicits a particular class of
information-processing strategies (some of these possibly
based in exemplar memorization). That this category struc-
ture has been dominant in asserting exemplar theory means
that the data supporting that theory are narrower than has
been realized and may unintentionally exaggerate the impor-
tance of exemplar processes in categorization.

Conclusions

So what do the 30 5-4 categorization results say in the end
about exemplar theory’s category representations and com-
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panson processes? The formal problem facing all the models
is to explain the old-item practice effect in the 5—4 data, This
problem exists apart from how intuitive that practice effect
is. The only advantage the context model has in fitting the 30
data sets, compared with the simplest prototype model, is
that it accommodates this practice effect. However, several
models, making different process and representational
assumptions, accommadate this practice effect, too. Thus
one negd not assume the prototypeless category represen-
tations of exemplar theory to explain the 54 data. Proto-
types combined with a practice effect suffices. One need
not assume the systematic exemplar-to-exemplar compari-
sons of the context model. A simpler process—exemplar
memorization—suffices.

This equivalence of prototype and exemplar representa-
tions, and of simple and complex exemplar processes,
explains the critical importance of the A2 result to exemplar
theory. For this result could qualitatively favor exemplar
representations and a complex exemplar process. But the A2
advantage is neither present overall nor in the data sets that
should most support exemplar theory.

In the end, it is clear that the 54 data sets do not offer
unambiguous support for exemplar theory. This raises
theoretical concern because the 5—4 category structure was
so prominent in fostering exemplar theory and because the
54 categories represent so well the difficult, sparse, and
poorly differentiated category structures that should most
favor exemplar theory. If questions about exemplar theory
arise here, then questions arise even more definitely about
exemplar theory's breadth and extension.

Unfortunately, one cannot presently judge that breadth
and extension. For the literature has focused sharply on
categories like the 54 structure that are sparse, undifferenti-
ated, and difficult. It will be constructive in the future to
complement this research with research on more learnable
and larger categories. This research could test the extension
of exemplar theory, prototype theory, and other theories. It
could suggest a broader theory of human categorization that
emphasizes the richness and range of humans’ approaches to
category tasks (Homa, 1984; Reed, 1978; Smith & Minda,
1998). This research could even double back in the end and
finally help these 30 categorization results in their search for
a model.
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Appendix B
Category A Response Probabilities for 16 Stimuli
Category A Category B
Data training stimuli training stimuli Transfer stimuli
set 1110 1010 1011 1101 Q111 1100 0110 0001 0000 1001 1000 111 0010 0101 0011 0100
1 078 088 081 088 081 016 016 012 003 059 031 094 034 050 062 0.16
2 097 097 092 081 072 033 028 003 005 072 056 098 023 027 039 009
3 09 097 052 081 072 033 028 003 005 072 056 098 023 027 039 0409
4 089 094 094 072 078 027 030 009 005 045 020 088 058 008 075 012
5 077 097 098 070 060 055 028 017 013 073 065 087 022 028 052 0.12
6 081 075 095 077 080 042 030 025 011 062 031 089 034 031 062 020
7 069 077 092 050 077 036 048 022 009 059 041 087 0649 030 057 020
8 066 047 056 050 031 047 047 031 041 058 055 069 041 052 050 031
9 068 061 074 077 035 068 035 016 036 072 066 076 016 031 035 032
10 073 088 095 077 073 025 020 023 006 062 050 08 034 042 059 006
11 095 088 098 094 092 028 023 008 005 061 028 098 014 036 061 009
12 088 080 095 081 084 031 034 016 002 075 034 094 020 042 067 006
13 073 084 08 075 070 025 031 019 016 055 041 080 047 039 061 022
14 094 075 091 091 08 031 034 009 006 050 009 092 031 055 050 016
15 08 073 08 073 070 030 019 017 002 067 034 092 027 042 056 005
16 073 084 084 081 073 022 038 022 017 042 047 077 048 052 058 034
17 088 067 081 08 08 034 025 009 011 050 017 095 027 044 055 014
18 078 060 084 075 075 021 022 028 012 075 023 08 023 034 059 017
19 084 092 093 091 078 013 021 008 011 064 045 083 048 056 056 0.18
20 053 078 075 082 070 035 035 020 025 062 053 070 045 075 053 023
21 093 0% 095 085 060 005 025 007 012 0865 042 082 045 040 045 017
22 097 100 100 095 088 018 010 003 000 062 042 090 055 050 065 020
23 093 100 100 100 093 000 015 000 005 065 042 090 045 060 062 0.12
24 077 078 083 064 061 039 041 021 015 056 041 082 040 032 053 020
25 094 100 097 098 092 013 006 002 002 094 069 094 003 014 032 008
26 081 084 086 070 072 032 031 020 011 063 038 085 034 032 059 019
27 085 076 085 062 072 050 051 027 021 053 046 08 037 043 057 027
280 085 077 094 077 072 043 033 020 011 058 034 099 028 037 058 017
29 085 072 0% 08 077 035 029 021 0068 062 024 099 029 050 059 01t
30 090 075 097 095 09 023 020 019 004 059 023 099 033 043 060 014
Appendix C
Details of Simulations

The Context Model’s Prediction of an A2 Advantage

This simulation's goal was to create samples of 16 participants
who obeyed the assumptions of the context model and to use these
samples to show the range of A1--A2 performance profiles that the
model predicts. To build each simulated group, we chose first an
initial random configuration of the context modetl (i.e., a randomly
chosen sensitivity and guessing rate and a random set of attentional
weights that summed to 1.0}. Ther, we created 15 other simulated
performers by treating the initial parameter setting as the mean of a
Gaussian distribution with standard deviations of 5.0 for sensitiv-
ity, 0.10 for guessing, and 0.20 for the attentional weights, and by
choosing 15 other configurations (each with its own sensitivity,
guessing rate, and attentional weights summing to 1.0) in a way
that obeyed the probability-density functions around these means.

This ensured that each simulated sample contained 16 simulated
performers who had a kind of family resemblance to their
performance strategy because they shared roughly equivalent
levels of guessing and sensitivity, and because they shared a similar
attentional strategy.

Structural-Ratio Space

This simulation’s goal was to illustrate the range of category
structure that is attainable using binary features as in the 54 task.
To be fair to current ideas about similarity, and to the models
considered in this article, we calculated the measure of category
structure (structural ratio) additively and multiplicatively. We
calculated the structural ratio using the similarity of exemplars to
exemplars, both within-category (including exemplar self-identi-
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ties) and between-category. In every case we assumed homoge-
necus attention across the dimensions in the task. We constructed
categories using four, six, or eight binary dimensions, and with
four, seven, or nine exemplars, respectively. Category members
were always derived from the nominal category prototypes of
1111and0000,111111and000000,0r11111111and
00000000.

Searching these structural-ratio spaces exhaustively is not fea-
sible; for example, the eight-dimensional space contains about 10"
Category A sets. Searching these spaces by choosing category
structures randomly is misleading because chance will not produce
the well- and poorly structured categories that a researcher might
construct. Thus we chose to search structural-ratio space systemati-
cally, but to sample only a limited number of representative
category tasks from each region of the space.

To conduct this search, we varied the typicality of the exemplars
included in categories. For example, the stimuli 1 111,1110,
1101,and 01 1 1 are typical stimuli: Their inclusion will
generally produce higher structural ratios for a category task. The
stimuli 1010,0011,1001, and 110 O are less typical stimuli:
Their inclusion will generally produce kower structural ratios for a
category task. By marrying the different levels of typicality into
category tasks, by using different mixes, and by sampling all
possible mixes, we made the search systematic but kept it limited,
because a given mix will produce about the same structural ratio
even if the specific simuli change.

To illustrate our technique for the case of eight dimensions, we
divided the eight-dimensional stimuli into high-typicality items
(those with 8 or 7 prototypical features), mid-typicality items

(those with 6 prototypical features), and low-typicality items (those
with 5 or 4 prototypical features). Then we generated 54 selection
procedures—8 10,801,720, ..., and 0 0 9—that specified how
many items at each level of typicality would be included in each
category. The first of these (8 1 0) included eight high-typicality
items and one mid-typicality item to produce categories with high
structural ratios. The last of these (0 0 9) included nine low-
typicality items to produce categories with low structural ratios. We
examined 20 stimulus sets for each mix, for a total of 1,080
stimutus sets that illustrated the range of structure available in
eight-dimensional tasks. .

Similarly, we divided the six-dimensional stimuli into high-
typicality items (with 6 or 5 prototypical features), mid-typicality
items (with 4 prototypical features), and low-typicality items (with
3 prototypical features), generated 35 selection procedures—6 1 0,
601,520,511,502,..., and 0 0 7—that specified the mix of
different typicalities, and examined 30 stimulus sets for each mix
for a total of 1,050 stimulus sats.

Similarly, we divided the four-dimensional stimuli into high-
typicality items {with 4 or 3 prototypical features} and low-
typicality items (with 2 prototypical features). We then generated
three selection procedures—3 1, 2 2, 1 3—that specified the mix of
different typicalities and examined 400 stimulus sets for each mix
for a total of 1,200 stimulus sets.
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