Speechreading: illusion or window into pattern recognition

Dominic W. Massaro

In the Fuzzy Logical Model of Perception (FLMP) perceivers are conceptualized as forming perceptual judgments by evaluating and integrating multiple ambiguous sources of information, in an optimal manner based on relative goodness of match. This model has been tested favorably against a variety of competing theories and models. Recent extensions of the FLMP are described in this article along with empirical applications and verification, and progress in the study of speech perception by ear and eye is reviewed within this general theoretical framework. The model illuminates the differences that are observed across different languages in terms of information as opposed to information-processing. Pattern recognition of bimodal speech is representative of pattern recognition in a variety of other domains, such as emotion perception, and there are several domain-dependent reasons why multimodal presentation of audible and visible speech is particularly conducive to accurate pattern recognition. We believe that the positive outcome of this research provides a framework for the development of computer-animated agents, which can serve as language tutors and as conversational characters in other domains, easing the interaction of humans and machines.
One question is whether this illusion reveals something essential about speech perception, or about multimodal perception more generally. If one accepted speech as a Fodorian input module, then clearly the McGurk effect provides a potential window into the functioning of this module. From a broader perspective, however, we should not be all that surprised by the finding that our auditory experience of speech is influenced by the visual input. For example, ventriloquism, inner voices while reading, and localizing voices in film are additional cases of crosstalk between modalities implying that the McGurk effect might not be unique.

We should be encouraged that the McGurk effect resembles other avenues of experience, such as localizing sound in space. In similarity to other domains offers the expectation of a more general account of sensor fusion and modality-specific experience rather than one unique to speech perception by ear and eye. Research from several laboratories has documented that bimodal speech perception and bimodal localization are highly analogous processes. These situations reflect cases of pattern recognition in which several sources of information from different modalities contribute to the perceptual outcome. There are also amodal influences on perceptual experience, however. Without this prior knowledge of the words, the listener cannot make heads or tails of the message. An experimental demonstration of this type of illusion is the so-called phonemic restoration effect in which we claim to hear the /s/ in the word legislatures even when illusion is the so-called phonemic restoration effect in which the edge of the words, the listener cannot make heads or tails of the perceptual outcome. There are also amodal influences on perceptual experience, however. Without this prior knowledge of the words, the listener cannot make heads or tails of the message. An experimental demonstration of this type of illusion is the so-called phonemic restoration effect in which we claim to hear the /s/ in the word legislatures even when it is replaced by a cough, a buzz or even a pure tone.

When a spoken word is masked by noise having the same amplitude envelope, subjects report that they hear the word much more clearly when they see the word in print at the same time. This result supports the idea that written text can influence our auditory experience. To show effects of written information on auditory judgment at the perceptual level, we compared the contribution of lip-read information to written information. Although there was a large effect of visible speech, there was only a small (but significant) effect of the written segments BA or DA on the judgments. To better test for the possible influence of text on speech perception, we aimed to obtain a larger effect of written text. Given that letters of the alphabet have a strict spelling-to-sound mapping and are pronounced automatically and effortlessly, the letters B and D were used. This is convenient because the letter sequences BA and DA are not necessarily pronounced /ba/ and /da/, but the letters B and D are pronounced only as they are named in the alphabet, i.e. /bi/ and /di/.

Subjects were instructed to watch a monitor and listen to speech sounds. As can be seen in Fig. 1, there were substantial effects of both visible speech and written letters on perceptual judgments. The effects of written information on auditory judgment can also be seen in Fig. 1. Clearly, we can conclude that written text, as well as visible speech, can influence our auditory experience and that the FLMP accounts for both types of influence.

One important issue is whether integration in the speech domain follows different rules from those describing integration in other domains such as spatial localization. As described by Calvert, the fact that sensor fusion occurs in both speech perception and spatial localization in no way implies that they share common neural mechanisms or neural sites. In our view, these two domains involve different sources of information but they might follow the same algorithm of information-processing. Thus we might expect that these two situations be influenced by different variables but still might follow the same algorithm of combination. This stance, of course, is a reasonable hypothesis, which we have explored in a variety of domains. As an example, spatial proximity of the two modalities is critical in localization but less important in bimodal speech perception. However, in systematic tests of the FLMP and competing models, the FLMP best described both syllable identification and spatial localization judgments. The two sources of information appear to be combined in similar ways in both localization and speech perception.

The fact that perceptual experience is primarily in one modality might not be reflective of the processing that led to the experience. Speech information from the visual and auditory modalities provides a situation in which the brain combines both sources of information to create an interpretation that is easily mistaken for an auditory one. We believe we hear the speech perhaps because spoken language is usually heard. Crosstalk between modalities might simply mean that we couldn’t trust modality-specific experience as a direct index of processing.
Implications for theories and models of speech perception
How do the impressive findings of bimodal speech percep-
tion impact on extant theories? According to psychoacoustic
accounts, speech perception can be understood in terms of the
processing of complex auditory signals. A theory of
acoustic invariance makes two claims: (1) each phonetic fea-
ture contains an invariant acoustic pattern that specifies the
value of that feature, and (2) the perceptual system uses this
information for speech perception25,26. A more modern claim
is that it is a conglomeration of auditory dimensions that
provide a direct relationship between the acoustic signal and
the appropriate percept27. The dramatic influence of visible
speech seems to falsify these proposals in that we would expect
to find a secondary direct relationship between sound
and percept to be imperceptible to the influence of another
modality.

Of course, these scientists have recognized the influence
of visible speech (see for example Ref. 19), but they have not
specified exactly how visible speech makes its contribution.
It would appear that visible speech would somehow have to be
secondary to audible speech as, for example, in an auditory
dominance model. In this formulation, an effect of visible
speech occurs only when the auditory speech is not com-
pletely intelligible28,29. Because speech is primarily auditory,
it might seem reasonable to assume that visible speech plays
a secondary role, influencing perception only when the au-
ditory information is not intelligible. The McGurk effect
would seem to disqualify this model because the auditory
speech is usually identified easily when it is presented alone.
More reasonably, it could be proposed that the perceiver
uses just a single modality for identification, sometimes the
visual and sometimes the auditory. This more general single-
channel model has also been systematically falsified in a
series of experimental tests30,31.

Integration models
The models we have described to this point can be classified as
non-integration models. For any perceptual experience, there
is only a single influence. Integration models, on the other
hand, assume that perceptual experience is jointly influenced
by both auditory and visible speech. The simplest type of in-
TEGRATION model is the Additive Model of Perception (AMP).
Additive models have been proposed and tested to explain
perception and partem recognition in various domains32,33.
In the AMP, it is assumed that the sources of information are
simply added together at the integration stage. For
generality, it can also be assumed that one modality of infor-
mation has more influence than the other modality. To im-
plement this assumption, the influence given to each modal-
ity has an additional weight parameter. The AMP has been
shown to give a very poor description of speech perception
in a broad range of experimental conditions34,35.

The motor theory assumes that listeners analyse the
acoustic signal to generate hypotheses about the articulatory
gestures that were responsible for it. The perceiver uses the
sensory input to best determine the set of articulatory ges-
tures that gave rise to the input36,37. The inadequate auditory
input is assessed in terms of the articulation, and it is only
natural that visible speech could contribute to this process.
To postulate a motor explanation of integration in speech
seems to violate parsimony, in my opinion, because inte-
gration occurs in many other domains38 that involve no
analogous motor medium. Although motor theory was orig-
inally developed to account for acoustic or phonetic percep-
tion, it has difficulty accounting for the influence of higher-
order linguistic context. For example, if the ambiguous
auditory sentence ‘My cat sat on the mat’, is paired with
the visible sentence ‘My cat sat on the mat’, the perceiver is
likely to hear ‘My cat sat on the mat’. Two meaningless
sources of information are combined to create a meaningful
interpretation39. Even if some representation is necessary to
account for the joint influence of audible and visible speech,
there is as yet no compelling reason why this representation
should be a motor one.

The direct perception theory states that persons directly
perceive the dural causes of sensory input40. In spoken lan-
guage, the dural cause is the vocal tract activity of the talker,
and it is reasonable that visible speech should also influence
speech perception because it also reveals the vocal-tract activity
of the talker. Speech perceivers therefore obtain direct in-
formation from integrated perceptual systems responding to
the flow of stimulation provided by the talker41. This theory
has trouble, however, with the finding that written language
can influence speech perception (Fig. 1).

Fuzzy Logical Model of Perception (FLMP)
Pattern recognition is viewed as central to cognition, and the
perception of speech by eye and ear is deemed as a proto-
typical case of pattern recognition. Within the FLMP, per-
ceivers are assumed to utilize multiple sources of infor-
mation supporting the identification and interpretation of the
language input. As illustrated in Fig. 2, the model specifi-
ces a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
pendence of the auditory and visual information at the eval-
uation stage. Mesulam43 and Calvert13 indicate that heteromodal
areas in the language input. As illustrated in Fig. 2, the model speci-
fies a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
pendence of the auditory and visual information at the eval-
uation stage. Mesulam43 and Calvert13 indicate that heteromodal
areas in the language input. As illustrated in Fig. 2, the model speci-
fies a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
pendence of the auditory and visual information at the eval-
uation stage. Mesulam43 and Calvert13 indicate that heteromodal
areas in the language input. As illustrated in Fig. 2, the model speci-
fies a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
pendence of the auditory and visual information at the eval-
uation stage. Mesulam43 and Calvert13 indicate that heteromodal
areas in the language input. As illustrated in Fig. 2, the model speci-
fies a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
pendence of the auditory and visual information at the eval-
uation stage. Mesulam43 and Calvert13 indicate that heteromodal
areas in the language input. As illustrated in Fig. 2, the model speci-
fies a set of rules or an algorithm to describe how pattern
recognition occurs. There are four successful but overlapping
stages of processing. At the evaluation stage, each source of
information is evaluated to give the continuous degree to
which that source specifies various alternatives. The audi-
tory and visual sources are evaluated independently of one
another35,42.

One of the central assumptions of the FLMP is the inde-
could be employed in the FLMP to make the same predictions as probability matching. The within-the-FLMP why does auditory /ba/ paired with a visible /ga/ produce a perceptual report of hearing /da/ (i.e. the McGurk effect)? These two sources of information are integrated and the outcome can be explained by the psychological properties of the audible and visible sources of information. Visual /ga/ is very similar to visual /da/ and auditory /ba/ is somewhat more similar to an auditory /da/ than to an auditory /ga/. Thus, the alternative /da/ is the best solution given both sources of information. There might also be other sources of information or constraints contributing to performance. Higher-order context might be influential in that the segment /d/ appears to be more frequent in initial position in English than the segment /g/.

One inherent attribute of this theoretical model is the important distinction between information and information-processing. The sources of information from the auditory and visual channels make contact with the perceiver at the evaluation stage of processing. The reduction in uncertainty effected by each source is defined as information. In the fit of the FLMP, for example, the parameters values indicating the degree of support for each alternative from each modality correspond to information. These parameter values represent how informative each source of information is. Information-processing refers to how the sources of information are processed. In the FLMP, the evaluation, integration, assessment, and response selection stages describe information-processing.

Some of our recent research has also attempted to make progress on the question of the information contained in visible speech. In one experiment, visible speechreading was studied to determine which features are functional and to test several models of pattern recognition. Nine test syllables were presented in intact form or under various levels of spatial quantization. Performance decreased in increasing quantization but remained relatively good at moderate levels of degradation. Six features were identified as functional in distinguishing among the nine consonant-vowel syllables. The features that appeared to have psychological validity were duration, tongue-tip movement, lip rounding, mouth narrowing, dental adduction, and lower-lip tuck. These features were used as sources of information in the FLMP and an additive model (AMP). The AMP provided a significantly better description of the confusion matrices, showing that speechreading is analogous to other domains of pattern recognition such as face recognition and facial affect perception.

Selecting among theories and models
Our goal is to broaden the domain of the techniques of model selection in our use of current models of speech perception and pattern recognition. Various theories of speech perception have been implemented in quantitative form in order to allow them to be tested against empirical results. A categorical perception (CMP) model grounded in the categorical perception of the auditory and visual speech provides a poor description of performance. The CMP predicts that the curves in Fig. 1 would be parallel to one another, even though the distance between the curves is several times larger in the middle range of the x-axis than at the extremes. The limitation with this type of model is that the categorical outcomes of processing each source cannot be used in an informative manner. If the categorization of the visible speech agrees with the categorization of the audible speech, no new information is obtained. If the two categorizations disagree, then there is nothing to guide the perceiver to choose one or the other outcome.

In the FLMP, the two sources of information are treated as independent of one another at the initial evaluation stage. A contrasting candidate that has been considered is the TRACE model of speech perception. Several researchers have proposed that this model can account for the McGurk effect. TRACE is an interactive activation model in which information-processing occurs through excitatory and inhibitory interactions among a large number of simple processing units. Three levels or sizes of units are used in TRACE: feature, phoneme, and word. Features activate phonemes that activate words, and activation of units at a particular level inhibits other units at the same level. In addition, activation of higher-order units activates their lower-order units; for example, activation of a given word unit would activate the phonemes that make up that word.

O’Reilly lists bidirectional activation (interactivity) as one of six principles for biologically based computational models of cortical cognition. He cites evidence for the well-known bidirectional connectivity in cortex. The critical issue, however, is what these bidirectional connections imply about neurological processing in pattern recognition. One interpretation is the exchange of activation during perceptual processing. However, it is equally possible that the second
We consider three possible neurological mechanisms to account for the integration of auditory and visual speech, as assumed by the FLMP (Ref. a). In sensory penetration (Fig. 1A), the processing of one modality activates the location that receives activation from the other modality. As illustrated in the figure, the activation from the visible speech is sent to a location that receives activation from the auditory modality. This possibility appears to be inconsistent with the many findings that the processing of audible and visible speech is described by the FLMP law in which the two modalities are represented independently of one another.

In feedforward convergent, the activation from the two modalities is sent to a third location that combines their inputs. As illustrated in Fig. 1B, the neural activation from the auditory and visible speech activates a third location that is sensitive to the inputs from both modalities. An important set of observations from single cell recordings in the cat could be interpreted in terms of convergent integration (Ref. b). Convergent integration offers a potential implementation of the FLMP.

In non-convergent temporal integration (Fig. 1C), integration involves the combination of information from two or more remote regions of the brain. Corticocortical pathways (pathways that connect regions of the cortex) synchronize the outputs of these regions and enable them to feed forward, independently, but synchronously, to other areas (Ref. c). This type of brain processing appears to be most consistent with the findings that an integrated percept can exist simultaneously with and independently of representations of the separate sources of information.

One limitation in distinguishing among these neurological alternatives by localizing specific sites for integration is that the auditory and visual sites are intertwined in the cortex. Neuroimaging techniques revealed that speech-reading without auditory speech activated superior temporal sulcus (STS).Colvert proposed that the observed contribution of speech-reading to the enhancement of activity in the auditory cortex could be subsequent to the integration of these two sensory streams in heteromodal regions proximal to the STS (Ref. a). Some found a delay of processing visual speech relative to auditory speech (Ref. d). This raises the possibility that the auditory and visual signals are integrated first in the association cortex (close to and including the STS), and only then is the information fed back to the auditory speech areas. Perhaps it is at this point the phenomenal speech as being heard is created.

Box 1. Neurological mechanisms

We consider three possible neurological mechanisms to account for the integration of auditory and visual speech, as assumed by the FLMP (Ref. a). In sensory penetration (Fig. 1A), the processing of one modality activates the location that receives activation from the other modality. As illustrated in the figure, the activation from the visible speech is sent to a location that receives activation from the auditory modality. This possibility appears to be inconsistent with the many findings that the processing of audible and visible speech is described by the FLMP law in which the two modalities are represented independently of one another.

In feedforward convergent, the activation from the two modalities is sent to a third location that combines their inputs. As illustrated in Fig. 1B, the neural activation from the auditory and visible speech activates a third location that is sensitive to the inputs from both modalities. An important set of observations from single cell recordings in the cat could be interpreted in terms of convergent integration (Ref. b). Convergent integration offers a potential implementation of the FLMP.

In non-convergent temporal integration (Fig. 1C), integration involves the combination of information from two or more remote regions of the brain. Corticocortical pathways (pathways that connect regions of the cortex) synchronize the outputs of these regions and enable them to feed forward, independently, but synchronously, to other areas (Ref. c). This type of brain processing appears to be most consistent with the findings that an integrated percept can exist simultaneously with and independently of representations of the separate sources of information.

One limitation in distinguishing among these neurological alternatives by localizing specific sites for integration is that the auditory and visual sites are intertwined in the cortex. Neuroimaging techniques revealed that speech-reading without auditory speech activated superior temporal sulcus (STS). Colvert proposed that the observed contribution of speech-reading to the enhancement of activity in the auditory cortex could be subsequent to the integration of these two sensory streams in heteromodal regions proximal to the STS (Ref. a). Some found a delay of processing visual speech relative to auditory speech (Ref. d). This raises the possibility that the auditory and visual signals are integrated first in the association cortex (close to and including the STS), and only then is the information fed back to the auditory speech areas. Perhaps it is at this point the phenomenal speech as being heard is created.

References

Broadening the domain of inquiry

We have carried out experiments to broaden our domain of inquiry in several directions. These new results test a framework for understanding individual differences, allow a distinction between information and information-processing, and illuminate cross-linguistic differences. This research analyses the results of individual subjects because it is possible that the results of an experiment do not reflect the results of any individual making up that average. We have explored a wide variety of dimensions of individual variability in terms of the distinction between information and information-processing. These include (1) life-span variability, (2) language variability, (3) sensory impairment, (4) brain trauma, (5) personality, (6) sex differences, and (7) experience and learning. The results of experiments with native English, Spanish,
Japanese, and Dutch talkers showed substantial differences in performance across the different languages\(^{15,45,46}\). The application of the FLMP indicated that these differences could be completely accounted for by information differences with no differences in information-processing. The differences that are observed are primarily the different response categories used by the different linguistic groups, which can be attributed to differences in the phonemic repertoires, phonetic realizations of the syllables, and phonotactic constraints in these different languages. In addition, talkers of different languages are similarly influenced by visible speech, with its contribution largest to the extent the auditory source is ambiguous. The details of these judgments are predicted by the FLMP, but not by competing models such as a single-chained model, auditory dominance, or categorical perception.

A second direction of our research concerns ecological variability, which refers to different perceptual and cognitive situations involving pattern recognition and to variations in the task itself\(^{15}\). Generally, we need to know to what extent the processes uncovered in the task of interest generalize across (1) sensory modalities, (2) environmental domains, (3) test items, (4) behavioral measures, (5) instructions, and (6) tasks. The processes involved in bimodal language processing, for example, might be revealed more readily by addressing these variables in addition to those traditionally manipulated. The belief is that the interactions with these variables will inform and constrain the kinds of processing mechanisms used to explain the basic observations (see Box 1).

Pursuing the question of whether our model of pattern recognition is valid across different domains, we examined how emotion is perceived by manipulating facial and vocal cues of a speaker\(^{47}\). The results shown in Fig. 3 indicate that participants use both the face and the voice to perceive emotion and the influence of one modality is greater when the other is ambiguous (see also Refs 48,49). Given that the FLMP fit the judgments significantly better than several alternative models, the perception of emotion appears to be well described by our theoretical framework\(^{47}\). Analogous to speech perception, we find a synergistic relationship between the face and the voice. A message communicated by both of the modalities is more informative than either one alone\(^{47}\).

The value of auditory–visual speech

There are several reasons why the use of auditory and visual information together is so successful, and why they hold so much promise for educational applications such as language tutoring (see Box 2). These include: (1) robustness of visual speech; (2) integration of the two modalities even though they are slightly asynchronous in time; (3) complementarity of auditory and visual speech; and (4) optimal integration of these two sources of information.

Empirical findings show that speechreading, or the ability to obtain speech information from the face, is robust. Research has shown that perceivers are fairly good at speechreading even when they are not looking directly at the talker’s lips\(^{49}\). Furthermore, accuracy is not dramatically reduced when the facial image is blurred (because of poor vision, for example), when portions of the face are missing\(^{50}\), when the face is viewed from above, below, or in profile, or when there is a large distance between the talker and the viewer\(^{51,52}\). These findings indicate that speechreading is highly functional in a variety of nonoptimal situations.

Another example of the robustness of the influence of visible speech is that people naturally integrate visible speech with audible speech even when the temporal occurrence of the two sources is displaced by about a fifth of a second. Given that light and sound travel at different speeds and that the dynamics of their corresponding sensory systems also differ, a multimodal integration must be relatively immune to small temporal asynchronies. In several experiments, the relative onset time of the audible and visible sources was systematically varied\(^{53,54}\). The tests of formal models made it possible to determine when integration of audible and visible speech did occur. The FLMP gave the best description of the results, but only when the temporal arrival of the two sources of information was within 250 ms. This finding supports the conclusion that integration of audible and visible speech is a robust process and is not easily precluded by offsetting the temporal occurrence of the two sources of information.

Complementarity of auditory and visual information simply means that one of the sources is more informative in those cases in which the other is weaker\(^{55,56}\). Two segments that are robustly conveyed in one modality tend to be relatively ambiguous in the other modality. For example, the difference between /ba/ and /da/ is easy to see on the face but relatively difficult to hear. On the other hand, the difference between /ba/ and /pa/ is relatively easy to hear but very difficult to discriminate visually. The fact that two sources of information are complementary makes their combined use much more informative than would be the case if the two sources were non-complementary or redundant (Ref. 15).
Box 2. Applications in language training

Given our theoretical framework, there are potential applications for the development of computer-animated agents, who can serve as language tutors and as conversational characters in a variety of educational and human-machine domains. With respect to the ecological validity of our research findings, the analysis of individuals with hearing loss has confirmed many of the principles derived from studies of individuals with normal hearing (Ref. av; H.W. Campbell, PhD thesis, University of Nijmegen, The Netherlands, 1974). The good description given by the FLMP to these data sets indicates that persons with hearing loss benefit greatly from visible speech. Given the powerful contribution of speechreading, it follows that there is value in the technology and science of creating talking faces. With our completely animated, synthetic, talking head Baldi (Fig. 1) we can control the parameters of visible speech and study its informative aspects. His speech is controlled by 53 parameters including: jaw rotation and thrust, horizontal mouth width, lip corner and protrusion controls, lower lip tuck, vertical lip position, horizontal and vertical teeth offset, tongue angle, width and length. Real-time of the visible speech is measured in terms of its intelligibility to speechreaders. Experiments have shown that visible speech produced by the synthetic head, even in its adumbrated form, is almost comparable to that of a real human (Ref. d, Chapter 13). The pursuit of visible speech technology could be of great practical value in many spheres of communication (Ref. a). Children with hearing impairment, for example, require guided instruction in speech perception and production. However, as in other domains of learning, a great deal of time on task is necessary. Furthermore, many of the subtle distinctions among speech segments are not visible on the outside of the face, making it difficult for the human speech therapist. The animated talker solves both of these problems. Because it is freely available on a modest PC, it is essentially always available (Ref. f). Language training more generally could utilize this technology, as in the learning of non-native languages and in remedial instruction with language-disabled children. Speech therapy during the recovery from brain trauma could also benefit. Finally, we expect that children with reading disabilities could profit from interactions with our talking head.

References


The final characteristic of auditory–visual speech perception is that perceivers combine or integrate the auditory and visual sources of information in an optimally efficient manner? There are many possible ways to treat two sources of information: we could use only the most informative source, average the two sources together, or integrate them in such a fashion in which both sources are used but that the least ambiguous source has the most influence. Perceivers in fact about how we cope with many different sources of information in pattern recognition. I look forward to future innovations that will facilitate the explanation of our impressive linguistic behavior and its incumbent phenomenology.

References


