
COGNITIVE PSYCHOLOGY 18, 500-549 (1986) 

Array Models for Category Learning 

W. K. ESTES 

Harvard University 

A family of models for category learning is developed, all members being based 
on a common memory array but differing in memory access and decision pro- 
cesses. Within this framework, fully controlled comparisons of exemplar-simi- 
larity, feature-frequency, and prototype models reveal isomorphism between 
models of different types under some conditions but empirically testable differ- 
ences under others. It is shown that current exemplar-memory models, in which 
categorization judgments are based on similarities of perceived and remembered 
category exemplars, can be interpreted as generalized likelihood models but can 
be modified in a simple way to yield pure similarity models. Distance-based ex- 
emplar models are formulated that provide means of investigating issues con- 
cerning deterministic versus probabilistic decision rules and links between cate- 
gorization and properties of perceptual dimensions. Other theoretical issues dis- 
cussed include aspects of similarity, the role of memory storage versus 
computation in category judgments, and the limits of applicability of array 
models. 0 1986 Academic Press. Inc. 

My objective in this study is to develop baseline models representing 
principal approaches to category learning. The function of these models 
is to provide a framework for processing category learning data in order 
to estimate theoretically interesting quantities and to allow tests of alter- 
native hypotheses about mechanisms and processes. 

Much of the substantial volume of research on categorization con- 
ducted within the framework of cognitive psychology has turned on at- 
tempts to evaluate the relative merits of three types of models (Medin & 
Smith, 1984; Millward, 1980; Reed, 1973; Smith & Medin, 1981). (1) In 
exemplar-memory models, the learner stores mental representations of 
exemplars, grouped by category, then classifies new instances on the 
basis of their similarity to the remembered ensembles. (2) In feature-fre- 
quency (or cue-validity) models, the learner records the relative fre- 
quencies of occurrence of individual features of exemplars, then clas- 
sifies new instances on the basis of estimates of the likelihood that the 
vector of features in a test pattern arose from each alternative category. 
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(3) In prototype models, the learner forms an abstract representation of 
each category represented in a series of learning experiences, then clas- 
sifies new instances on the basis of their distances from the category pro- 
totypes in a psychological space. 

The many attempts to achieve differential empirical tests of these 
models have not proven as instructive as we might like for two reasons. 
One is that only rarely have tests compared explicitly formulated models 
that differed only with respect to one critical assumption. When the 
models are incompletely specified or differ in multiple respects, results of 
tests cannot be very informative. The other problem is that the tests typi- 
cally depend on data from subjects who learn categorizations in the ex- 
perimental situation, but the learning process generally is not represented 
in the models being compared; and differential predictions from models 
may vary greatly as a function of the stage of learning at which compar- 
isons are made. 

In an attempt to improve on this situation, I have sought to formulate a 
family of models broad enough to encompass the three types but orga- 
nized within a framework providing a common basic form of memory 
representation and a common learning process. Within this framework, 
different assumptions about memory access and decision processes can 
generate models of the different types as special cases and set the stage 
for controlled comparisons of models that differ only in narrowly speci- 
fied respects. In return for the simplifications and idealizations needed to 
achieve a tractable family of models, we can hope not only to progress 
toward sharper tests of alternative conceptions but also to achieve deeper 
understanding of the different types of models and their interrelation- 
ships. 

As a preliminary to presentation of the theoretical framework, it is 
useful to specify the task domain to which the family of models should be 
applicable. In general, I shall follow Murphy and Medin (1985) in distin- 
guishing between categorization and concept formation. Categorization 
refers to an individual’s ability to assign objects or other stimulus pat- 
terns to categories for which there is some way of characterizing correct 
performance; concept formation refers to a mental representation of a 
category or set of categories that is presumed to underly both categoriza- 
tion performance and other related behaviors such as typicality ratings. 
In the work described in this article, I began with the simplest cases of 
what seemed to be basic types of category learning, primarily for reasons 
of tractability, but, as will be seen, the results prove to bear also on issues 
of mental representation. 

Within the domain of categorization tasks, I consider both determin- 
istic and nondeterministic, or probabilistic, situations. Here, determin- 
istic is not used in a philosophical sense, but rather refers to the class of 
tasks in which a 100% success rate can in principle be achieved on the 
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basis of the information available to the learner. In situations that I term 
probabilistic, perfect performance may or may not be attainable by an 
agency with complete information, but it is not attainable on the basis of 
the information available to the learner. Another major distinction relates 
to category size. Combining that dimension with deterministic/probabi- 
listic situations yields three classes of tasks that have been prominent in 
research. (1) Deterministic categorizations of small sets of exemplars, for 
example, legal moves of chess pieces, metallic and nonmetallic chemical 
elements, inert gases, are common in ordinary life, but in psychological 
research on categorization they are generally treated as a degenerate 
case, equivalent to simple paired-associate (or “verbal discrimination”) 
learning, since no element of abstraction is required for successful perfor- 
mance. (2) Deterministic categorization based on large or infinite sets, 
illustrated in ordinary life by games, edible mushrooms, list-programming 
languages, has been the prime focus of research on categorization and 
concept formation, with principal interest in the learners’ ability to clas- 
sify newly encountered exemplars of categories. (3) Categorization of 
large or infinite sets defined only probabilistically (“fuzzy sets”) is ex- 
emplified by the assignment of patients to diseases or machine malfunc- 
tions to causes on the basis of symptom patterns or of job applicants to 
prognostic categories on the basis of test and interview data; generally, 
perfect performance is unattainable, but there may be some definable 
maximum based on optimal use of information from observation of ex- 
emplars. Models that can account for learning of Type 3 necessarily en- 
tail, as special cases, more restricted models applicable to Types 1 and 2. 
Thus I shall concentrate attention on models and experimental paradigms 
for Type 3 situations. 

THE ARRAY FRAMEWORK 

The models to be considered are all developed within the framework of 
an array representation of category memory. In common with a number 
of general approaches to memory (Bower, 1967; Norman & Rumelhart, 
1970; Underwood, 1969), I assume that when a learner observes exem- 
plars of categories, information about each exemplar is stored in the form 
of a vector of feature or attribute values. * For example, in a set of experi- 
ments designed for convenient applicability of array models (Estes, 
1986), categories were diseases, exemplars were charts of hypothetical 
patients, and features were high or low values of symptoms. With the 
symptom values denoted 1 and 0, a learner’s memory representation of a 
sequence of trials might take the form 

I I shalt make no distinction among the terms feature, attribute, and dimension (in con- 
formity with the practice of Murphy & Medin, 1985, among others). 
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A 11011101 
A 10101111 
B 10000001 

where the rows correspond to individual exemplars, and A and B denote 
category tags. 

Array representations are more general than might be thought on first 
impression. Categories and exemplars used in research are nearly always 
readily describable in terms of features or attributes.2 Therefore, infor- 
mation about them that in some theories would be entered in a proposi- 
tional network (for example, Elio & Anderson, 1981) can be expressed as 
well in the array format; indeed, it needs to be for purposes of the com- 
putations required to deal with fuzzy categories. In principle, features 
can have more than two values, or even values on continuous dimen- 
sions, and the number of features per exemplar may vary within or across 
categories. However, to keep derivations manageable, I limit consider- 
ation in this article to cases in which features are binary valued (except 
where specified otherwise) and constant in number over all categories 
and exemplars within an experiment. 

For an array model to become a model for category learning, assump- 
tions must be made as to how information from perceived exemplars is 
entered in the memory array. In natural situations, there is no reason to 
believe that all of the available information in exemplar occurrences is 
effectively perceived and entered in memory. One type of selection is 
systematic, the perceptual or attentional learning (Gibson, 1969; Trabasso 
& Bower, 1968) that tends to lead the learner to attend and encode com- 
ponents or aspects of stimulus displays that are relevant to task demands. 
The other type is random, the consequence of confronting a limited-ca- 
pacity processing system with an information overload (Bower, 1972; 
Estes, 1959; Norman & Rumelhart, 1970). Attentional learning is un- 
doubtedly an important component of category learning in natural situa- 
tions. However, current theories of attentional learning need consider- 
able formal development before they could be incorporated into models 
for category learning without making the whole task unmanageable. Thus 
in the present work I take explicit account only of random selectivity, 
which must be assumed to be an inescapable aspect of the learning pro- 
cess. 

Following earlier stimulus-sampling models for learning (Estes, 1959), I 
shall examine the implications of two specific assumptions about selec- 
tion for storage-random selection of elements (features) of an exemplar 
display and random selection of patterns as units. These two mechanisms 

* Even when categories seem to be characterizable only in qualitative or subjective terms, 
methods of multidimensional scaling can generate descriptions in terms of attributes or 
dimensions in a psychological space that are amenable to array representation. 
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are by no means on a par theoretically, however. The former is assumed 
to be a basic property of the initial storage of exemplar information in the 
memory array. Thus in each of the specific models developed, there is 
defined a probability, p, assumed for simplicity to be the same for all 
exemplars and constant over trials, that each feature of a perceived ex- 
emplar is entered in the memory array. Except in the special case of p = 
1, fragmentary storage of exemplar patterns will sometimes occur and 
may set limits on attainable levels of categorization performance. 

Even though a representation of an exemplar is successfully entered as 
a vector of feature values in the memory array, it may not be retrievable 
for comparison with a test pattern unless it has become associated with 
an effective retrieval cue, a process that may depend on both selective 
attention and rehearsal. In another study (Estes, 1986), I have begun to 
investigate the conditions under which an exemplar representation acts 
as a retrievable unit, but not enough is yet known about unitization to 
enable a formal representation. Therefore, when comparing exemplar- 
memory models with other types in this article, I make the simplifying 
assumption that all stored exemplar patterns are retrievable. Though the 
assumption seems strong, it does not appear that relaxing it would mate- 
rially affect the conclusions that are drawn about relationships among 
models. 

The issue of early versus late computation has defined a major branch 
point in the evolution of categorization models and will therefore do the 
same in my development of array models. The term lute computation 
characterizes models in which the learner, at the time of a decision on 
categorization, is conceived to consult all of the relevant information in 
memory and enter it into whatever computations are required to generate 
a decision. This approach has been associated mainly with exemplar- 
memory models (Brooks, 1978; Hintzman & Ludlam, 1980; Medin & 
Shaffer, 1978). In contrast, early computation characterizes cue-validity, 
prototype, and schema-abstraction models in which the mental computa- 
tions basic to categorization are largely accomplished during the course 
of learning with only the results of these being consulted at the time of 
the decision. For example, in prototype models, abstract representations 
of categories are developed during the course of learning, being updated 
as information comes in on each trial, but when a test exemplar is to be 
categorized, it is compared only to the current prototypes of the alterna- 
tive categories. 

With regard to.adaptiveness, early computation would seem to have an 
advantage in allowing more rapid generation of responses, since only the 
results of previously accomplished computations need be consulted at 
the point of decision. On the other hand, early computation entails the 
discarding of information that does not enter into the construction of pro- 
totypes or other computed results, and if environmental contingencies 
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change over the course of time, situations may arise in which the dis- 
carded information would be useful if a shift in strategy or tactics on the 
part of the learner were called for. In late-computation models, full infor- 
mation about previously experienced exemplars is preserved (except 
when forgetting is allowed for, as in Hintzman & Ludlam, 1980) and is 
available for utilization if selective attention shifts from one to another 
aspect of the stored information during the course of learning (Nosofsky, 
1984a, 1984b). Indeed, Mat-r (1976) has offered it as a design principle of 
intelligent systems that any decision that commits the system irreversibly 
to one course of information processing should be delayed as long as 
possible. 

Baseline-Exemplar, Prototype, and Feature Models 

In the following presentation of the family of array models, I start with 
the late-computation branch. I focus first on the basic exemplar-memory 
model and show that by a reorganization of the memory array it can be 
converted into an early-computation model that is indistinguishable in 
many of its empirical implications. Then I take up examples of prototype 
and feature-frequency models of the early-computation variety and ex- 
amine conditions under which various subsets of the models are distin- 
guishable or equivalent in their empirical implications. 

The basic exemplar-memory model. The simplest exemplar model to 
be considered is closely related to the one developed by Medin and 
Schaffer (1978), the principal restriction being the assumption that all at- 
tributes, or features, of an exemplar are equally salient and receive equal 
attention from the learner.3 On any learning trial, each feature of the ex- 
emplar presented has probability p of being encoded in memory, and 
therefore each exemplar in a sequence has some likelihood of being 
stored, completely or in part, in the memory array along with its category 
tag. To illustrate the assumed categorization process, let us imagine that a 
learner has stored the sequence 

10 A 
11 A 
00 B 

and then is presented with pattern 10 and asked to assign it to the proper 
category. In the model, the test pattern would be compared with each of 
those stored in memory; the similarity of the test pattern to each remem- 

3 With this restriction, the expressions for categorization probability are the same in this 
model as in the corresponding special case of Medin and Schaffer’s model. However, the 
exemplar model displayed here includes assumptions about memory storage during learning 
and memory access during generation of a categorization response, which remain unspeci- 
tied in Medin and Schaffer’s model. 
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bered pattern would be computed and the similarities summed for each 
category. 

The rule for computing similarity is to assign a value of 1 for a compar- 
ison of a perceived and a remembered feature if there is a match and a 
value s (0 S s s 1) if there is a mismatch4 and take the product of these 
values. In this example, comparison of the test pattern to the first row of 
the array yields 1 x 1 = 1, to the second row 1 x s = S, and to the third 
row s x 1 = S. The sum of the similarities to category A is 1 + s and to 
category B the sum is S. If the test pattern were 01, which had not oc- 
curred previously, the comparison process would proceed similarly, 
yielding similarities of s2, S, and s for the three rows and sums of s + s2 
and s for categories A and B, respectively. 

The probabilities of assigning a pattern to category A or B are in the 
ratio of the summed similarities of the pattern to the stored exemplars of 
each category. Thus, in the example, the probability of categorizing pat- 
tern 10 as an A is (1 + s)/(l + 2s), and the probability of categorizing 01 
as an A is (S + s2)/(2s + s*) = (1 + s)/(2 + s). It will be seen that the 
relative probabilities of correct categorization of patterns 10 and 01 de- 
pend on the value of the similarity parameter, S. If s were equal to 1, 
meaning that the two possible feature values were not discriminated by 
the learner, both probabilities would be 2/3, depending only on the 
numbers of exemplars stored in the two categories. If s were equal to 0, 
meaning that the two possible feature values were perfectly discrimi- 
nated, the probabilities would be 1 for pattern 10 and l/2 for pattern 01, 
and the probability would be higher for 10 than 01 for all intermediate 
values of S. It will be generally true, as in this example, that if only a few 
exemplar representations have been stored, then, other things being 
equal, an exemplar that has occurred once previously will have higher 
probability of correct categorization than an examplar presented for the 
first time, because only the old exemplar has maximal similarity to some 
element of the memory array. As the number of stored exemplars in- 
creases, this difference decreases toward 0. Repetitions continue to be 
important, however. Probability of correct categorization of a test pattern 
increases, on the average, as a function of its frequency of occurrence 
during the preceding series, because the number of stored patterns to 
which it is maximally similar increases with repetition. 

This simple exemplar model may seem too conceptually rudimentary 

4 The asymmetry in treatment of matches and mismatches is only apparent. We could 
define similarity parameters s, and s2, say, for matches and mismatches, respectively, but 
since they would enter into expressions for relative likelihood and categorization probability 
only as ratios, one of the values can be chosen arbitrarily. The choice of s, = 1 for matches 
simplifies comparisons of the generalized feature-frequency model and the exemplar model. 
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to be the basis of category learning since it includes no process of ab- 
straction. However, the appearance is deceiving. Because new instances 
are categorized on the basis of their similarities to collections of remem- 
bered patterns, generalization does occur in effect, and the resulting per- 
formance is often hard to discriminate from that of prototype or schema- 
abstraction models (Busemeyer, Dewey, & Medin, 1984; Elio & An- 
derson, 1981). Further, the lack of dependence on any specific 
mechanism of abstraction means that the exemplar mode1 is capable of 
learning any type of categorization task regardless of how the categories 
were actually generated. An individual who processes information in ac- 
cord with the assumptions of the exemplar model can readily learn a va- 
riety of rule-defined categorizations (Nosofsky, 1984a, 1984b) and can 
even do quite well with a task in which contingencies between feature 
patterns and categories are so complex as to be beyond description in any 
simple verbal rule (Estes, 1986, Experiment 2). 

The idea that the whole memory array is scanned on every trial does 
raise conceptual problems, however. It is apparent that if the array is 
searched serially, or by means of a capacity-limited parallel process 
(Townsend, 1974), processing time should increase indefinitely over the 
course of learning as the size of the memory array grows. This implica- 
tion of the mode1 has not been tested formally to my knowledge but 
seems unlikely to be borne out. Further, there is some empirical evidence 
suggesting that the whole array does not enter into comparisons on each 
trial (Estes, 1986). 

A weighted-vector exemplar model. The assumption that categoriza- 
tion is accomplished by comparing test patterns to the contents of a 
memory store does not necessarily require that the comparisons be 
achieved by a scan through a chronologically ordered list of remembered 
patterns. To illustrate an alternative possibility, suppose that a learner has 
encountered the following sequence, 

A 10 
B 01 
A 10 
B 00 
A 11 
B 01 
B 10 

the pattern 10 having been presented first as an instance of category A, 
then the pattern 01 as an instance of category B, and so on. It is possible 
that, rather than continuing to work with the array as chronologically 
ordered, the processing system reorganizes the contents of memory into 
a canonical array that might take the form in this example 
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A B 
10 2 1 
01 0 2 
II 1 0 
00 0 1 

in which each distinct exemplar pattern is represented only once but to- 
gether with information concerning its frequency of occurrence in both of 
the categories. Clearly the result of computing the total similarity of a test 
pattern to the A and B columns of the canonical array will yield the same 
result as computing the total similarity to the A and B elements of the 
chronological array. It makes no difference, for example, whether a test 
pattern 10 is compared to the two A instances in the chronological array 
and the resulting similarities added or is compared to the single entry for 
10 in the canonical A array and the result multiplied by 2. In effect, the 
reorganization converts the exemplar model from a late- to an early- 
computation model, since once a canonical array is set up it needs only 
to be updated on each trial. 

Since the two forms of the exemplar model are equivalent in their im- 
plications for learning and transfer data, the task of ascertaining which is 
closer to the way the human system actually operates will evidently have 
to wait on information coming from reaction time measurements or other 
kinds of auxiliary information. For present purposes, since the canonical 
form is more convenient to deal with analytically, I shall use it as a basis 
for comparisons with other models in the remainder of this article. 

Also, it will facilitate the exposition to make comparisons in terms of a 
single-task design. The one to be employed comprises two alternative 
categories, A and B, with the exemplars of each generated by combina- 
tions of two binary-valued features. All of the theoretical results pre- 
sented generalize readily to larger numbers of features. The representa- 
tions given in Table 1 can be taken to portray either the design of the 
experiment, in which case the cell entries are the probabilities with which 
the exemplar patterns occur in the two categories, or the canonical 
memory array resulting from a learning series, in which case the cell en- 
tries are the expected relative frequencies with which the memory 
vectors are stored in the columns of the array. Except when expressly 
stated otherwise, the two categories are assumed to be sampled with 
equal probabilities when sequences of exemplars are generated for pre- 
sentation to a learner. 

Problems of very different difficulty can be generated depending on the 
particular values assigned to the cell entries in Table 1. As presented, the 
design is general enough to allow for either independent or correlated 
features, and the distinction will prove to be of major importance. For 
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TABLE 1 
Design (and Memory Array) for the General Case of Two Binary-Valued Features 

Category 

Pattern A B 

10 u x 
01 ” Y 
1 1 w Z 

00 l-u-v-w 1 -x-y-z 

simplicity, I will start with the simple special case of independent feature 
values shown in Table 2. In this case, the first feature in an exemplar has 
probability 0 of taking on Value 1 and 1 - 8 of Value 0 in category A and 
the second-feature probability 1 - 8 of Value 1 and 8 of Value 0 in cate- 
gory A. The probabilities of the feature values in category B are just the 
complements of these. Thus the exemplar pattern 10 has probability of fY 
occurring on a category A trial and probability (1 - e)2 on a category B 
trial, and so on. Applying the rules for computing similarities to Table 2, 
we find that if a learner were presented with pattern 10 after a long series 
of learning trials in the situation, the total similarity of this pattern to the 
memory array for category A would be 

e* + 1 + 2e(1 - e) - s + (1 - e)* . S* = [e + (1 - e)s]*, 

since in computing total similarity, the similarities of pattern 10 to the 
four patterns of the array are 1, s2, S, and S, from top to bottom, and their 
relative frequencies are e2, (1 - 8)2, f3(1 - 0), and (1 - f3)e. Similarly, the 
total similarity of pattern 10 to the memory vectors of category B is 

(1 - e)2 + 2e(i - e) - s + 82 - ~2 = (1 - 8 + esp; 

and therefore the probability of correct categorization if the pattern were 
presented as an exemplar of category A would be 

TABLE 2 
Design of a Categorization Task with Two Independent, Binary-Valued Features 

Category 

Pattern A B 

10 02 (1-W 
01 (l-e)* e* 
1 1 e(l-(3) (l-e)e 
00 (l-0)0 8(1-O) 
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P,,(A) = 
[e + (1 - e)s]Z 

[cl + (1 - 0)s]2 + (1 - 9 + OS)2 ’ (1) 

with a value ranging from % for s = 1 to 1 for s = 0. 
In an actual application, the value of 0 is of course prescribed by the 

experimenter, and if an estimate of s is available in advance (having 
perhaps been determined from data of a previous experiment), the 
asymptotic probability of categorizing pattern 10 as an A can be pre- 
dicted from this expression. In the following sections, however, Eq. (1) is 
of interest mainly for purposes of comparisons with corresponding ex- 
pressions derived for other models. Categorization probabilities for the 
other patterns in Table 2 are given for completeness in Appendix 1, and it 
can be assumed that all results given for relationships between models 
hold for all patterns. 

In contrast to the almost universal practice in the earlier literature of 
learning theory, it is rarely feasible to derive closed expressions for theo- 
retical learning curves in array models. The standard procedure is, 
rather, to calculate theoretical probabilities trial-by-trial by means of a 
computer program. For the special case of the exemplar model with the 
storage parameter p equal to unity, the procedure would be to replace the 
cell values in Table 1 with actual relative frequencies, updating the entries 
as the current exemplar pattern is stored on each trial. The categorization 
probabilities would be computed on each trial as in the derivation of Eq. 
(l), except that the similarities between the current exemplar and ele- 
ments of the array would be weighted by the current relative frequencies 
rather than by the asymptotic values given in Table 1. For the general 
case when p is less than unity, the procedure is basically the same (see 
Appendix 1). 

If the frequencies of occurrence of the two categories during learning 
were unequal, say category A having some probability ITS, and category 
B probability rr2 = 1 - mTTI of being represented on any trial, then the 
relative frequencies of occurrence of the exemplar patterns would be 
modified, and, when the table is interpreted as representing the memory 
array, all entries in column 1 of Table 2 would be multiplied by r1 and the 
entries in column 2 by n2. Then the expressions for categorization proba- 
bility would be modified in the obvious way-Eq. (I), for example, be- 
coming 

P,,(A) = 
n,[6 + (1 - @s12 

lTJf3 -I- (1 - e)S]2 + n,(l - 6 + es)2 . (2) 

Analogous results obtain, of course, for the other patterns. 
When ITS and 7r2 are equal, Eq. (2) reduces to Eq. (I), but when they 

are unequal, the probability of a category given an exemplar, and there- 
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fore also the probability of a categorization response to the exemplar, 
depends on the category probabilities (base rates) as well as on informa- 
tion from the exemplar pattern. In the extreme case when patterns are 
perfectly discriminated (s = 0) and features are entirely uninformative (0 
= 1/2), categorization probability depends wholly on the IT values: P,,(A) 
= ITS, and P,,(B) = n2. 

A distance-based exemplar model. The exemplar model developed 
above follows the precedent of Medin and Schaffer (1978) in the compu- 
tation of similarities. The similarities of the features of a test exemplar to 
those of each remembered exemplar are multiplied, then the results are 
added across all of the remembered exemplars of a category. This mix- 
ture of two ways of combining similarities and has the effect of making it 
difficult to achieve controlled comparisons between exemplar and proto- 
type models (in which combination rules generally are additive). How- 
ever, we can make use of a simple relation between similarity and dis- 
tance in a psychological space (Nosofsky, 1984a, 1984b; Shepard, 1958) 
to formulate a version of the exemplar model that depends entirely on 
additive combination rules. 

The key to this formulation is the function 

sij = e-4, (3) 

where sii denotes similarity between units i and j and d, the distance be- 
tween them in a similarity space. Since the present treatment is limited to 
binary-valued features, we need deal with only two distances, the dis- 
tance between a perceived and a remembered feature that match and the 
distance between a perceived and a remembered feature that mismatch. 
Only relative distances matter, so the distance in the case of a match can 
be set equal to zero. Further, since distances will appear only in ratios, 
the unit of distance is arbitrary, and without loss of generality we can set 
the distance for a mismatch equal to unity. Hence, the distance dx, be- 
tween two exemplar representations is simply the number of mismatches. 
For example, test exemplar 100111 and stored exemplar 001001 differ by 
4 and their computed similarity is e-4c. 

The average similarity of a test exemplar to a memory array is com- 
puted by summing the distances between the exemplar pattern and each 
member of the array and then transforming the result to a measure of 
similarity as in Eq. (3). Denoting the number of stored A exemplars by 
NA, cumulated distance between exemplar x and category A by DxA and 
their similarity by SxA, these assumptions can be summarized by 

D XA = (l/N,) c dxy (4) 
y in A 
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and 

s xA = e -c&h (5) 

The probability of assigning exemplar x to category A when A and B are 
the alternatives is computed as in the standard exemplar model 

(6) 

but then by substitution from Eq. (5) can be expressed in terms of dis- 
tances 

1 1 
P,(A) = = 

e - cDxs 1 + ,-@,B-43 * 17) 

1+- e - C&A 

It should be mentioned that the definition of dv is based on the as- 
sumption that distances are measured in a city-block metric (Fig. 1). This 
assumption is implicit in the Medin and Schaffer model and is generally 
considered to be appropriate for separable, or analyzable, stimulus di- 
mensions (Gamer, 1974). A generalization of Eq. (7) to a broader class of 
models can be obtained by defining dii as 
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FIG. 1. Average prototypes of categories for the task design of Table 2, together with the 
closest exemplars. The city-block distance from test exemplar 10 to the category A proto- 
type is the distance (1 - Cl) along the vertical axis plus the distance (1 - @) along the 
horizontal axis; the distance to B is f~ along the vertical plus 6 along the horizontal. 
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where N is the number of features (the dimensionality of the simularity 
space) and r is a positive constant. For r = 1, this function reduces to the 
city-block metric and for r = 2 to the equally familiar Euclidean metric. 
In this presentation I limit consideration to the special case of r = 1, in 
which case the model can appropriately be termed the city-block-dis- 
tance (or CBD) exemplar model. It is related to an average distance 
model proposed by Reed (1972) but differs in basing responses on similar- 
ities rather than directly on distances. 

An initial comparison of the CBD with the standard model can be made 
in terms of Table 2. The cell entries represent the probabilities, or long- 
term relative frequencies, of the patterns in the two categories, and there- 
fore also the relative frequencies with which the distance between a test 
pattern and the patterns of each array enter into the summation of total 
distance between the test pattern and the category. For test pattern 10 
and category A, the four distances d, are 0, 2, 1, and 1, so Eq. (4) takes 
the form 

D XA = 82 - 0 + (1 - e)* - 2 + e(i - e) - i + (1 - e)e - 1 
= 2(1 - e), 

and the similarity of this exemplar to the category is, from Eq. (5), 

S xA = e 
- 2c(l- e) 

Similarly, 

DxB = 28 

and 

S,, = e-2ce. 

Entering the two total similarities into Eq. (6) yields 

1 
J’,,(A) = 1 + ,-*cc*tl-1, * 

This function is obviously different in form from the corresponding func- 
tion in the standard model, Eq. (l), but the material question is whether 
the relationships between P,,(A) and 8 are distinguishably different in the 
two cases. Numerical computations show that the agreement is very 
close when similarities are high and differences are relatively small even 
at very low levels of similarity. For example, ifs = .9, we can choose a 
value of c (equal to .lO) for which the values of P,,(A) are .510, 520, and 
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.530 at 8 values of .6, .7, and 8, respectively, computed from Eq. (9) 
compared to .511, .521, and .532 from Eq. (I). If s = . I and c = 1.7, the 
corresponding values are .664, .796, and 885 from Eq. (9) and .659, .796, 
and .896 from Eq. (I). It seems clear that with the one free parameter of 
each model estimated from data, we could not expect to discriminate the 
two versions of the exemplar model in the independent-feature situation. 
The question of whether the same would be true if there were more fea- 
tures per exemplar or more than two values of each feature requires fur- 
ther investigation. 

A city-block-distance (CBD) prototype model. Now we are in a posi- 
tion to formulate a prototype model that differs from an exemplar model 
in only one respect: Categorization will depend on the distances of test 
exemplars to average prototypes rather than cumulated distances to the 
individual exemplar representations stored in memory arrays. It will be 
assumed that from the entries in the memory arrays, the learner forms a 
mental representation of the relative frequency with which each feature 
occurs in each category (exactly as in a feature-frequency model) and 
that the vectors of average feature values computed from these represen- 
tations constitute the average prototypes. 

To illustrate again in terms of Table 2, it is apparent from the cell entries 
that the relative frequencies of Features 1 and 2 in category A are 8 and 1 
- 8, respectively, and in the notation used these are also the average 
feature values. Hence the average prototype of category A is 8, 1 - 8, 
and, similarly, the average prototype of category B is 1 - 8, 8. For test 
exemplar 10, the distance D,O,A from the A prototype is (1 - f3) + (I - (3) 
= 2(1 - 8) and the distance DIO,B from the B prototype is 28 (Fig. 1). 
Entering these values in Eq. (7), we find the probability of assigning the 
exemplar to category A to be 

1 
f’,,(A) = 1 + ,-2cc2e-I, ’ 

(10) 

which is identical to the corresponding expression for the CBD exemplar 
model. Clearly, similar equalities obtain for the other exemplar patterns 
of Table 2 and, further, for any categorization task defined by equally 
frequent categories and independent, binary-valued features. 

Thus, the different processing operations assumed in the exemplar and 
prototype models do not necessarily lead to different predictions about 
categorization probabilities. The specification of city-block distance is 
critical to the results on equivalence, and we should not expect to find 
similar equivalence of the two types of models in general when the re- 
striction to city-block distance is removed. Neither, however, should we 
assume that exemplar and prototype models will yield distinguishably 
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different predictions for any type of situation unless the models being 
compared are actually specified and differential implications derived. 

Feature models. In order to parallel the presentation of exemplar 
models, I will start with what may qualify as the simplest baseline model 
of the family exemplified by the feature-frequency model of Franks and 
Bransford (1971) and the cue-validity model of Reed (1972). The memory 
array generated by a sequence of learning trials has the same form as for 
the exemplar models, and again it is assumed that, on each trial, each 
feature of the exemplar presented has some fixed probability, p, of being 
stored. However, in the feature model, the array is not accessed by rows. 
Rather, a memory representation is formed, and updated trial-by-trial, for 
the proportion of occurrences of each feature value in each column of the 
array. In effect (and actually in a computer program used to generate 
theoretical predictions), two counters for l’s and two counters for O’s are 
associated with each feature (each column of the array), one counter of 
each pair being incremented when the feature value is stored on a cate- 
gory A trial and the other when the value is stored on a category B trial. 
The contents of these counters are converted to proportions, which rep- 
resent the learner’s current estimates of the probability of occurrence of 
each feature value in each category. I will denote byfxi this representa- 
tion of a specified value for feature i on category X trials. In this notation, 
the likelihood function for category A and exemplar x on any trial is 

WLx) = nz& fu . . . fm, (11) 

and for category B, 

-W,x) = nB.f-B, fB2 . . * fBN, (12) 

where TV, as before, denotes the probability that category X is repre- 
sented on any trial, N is the number of features, andfAi orfa; denotes the 
learner’s estimate of the probability of the observed value of the ifh fea- 
ture of the exemplar in category A or B, respectively. If a learner had 
observed and stored the exemplar patterns 

10 A 
11 A 
00 B 
11 B 
01 A 

and then were tested with pattern 10, the likelihoods that this pattern 
arose from categories A and B would be 

L(A, 10) = (3/5)(2/3)( l/3) 

and 
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L(B, 10) = (2/5)( l/2)( l/2). 

On the basis of Bayes’ theorem, the probability that category A gave rise 
to exemplar x in the general case is 

P,(A) = 
U&x) 

L(A,x) + L(B,x) ’ 
(13) 

which in the illustration would be 

(3/5)(2/3)( l/3) (319) 
(3/5)(2/3)(1/3) + (2/5)(1/2)(1/2) = (3/9) + (l/4) 

= 417. 

In this simple feature learning model, the learner’s probability of as- 
signing a test exemplar x to a category X is taken to be equal to the 
estimated probability, P,(X), that the exemplar was generated from cate- 
gory X, so in the example probability of categorization response A is 4/7. 

Conditions of Equivalences between Models 

Similarity in a feature-frequency model. At first thought, it might seem 
reasonable to compare this simple representative of the feature-fre- 
quency model family to the basic exemplar model. However, the two 
models lack comparability because the similarity parameter, S, of the ex- 
emplar model has no counterpart in the feature model. To remedy this 
lack of comparability, a problem overlooked in previously reported tests 
of feature, or cue-validity models versus other types, I will introduce a 
feature-frequency model that is strictly comparable with the basic exem- 
plar model as regards the meaning of the parameters. 

Although traditionally feature-frequency models have not taken ac- 
count of gradations of similarity, there is no reason why they cannot do 
so. A way of accomplishing the task can be illustrated in terms of the 
memory array of the example used in the calculation just given for a 
learner presented with test exemplar 10. In the estimation of the likeli- 
hood of this pattern in category A, comparison of the first feature of pat- 
tern 10 with the first elements of the A exemplars yields fAl = 213. This 
calculation assumes that a feature value 1 in the test exemplar is perfectly 
discriminated from a value 0 in the memory array and a 0 in the test 
exemplar from a 1 in memory. Just as in the exemplar model, we could, 
more generally, allow for the possibility that perceived and remembered 
feature values can have various degrees of similarity, or confusability. 
Following the same line of implementation of this idea as in the exemplar 
model, we would, when counting the number of matches between a per- 
ceived feature value and a column of the memory array, enter a 1 if the 
perceived value were 1 and the memory value 1 (or 0 and 0), but a quan- 
tity s (0 c s s 1) if the perceived value were 1 and the memory value 0 (or 
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0 and 1) (see Footnote 4). Then, in the illustration above, comparison of 
the first feature of the test exemplar 10 with the first elements of the A 
exemplars would yieldf,, = (2 + s)/(3), the second feature of 10 with the 
second elements, fA2 = (1 + 2s)/(3), and the other two comparisons, fn, 
= fB2 = (1 + s)/(2). In this case, the estimated probability of category A 
given the test pattern would be 

2+s 1+2s -.- 
3 3 

P,,(A) = 
2+s 1+2s l+s l+s’ -.- + -.- 

3 3 2 2 

and we note that if s = 0, this expression reduces to 8117, the result 
obtained previously, as it should. 

This feature-frequency model can be instructively compared with the 
basic exemplar model, since both models use the same array information 
and both take account of variations in similarity between perceived and 
remembered feature values; they differ only with respect to how the in- 
formation is applied to the task of categorization. A convenient first step 
is to consider the independent-feature design of Table 2, for which cate- 
gorization probabilities have already been derived for the exemplar 
model. To apply the feature model, we again interpret the entries in Table 
2 as the relative frequencies of occurrence of the different exemplar pat- 
terns in the memory arrays for the two categories. (Each of these values 
would be multiplied by n, the total number of learning trials, to obtain 
expected frequencies, but since IZ would divide out of all expressions for 
probability estimates, it is ignored.) Here, ifs were equal to 0, the esti- 
mate of fAl would be f32 + 13( 1 - 0) = 0, the sum of the relative fre- 
quencies given in the first column of Table 2 for patterns having a 1 in the 
first position, and the estimate of fA2 would be t32 + f3(1 - 0) = 0, the 
sum of relative frequencies for patterns having a 0 in the second position. 
However, removing the restriction s = 0, we obtain 

fAl = 82 4 e(i - e) + (I - e)% + (1 - e)es, 

the last two items being the relative frequencies of patterns having a 0 in 
the first position, each weighted by the similarity parameter, s. Similarly, 
we obtain 

fA2 = 82 + e(i - e) + (1 - 81% + (1 - e)es. 

When the corresponding expressions are obtained for category B, and the 
appropriate substitutions are made in Eq. (13), the result, after some al- 
gebraic manipulation, proves to be 
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f’,,(A) = 
[8 + (1 - 0)s]2 

[e + (1 - t3)s]2 + (1 - e + OS)2 ’ 

in exact agreement with Eq. (1), derived above for the exemplar model. 
Similar computations for the other three exemplar patterns show that the 
models agree exactly in each case. Therefore, for this case of two inde- 
pendent, binary-valued features, the two models yield the same predicted 
categorization probabilities for all values of s. Even though the basis of 
categorization seems intuitively quite different in the two models, there 
clearly are many situations in which they cannot be distinguished on the 
basis of empirical data. 

The independence condition.. How general is this result? Does the 
equivalence in this case depend on the particular symmetries in Table 2, 
or are the models always equivalent, or only equivalent for categories 
based on independent feature distributions? We can progress toward an 
answer by analyzing the general class of categorization tasks for patterns 
of two binary-valued features, represented in Table 1, the only restriction 
on the pattern relative frequencies (the cell entries) being that they sum 
to unity for each category. For this general class, it can be shown (Ap- 
pendix 2) that if and only if the features are independent, that is, in terms 
of Table 2, 

(u + w) (1 - V - w) = 24, 
(x + z) (1 - y - z) = X, 

and so on, the exemplar and feature models are equivalent. 
The results on equivalence of the basic exemplar and feature-fre- 

quency models for independent-feature situations hold even when the 
storage parameter, p, has a value intermediate between 0 and 1, as shown 
in Appendix 3. The canonical memory array has to be enlarged to include 
partial patterns (Table Al), but nonetheless the categorization probabi- 
lities for all possible test patterns are the same for both models. The proof 
of equivalence given in Appendix 3 holds only for asymptotic probabi- 
lities, but in computer simulation of the models the equivalence is close 
beyond the very early trials of a learning series. In both models, the 
asymptotic level of categorization performance is determined mainly by 
the value of the similarity parameter, s, and the rate of approach to 
asymptote by the storage probability, p, as illustrated in Fig. 2. Under 
some circumstances, the asymptotic level is actually independent of p (so 
long as it is greater than 0), and in general it is much more sensitive to 
variation in s than to comparable variation in p (Appendix 1). 

The criterion of independence can be met even in cases that would be 
characterized as rule-defined categorizations. Suppose, for example, that 
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FIG. 2. Illustrative learning curves computed from the standard exemplar or feature 
models, equivalent in this case, for the task design of Table 2 with 8 set equal to 0.8. Com- 
parison of the curves within each panel shows the effect of variation in the similarity param- 
eter, S; comparison of corresponding curves between panels shows the effect of variation in 
the storage parameter, p. 

the cell entries (exemplar probabilities) in Table 1 had the following 
values: 

l/i 0 

0% 
95 0 
0% 

Categorization would, then, depend entirely on the first feature, being A 
if the first feature had value 1 and B if it had value 0; and the second 
feature would be entirely invalid. However, independence would be satis- 
fied, and thus both models would yield the same categorization probabi- 
lities. Substituting these exemplar probabilities into Table 1, and then into 
the expressions for P,,(A) in the exemplar and feature models (Appendix 
2, Eqs. (A4) and A5)), for example, yields 
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for both models. If the learner distinguishes perfectly between a feature 
value 1 in a perceived exemplar and a value 0 in the memory array (or a 0 
and a I), that is, s = 0, then the pattern 10 is always assigned (correctly) 
to category A; but as s departs from 0, categorization performance de- 
clines, approaching chance as s approaches 1. 

In contrast to this instance of a rule defined categorization for which 
the exemplar and feature models are equivalent, cases can readily be 
constructed in which their predictions differ widely. An example is ob- 
tained by setting the exemplar probabilities in Table 1 to the values 

% 0 
‘h 0 
0% 
0% 

Now we have a task in which A is always the correct category if the 
values of the two features differ and B is correct if they are the same. For 
this case, the categorization probability of pattern 10 is equal to ‘/z for the 
feature model, regardless of the value of s (and the same result holds for 
the other patterns, since both features have zero validity), but for the 
exemplar model, 

1 + s2 
f’,,(A) = J’,,(A) = 1 + 2s + s2 

and 

2s 
P,,(A) = P,(A) = 

1 + 2s + s2 * 

All of these probabilities reduce to those of the feature model when s = 
1, but the first two diverge to 1 and the second two to 0 as s decreases 
toward 0. This example illustrates the general point that the difference 
between the categorization probabilities predicted by the two models (for 
any given value of s < 1) increases as the intercorrelation of the feature 
values increases from independence to perfect correlation. 

Metric restrictions and the role of feature validity. Although the inde- 
pendence condition is critical for equivalences between standard forms of 
the models (that is, forms with no restrictions on the similarity space in 
which comparison are made), its role is replaced by another condition in 
the case of distance-based models. We have seen that in the independent- 
feature design of Table 2, the versions of the exemplar model and the 
average-prototype model based on a city-block metric are equivalent. 
However, independence of features is not critical, and, in fact, the CBD 
exemplar model can be shown to be equivalent to the CBD average-pro- 
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totype model for the more general case of Table 1, in which independence 
is not assumed (Appendix 4). In both models, the categorization proba- 
bility for exemplar pattern 10, for example, proves to be 

1 

P,,(A) = 1 + ,-c(u+y-v-x) ’ (15) 

in the notation of Table 1. The equivalence does not hold, however, if any 
metric other than city-block is assumed for the similarity space (as dem- 
onstrated for the case of a Euclidean metric in Appendix 4). 

In most situations, the individual features of category exemplars carry 
some validity (that is, have nonzero correlations with categories). How- 
ever, it is possible to design experiments in which all individual features 
are invalid and only combinations of features carry information about 
category assignment; and category learning has been demonstrated under 
this condition (Estes, 1972; Estes, 1986, Experiment 2). Referring to 
Table 1, it can be seen that both features are invalid if the following equa- 
lities hold 

and 

u+w=x+z 

v+w=y+z, 

the first and second lines equating the probabilities of Value 1 for the first 
and second features, respectively, in categories A and B. If the second 
equation is subtracted from the first, the result is 

u-v=x-y, 

and when this equality holds, Eq. (15) reduces to 

1 
P,,(A) = 1 + ,-c(O) = 1/2; 

and the same result holds for the other pattern probabilities. Thus, in 
both the CBD exemplar model and the CBD average-prototype model, 
learning can occur only if one or more of the individual features are at 
least partially valid predictors of categories. 

If the restriction to a city-block metric is removed, then a distance- 
based exemplar model can predict learning even when all features are 
invalid, provided only that some combinations of features are at least 
partially valid predictors (Appendix 4). 

Similarity and Likelihood 

Generalized likelihood. In the exemplar models discussed so far in this 
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article, as in Medin and SchaIfer (1978), the characterization as “simi- 
larity-based” is somewhat misleading, since there is an implicit role of 
likelihood in the use made of relative frequencies of categories as well as 
of exemplars and features within categories. This fact may be apparent 
from Eq. (2), but it can be pointed up in terms of the following illustrative 
case: Suppose that after three learning trials the memory array is 

A B 
11 00 

01 

and a test is given with a new pattern, 10. In terms of the simple exemplar 
model, the similarity of test exemplar 10 to category A is s; the similarity 
to category B is s + s2; and the probability of categorization of the pat- 
tern as an exemplar of A is 

1 
P,,(A) = --!- = - 

2s + s2 2+s’ 

Although the pattern 10 seems more similar to category A than to cate- 
gory B, the probability of assigning it to category B is greater than the 
probability of assigning it to A (unless s is equal to 0) simply because 
there are more exemplars stored in the B array. In effect, the model com- 
bines information about category frequencies, or probabilities, with in- 
formation about similarities when it generates categorization responses. 

It is easy to show that if effects of similarity are eliminated, the exem- 
plar model becomes a simple pattern-likelihood model. Referring to Table 
2 and Eq. (I), for example, if we let s equal 0, the categorization proba- 
bility for pattern 10 reduces to 

f’,,(A) = 
92 + (1 - 8)2 * 

Since O2 is the probability of occurrence of pattern 10 on category A trials 
and (1 - 0)2 the probability on category B trials, and the categories are 
equally likely, this expression for P,,(A) is simply the Bayesian proba- 
bility of category A given the information that the test exemplar is pattern 
10; and analogous results are readily derived for the other patterns. This 
reduction of the relative similarity expressions of the exemplar model to 
category likelihoods when s equals 0 does not depend on feature indepen- 
dence or the restriction to two-feature patterns, but, rather, is completely 
general. 

It is important to note also that there is no discontinuity when s equals 
0 in the transition from an exemplar-similarity to an exemplar-likelihood 
model. As s becomes very small, the relative similarity expressions be- 
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come closer to category likelihoods. Thus, the relative similarities, or 
categorization probabilities, of the exemplar model can be viewed as gen- 
eralized expressions for category likelihood-the likelihood of a category 
given not the objective test pattern, but rather the test pattern as per- 
ceived and encoded by the learner. 

A true similarity model. The fusing of exemplar similarity and category 
frequency information in current exemplar models can be eliminated by 
the simple tactic of normalizing the measures of exemplar-category simi- 
larity, that is, dividing each summed similarity by the number of compar- 
isons entering into it. In the illustrative example, the similarity of pattern 
10 to category A would remain unchanged at the value s but the similarity 
to B would become (s + s2)/(2). The new probability of categorizing pat- 
tern 01 as an A would be 

2 
P,,(A) = ’ = - 

s + s2 3+s’ 
S+- 

2 

Now categorization probability depends only on the average similarities 
of the test exemplar to the alternative categories. In this example, if s 
approaches 1, so that all patterns are maximally similar, P,,(A) ap- 
proaches l/2, rather than l/3 as in the standard exemplar model, since the 
different frequencies of stored patterns in the two categories exert no 
influence. The implications of the two models are also quite different ifs 
approaches (but does not reach) 0, so that all patterns are maximally dis- 
similar. In the standard model, P,,(A) approaches l/2, since there is no 
difference in the total similarity to the two categories and the category 
frequency information is not allowed to operate; in the revised model, 
however, P,,(A) approaches 2/3 since the average similarity of pattern 10 
to category A is approximately double the average similarity to B at small 
values of S. 

This modification of the basic exemplar model qualifies as a pure simi- 
larity-based model, since categorization is independent of category base 
rates. It is apparent that both standard and pure-similarity versions of the 
distance-based exemplar and prototype models could be formulated. In 
all cases, the standard model and the pure-similarity version yield iden- 
tical predictions when categories are equally probable, but they diverge 
as category probabilities deviate from equality, so differential empirical 
tests of the two versions should be straightforward to accomplish. 

Two aspects of similarity. Virtually all forms of learning require the 
learner to discriminate stimuli or stimulus patterns; and up to a point this 
generalization is true of category or concept learning, since exemplars of 
different categories must be discriminated in order to be appropriately 
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classified. Thus category learning, like other forms, must in part be a 
matter of overcoming similarities. However, the development of exem- 
plar models has brought out the point that there is another aspect to simi- 
larity, for new exemplars of categories can sometimes be appropriately 
assigned on the basis of their similarity to remembered instances pre- 
viously encountered. In terms of the similarity parameter s of the specific 
models developed in this study, a low value of s always favors perfor- 
mance on old exemplars, with s equal to 0 being optimal; however, a zero 
value of s means chance performance on new exemplars, and since the 
same is true when s equals 1, evidently some intermediate value must be 
optimal. No general statement can be made about the precise level of 
similarity that is optimal, and results for different cases turn out to be 
surprising in some instances. 

To investigate the way the optimal level of similarity depends on spe- 
cific conditions, we can start with the general two-feature categorization 
situation of Table 1 and consider the memory array that would arise if 
some particular exemplar pattern, say pattern 10, happened not to be 
presented on the first IZ - 1 trials of the learning series, the result of 
which is illustrated in Table 3, based on a derivation given in Appendix 5. 
In terms of the simple exemplar model, the expected similarity of exem- 
plar 10 to the array for category A on its first occurrence would be 

Sim(lO,A) = [vs2 + (1 - u - v)s]k 

and the similarity to the array for category B 

Sim(lO,B) = [ys2 + (1 - x - y)s]k, 

TABLE 3 
Memory Array Resulting from Design in Table 1 Given No Occurrence of Pattern 10 over 

First n Trials” 

Category 

Pattern A B 

10 0 0 

” Y 
01 

1., G 
w Z 1 1 - 
1-U 1, 

1 -u-v-w l-x-y-z. 
00 

1-U l-x 

0 All entries multiplied by k (defined in text) are expected frequencies of patterns in the 
memory array. 
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where 

k = (n - 1) 
2-u-x’ 

As usual, the predicted likelihood of the learner’s assigning the pattern to 
category A would be equal to the similarity to A over the sum of simi- 
larity to A and similarity to B. The quantities U, v, x, and y in these 
expressions are the pattern probabilities from Table 1. 

Now several different results can be obtained for different combina- 
tions of the pattern probabilities. First of all, if the features are indepen- 
dent, then it can be shown that the probability of correct categorization 
of pattern 10 on its first occurrence increases from a minimum at s = 1 to 
a maximum as s approaches 0, illustrated in the Task I column of Table 4. 
If features are not independent, then quite different results occur in dif- 
ferent cases. In one, illustrated in the Task II column of Table 4, the cate- 
gorization probability for pattern 10 increases from near chance at s = 1 
to a much higher value as s approaches 0, whereas under the kind of 
arrangement illustrated in the Task III column of Table 4 the 10 categori- 
zation probability decreases from near chance at s = 1 to near 0 as s 
approaches 0. However, in each of the latter two cases, it should be 
noted that there is a discontinuity at s = 0. For the case in the middle 
column of Table 4, the categorization probability increases as s ap- 

TABLE 4 
Categorization Probability at Different Values of s in the Exemplar Model for 

Three Categorization Tasks” 

Pattern 

10 
01 
1 1 
00 

I II III 

A B A B A B 

.56 .06 .lO 0 .lO 0 

.06 .56 0 .60 .90 .20 

.19 .19 .90 .40 0 0 

.19 .19 0 0 0 .80 

P,,(A) 

1 .32 .47 .47 
.5 .38 .56 .33 
.05 .48 .68 .05 
.Ol .50 .69 .Ol 

0 .50 .50 .50 

a The task designs are summarized in the upper portion of the table in the format of Table 
1; categorization probabilities are the cell entries in the lower portion. 
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proaches 0, but then drops to chance, .50, ifs actually equals 0. Similarly, 
in the case shown in the third column of Table 4, the categorization prob- 
ability decreases to a very low value as s approaches 0, but would jump 
to the chance level of .50 ifs actually reached 0. With regard to optimiza- 
tion, in the independent feature case, it is clear that the learner is best off 
with s as small as possible, which is, of course, also optimal for perfor- 
mance on old exemplars. In Task II of Table 4, the same is true, but in 
Task III best performance on new exemplars would result from s equal to 
1 and poorest for s values that become very small, though not actually 
equal to 0. 

Few data are available to allow assessment of how human learners ac- 
tually adjust to these optimization conditions.s The one substantial set of 
data available at the time of writing was generated by subjects learning 
categorizations of bar-chart patterns into categories defined by indepen- 
dent feature distributions (Estes, 1986). For this study, it was found that 
when the parameters of s and p of the exemplar model were estimated 
from the learning data for four groups of subjects, separate estimates 
being obtained for each of four successive blocks of 80 trials, the overall 
best fit to the learning data was obtained when s was set equal to .50 and 
p to .05. However, with p fixed a .05 and s estimated separately by 
blocks, the best estimates of s, averaged over the four groups, proved to 
be .60, .21, .16, and .I6 for the four successive blocks of trials. Clearly 
the effective similarity value, as indexed by the value of s, decreased 
substantially as learning progressed. 

One might well raise the question of why similarity should change in 
any regular way over the course of learning, since there is no obvious 
reasons why the properties of the features of stored exemplars should 
change over trials in the direction of greater discriminability. We may get 
a clue to an answer by looking at the situation from the viewpoint of 
signal detectability theory (Swets, 1964). Consider the problem for a 
learner when a feature of a perceived exemplar is being compared to an 
actually mismatching feature of a memory vector. In terms of detect- 
ability theory, the perceived feature gives rise on different occasions to a 
distribution of internal states and the same is true of the feature of the 
memory vector, and in general the two distributions would be expected to 
overlap. Consequently, on some occasions, when a comparison is made, 
the internal state activated by the memory element will fall within the 
range of those that might be activated by the perceived feature, so that 

5 Over an entire learning series, optimization would depend on how the learner weights 
the values of correct categorization of new and old exemplars. Testable predictions could 
readily be generated for conditions designed to vary the relative weights. 
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the perceived and judged feature may be judged to match even though 
they are actually different. 

In terms of signal detectability theory, the way the individual deals 
with this uncertainty is to set some criterion, that is, some value on the 
continuum of internal states generated by feature comparisons, above 
which the perceived and remembered features are judged to match and 
below which they are judged to mismatch. Further, there is evidence 
from studies of signal detection and recognition (Healy & Kubovy, 1977; 
Murdock, 1974; Swets, 1964) that human observers are capable of 
learning to adjust criteria so as to increase rates of payoffs for correct 
decisions. Thus it seems a reasonable hypothesis that the systematic 
changes in the memory parameters in my data reflect criterion shifts that 
the individuals learn to make during lengthy experience with the categori- 
zation task. 

GENERAL DISCUSSION 

Summary of Results on Interrelations among Models 
The array framework has provided an effective basis for an organized 

attack on problems of comparability among category learning models. 
However, the models have proliferated even while being studied, so an 
overview of the family developed in the preceding sections may be 
useful. The following qualitative summary of interrelationships is supple- 
mented in Appendix 6 with a summary of the principal predictive for- 
mulas and brief characterizations of the algorithms used to compute 
learning functions for the various models. However, the details of the 
particular cases chosen for analysis in this article are less important than 
the demonstration that by imbedding the models in a common frame- 
work, we can show when various particular models are or are not empiri- 
cally distinguishable and can specify conditions under which we can test 
predictions from representatives of different model types that differ in 
only a single processing assumption. 

The simplest, yet in a sense the most general purpose, member of the 
family is the basic exemplar-memory model, incorporating the assump- 
tions that exemplar representations are stored in a chronologically or- 
dered array and that test exemplars are compared to elements of the 
array via a serial search process. An individual who processes informa- 
tion in accord with this model can learn, at least to some degree, any 
categorization task, provided only that the features in terms of which he 
encodes category exemplars are correlated, individually or in combina- 
tions, with category occurrences. It would be straightforward to formu- 
late variants of the model in which only recent (the last k) exemplars are 
searched or in which only exemplars with some specified criterion prop- 
erty are stored in the array, but these possibilities have not been formally 
explored. 
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The weighted-vector exemplar model differs from the basic model only 
in that the memory array is assumed to contain only a single representa- 
tion of each exemplar pattern that has been encoded during a learning 
series, together with information about its frequency of occurrence in 
each category. Categorization of new test exemplars is based only on 
comparisons with the vectors in the canonical array, the result of a com- 
parison between a perceived pattern and a memory vector being 
weighted by the relative frequency of the latter. These two forms of the 
exemplar model cannot be distinguished on the basis of categorization 
data. 

The basic and the weighted-vector exemplar models both embody what 
Nosofsky (1984b, 1986) terms the “mapping hypothesis”-that is, the 
assumption that the probability of assigning an exemplar to a category is 
equal to the sum of the probabilities that it is identified (correctly or in- 
correctly) as any one of the remembered members of the category. In 
contrast, it is assumed in distance-based exemplar models that categori- 
zation depends only on the summed distance in a “similarity space” be- 
tween the test pattern and the members of the memory array for each 
category. For appropriate corresponding values of their parameters, the 
simple exemplar-memory model and the distance-based exemplar models 
in some cases yield quite similar predicted values of categorization 
probabilities; the conditions remain to be determined under which the 
different forms of the exemplar model can be empirically distinguished 
when their parameters are evaluated from data. 

A feature, or cue-validity, model, in which categorization depends on 
the computed likelihoods that the feature combination of a test exemplar 
would arise from sampling the alternative categories, has been shown to 
be very similar in its predictions, and in fact asymptotically isomorphic, 
to the standard exemplar-memory and weighted-vector models when fea- 
tures are independent. The sense of independence intended here is illus- 
trated in Table 2: The probability of any combination of two or more 
features occurring in a category exemplar is equal to the product of their 
individual probabilities. When independence does not hold (i.e., features 
are correlated), the exemplar models generally predict higher perfor- 
mance levels than the feature model with the same parameter values. 

The prototype models investigated within the array framework assume 
that categorization is based on comparison of the distances of a test ex- 
emplar from the average prototypes of the alternative categories in a sim- 
ilarity space. When the metric associated with the space is city-block 
distance, often assumed to be appropriate for separable stimulus dimen- 
sions (Gamer, 1974; Nosofsky, 1984b), and categories are equally prob- 
able, the prototype model proves to be equivalent to the CBD exemplar 
model, regardless of independence or nonindependence of features. 
When the metric is Euclidean (often assumed appropriate for integral 
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stimulus dimensions), differential empirical tests of the models may be 
accomplishable by categorization data. 

Evidence on Component Processes 

Retrieval of exemplar representations. Interpretations of categoriza- 
tion in terms of exemplar memory have been characterized by the as- 
sumption that stored exemplar representations are retrieved and com- 
pared with the perceived pattern of a test exemplar. The most direct sup- 
port for this assumption has come from findings that old (that is, 
previously experienced) exemplars are categorized more accurately than 
new exemplars of presumably similar difficulty (Brooks, 1978; Elio & 
Anderson, 1981). However, those observations tell little about the gener- 
ality of the process, and it should be noted that they all come from 
studies in which the number of different exemplars presented to a learner 
is relatively small. In experiments employing larger numbers of different 
patterns, 1 obtained evidence for exemplar retrieval only when exemplars 
were repeated within the learner’s short-term memory span or when the 
number of repetitions was large (Estes, 1986). In the former case, the 
evidence took the form of an advantage for old exemplar patterns that 
included unique retrieval cues over old patterns that did not; in the latter 
case, the evidence was a selective facilitation of response to old patterns 
by instructions to attend to exemplar similarities. Thus, although there is 
good reason to believe that a process of comparing stored to perceived 
exemplar patterns does occur, more evidence is needed concerning its 
generality. 

Use offeature and pattern frequencies. Although feature-frequency, or 
cue-validity, models of categorization have been out of favor since rather 
negative results of an empirical test were reported by Reed (1972), there 
is substantial reason to believe that information about feature frequencies 
is stored and used in recognition (Bower, 1972), and, at least when the 
number of exemplar patterns involved in a task is large and repetitions 
relatively rare, also in categorization. In a study meeting these stipula- 
tions, a feature-frequency model yielded accurate, parameter-free pre- 
dictions of the asymptotes of learning functions and the results of transfer 
tests on selected exemplar patterns (Estes, Burke, Atkinson, & Frank- 
mann, 1957). 

A large literature on “memory for frequency” leaves no doubt that 
learners can store information about pattern frequencies (e.g., Hintzman, 
1976; Underwood & Freund, 1970; Wells; 1974; Whitlow & Estes, 1979) 
but does not address the question of whether the information is used in 
categorization or other tasks outside the domain of recall and recognition 
tests. There is some evidence for an affirmative answer in experiments 
showing that when the number of distinct exemplar patterns is small and 
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individual features are invalid, asymptotes of learning functions can be 
predicted by a simple pattern-frequency model (Estes, 1972). The same 
study indicates that when conditions early in learning direct attention to- 
ward features rather than patterns, learners continue to respond on the 
basis of feature frequencies even when categorization on the basis of pat- 
tern frequencies would be more efficient. 

Comparisons to prototypes. Prototype models have been popular since 
the studies of Franks and Bransford (1971) and Posner and Keele (1971), 
but mainly because they offer explanations of such phenomena as better 
categorization of new prototypic than old nonprototypic patterns rather 
than because there is direct evidence for processes of judging distances 
from test patterns to prototypes. However, it has become apparent that 
alternative explanations in terms of feature-frequency (Reitman & 
Bower, 1973) or exemplar-memory (Busemeyer et al., 1984; Medin & 
Schaffer, 1978; Smith & Medin, 1981) mechanisms are available, so there 
is need for more direct tests of the processing assumptions of the proto- 
type models. One procedure has been to present prototypic stimuli, or 
descriptions of them, to subjects in advance of a learning series and look 
for a facilitation of learning and transfer performance (Medin, Altom, & 
Murphy, 1984). However, any observed facilitation could be interpreted 
in an exemplar-memory model in terms of the idea that the prototypic 
pattern is stored in the memory array, quite possibly in a privileged posi- 
tion or with more effective retrieval cues than other observed exemplars, 
owing to the special attention it has received. It may be that compelling 
differential tests of prototype abstraction versus other mechanisms can 
be achieved only by well-controlled comparisons of models of the kind 
that can be accomplished within the array framework. 

Deterministic vs probabilistic response rules. Rules for getting from 
memory representations to categorization responses vary widely over 
extant models. Prototype models have traditionally assumed a determin- 
istic process, a test exemplar being assigned to the category from whose 
prototype its distance in the similarity space is smallest. Cue-validity 
models are usually classed as probabilistic, but the version formulated 
and tested by Reed (1972) assumed a deterministic rule. In the exemplar 
models of Medin and Schaffer (1978) and Nosofsky (1984b), response se- 
lection is probabilistic (categorization probabilities for an exemplar being 
in the ratio of its similarities to the alternative categories), and the same is 
true for the likelihood-based model of Fried and Holyoak (1984). 

It is not feasible to decide empirically between deterministic and prob- 
abilistic rules by comparing models that differ in their response rules, 
because in every case the models differ in other respects. It would be 
possible to test alternative versions of a single model, for example, the 
standard exemplar model, with an alternative version in which a deter- 
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ministic response rule replaces usual probabilistic rule. However, there 
would be difficulties. To apply the models in an experiment, the storage 
and similarity parameters have to be estimated from the data, and the 
difference in efficiency of the two response rules can trade off with 
values of the parameters (a higher value of p or lower value of s in the 
standard version compensating at least in part for the greater efficiency of 
the deterministic rule in the other). Further, even if a learner adopts a 
deterministic rule, it may not be possible to apply the rule infallibly, so 
errors in judging which category array is more similar to a test exemplar 
may produce the same kind of noise in the data that would result from a 
probabilistic decision rule. 

A better framework for an approach to the problem is offered by the 
distance-based models of the array family. In all of these models, the 
expression for categorization probability takes the form 

f’,,(A) = 
1 

1 + ePcd 

where d denotes the difference in distances from the test exemplar to the 
arrays (in the exemplar models) or the prototypes (in the prototype 
models) of the categories A and B. If the parameter c has a relatively 
small value, P,,(A) will vary between 0 and 1 as a function of the size of 
d, and we would speak of a probabilistic response process. If c is suffi- 
ciently large, however, the exponential term will have a value close to 0 if 
d is negative and a very large value if d is positive, yielding a value of 
P,,(A) of approximately 1 in the former case and approximately 0 in the 
latter. Thus, for large c the response rule becomes indistinguishable from 
a deterministic rule. The relevance to the problem at hand is that we can 
fit the distance-based models to empirical learning functions and allow 
the data to speak to the issue via the value of c that proves to be required 
for best tit. It may turn out that either a deterministic or a probabilistic 
rule is generally the preferred assumption, or that the choice varies with 
conditions. 

Descriptive Adequacy of the Models 

The focus of this paper is on extending major classes of categorization 
models to handle learning as well as asymptotic performance and on un- 
derstanding relationships among the classes of models. Our interest in 
this task is predicated, of course, on the assumption that these models 
are useful for the interpretation of empirical phenomena. With this 
thought in mind, I undertook, in collaboration with Robert Nosofsky, a 
survey of the relevant literature at the beginning of the theoretical studies 
leading to this paper. We found 10 studies published between 1961 and 
1981, all of which presented data on the relative difficulty of different 
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categorization tasks or of different category exemplars within a task, 
usually in terms of error proportions on a block of test trials given at the 
end of a learning series. In all cases where it had not been done by the 
authors, we fitted the Medin and Schaffer (1978) model6 to the data (No- 
sofsky being responsible for the computations). In all cases, we obtained 
fits that looked intuitively satisfactory. 

The notion of “satisfactory” can be made somewhat more specific. 
Four of the studies examined (Elio & Anderson, 1981; Medin, 1983 [the 
data was available to us in advance of publication]; Medin & Schaffer, 
1978; Medin & Smith, 1981) were homogeneous enough with regard to 
design and number of data values to make an overall analysis feasible. 
The Medin and Schaffer model, with allowance for differential weighting 
of stimulus attributes, was fitted to all of the data sets with a least- 
squares criterion. The standard errors of estimate (standard deviations of 
difference between observed and theoretical response proportions) 
ranged from .019 to .070 with a mean of .048. 

Data for trial-by-trial changes in response proportions during learning 
were not available from any of the published studies. Such data were 
obtained in experiments carried out in conjunction with the present study 
(Estes, 1986). In the first of two experiments, exemplars were generated 
from independent probability distributions of features; in the second ex- 
periment, individual features were uncorrelated with correct category as- 
signment, but the features were not independent, and patterns of features 
were correlated with category assignment. This situation is simpler than 
those of the previous studies cited in that salience and diagnosticity were 
equated across features so that differential weighting of attributes was not 
needed. However, the versions of the models applied were also simpler, 
having only one of two free parameters rather than four or five. For four 
groups in Experiment 1, the average standard error of estimate was .052 
for the exemplar model. To convey an impression of the goodness of fit 
indicated by these standard error values, the result for two of the groups 
(from Condition U of Experiment 1) is shown in Fig. 3, the standard 
errors for the upper and lower panels being .048 and .041, respectively. In 
Experiment 2 of that study, the model yielded a standard error of .067. 

In summary, the appropriate cases of the family of array models de- 
scribe learning data and asymptotic data, and tasks based on independent 
or on correlated features about equally well. The fits of the models are 
not, however, insensitive to variations in experimental procedures or in- 
structions. In the study of Estes (1986), instructions to subjects to attend 
to exemplar similarities produced a shift toward a better fit for the exem- 

6 More precisely, the model fitted was the standard exemplar-memory model augmented 
by the addition of a weighting parameter for each stimulus attribute. 
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FIG. 3. Learning functions for an independent-feature task compared with predicted 
functions from the exemplar model. The data represent two groups differing only in the 
sequence of exemplar presentations, the sequence being the same for all subjects in each 
group (data from Estes, 1986). The parameter values are s = SO and p = . 10 for the upper 
panel, and s = .45 and p = .05 for the lower panel, p denoting pattern storage probability in 
each case. 

plar model in the correlated feature situation. In Elio and Anderson 
(1981), sequencing of material intended to favor generalization strategies 
yielded slightly poorer fits of the exemplar model than control instruc- 
tions (.069 vs .061 and ,025 vs .019, respectively, in two experiments). On 
the other hand, in Smith and Medin (1981), supplying additional informa- 
tion to subjects in the form of prototype demonstrations did not change 
the fit of the exemplar model (as though the additional information were 
simply encoded into the memory array along with the results of observing 
exemplars on learning trials). 

Do the array models ever really fail to describe relevant data? The only 
clear instance I know of occurred in a study by Gordon (1985, Experi- 
ment 3). That experiment differed from all of the others I have cited in 
that the category exemplars were not definable in terms of probability 
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distributions of perceptual features but, rather, in terms of patterns of 
abstract properties of the exemplars. Not surprisingly, the exemplar 
model, interpreted in terms of exemplars as patterns of perceptual fea- 
tures, could not give a reasonable account of the data. Whether the model 
could be successfully applied with an appropriate redefinition of features 
is an open question. From the standpoint of predicting behavior, a limita- 
tion on all of the array models is that the investigator has to know what 
features the learner is using so that similarities or frequencies can be 
computed on the proper units. 

Although it is generally considered desirable to describe data by means 
of a model having as few free parameters as possible, neither fitting data 
nor reducing the numbers of parameters are ends in themselves. One of 
the principal values derived from fitting a model to data arises from the 
transformation of raw statistics of the data to quantities that are more 
theoretically significant. Often this procedure provides the only way to 
tease out component processes in complex systems. Several illustrations 
of this point have arisen in applications of exemplar models. The param- 
eters of the Medin and Schaffer (1978) version that represent dimensional 
weights allow freedom for data fitting, but also they can yield input to 
theoretical analyses. For example, Nosofsky (1984a, 1984b) was able to 
investigate the hypothesis that learners tend to shift their allocation of 
attention over stimulus dimensions toward the optimal distribution for a 
task by deriving the optimal distribution for the exemplar model, then 
fitting the model to categorization data and showing that the estimated 
weights did in fact shift toward the optimal distribution during learning. 
For another example, in the analysis of the learning data in the study of 
Estes (1986), it was found that the estimated value of the similarity pa- 
rameter, s, of the exemplar or feature models declines systematically 
during learning, at least for independent-feature problems, but levels off 
at a value greater than zero. Thus it appears that one constituent of cate- 
gorization learning is a systematic change in the learner’s criterion for 
similarity judgments, a process whose adaptive value was discussed in an 
earlier section. This process is not manifest in the raw data, however, but 
becomes apparent only when the data have been transformed by means 
of a model to yield quantities interpretable as measures of effective simi- 
larity. We do not yet have a model of the process of adjusting criteria of 
similarity, but we are at least in a position to attack the problem now that 
we have a way of tracing the process by means of behavioral data. 

Open Problems 

Storage ver.suS computation. Models of the exemplar and feature-fre- 
quency families differ considerably with respect to the information-pro- 
cessing load placed on the learner. In the latter type, feature-frequency 
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representations are updated as each exemplar is processed, and only the 
computed quantities need be accessed when categorization judgments are 
called for. But in the former type, all exemplars encountered during 
learning and stored in the memory array must be accessed for compar- 
ison with the current test exemplar on each test trial. The demands on 
storage and retrieval processes can become quite large when learning 
runs to hundreds of trials, as is common in categorization learning exper- 
iments, whereas in the feature-frequency models the demands are vir- 
tually independent of the length of the learning series. 

One possible shortcut in the process of memory access and comparison 
in the exemplar model suggested by Medin and Schaffer (1978) is that the 
learner might on any test trial retrieve only some one stored exemplar- 
the one most similar to the test pattern. However, it is not apparent how 
this shortcut could be accomplished without comparing the test pattern to 
all of those in storage in order to locate the most similar one. Another 
alternative to accessing the full memory array is offered by the weighted- 
vector exemplar models, in which the decision process involves only the 
representations of distinct exemplar patterns together with their relative 
frequency counts. However, even this process requires access to a large 
number of stored representations when the number of different patterns 
presented becomes large (for example, 256 in an experiment described by 
Estes, 1986) and might well entail as great a processing load as accessing 
the full memory array. In any event, it is not clear that the standard and 
the weighted-vector versions of exemplar models can be distinguished 
empirically, since they yield very similar predictions regarding categori- 
zation data. Conceivably reaction time measures would be useful, but 
this idea has yet to be explored. 

Selecting and combining processes. How do the various processes dis- 
cussed in this article enter into category learning? Memory for feature 
frequencies is a sufficient basis for categorization only when category 
exemplars are defined by independent features. In this case, very simple 
feature-frequency models have been shown to account for the detailed 
course of category learning. The demonstration has been accomplished 
only with the further restriction that features are equally diagnostic, but 
there is little reason to doubt that the models could be generalized to 
handle unequal diagnosticities just as has been done with exemplar 
models. The use of feature frequencies may be a preferred mode for 
human learners, at least when the number of patterns to be coped with is 
large, because the acquisition of frequency information is typically rapid 
(Estes, 1976; Whitlow & Estes, 1979) and, if not automatic, at least rela- 
tively light in demands on attentional capacity (Hasher & Zacks, 1979; 
Tzeng & Cotton, 1980). 

Memory for relative frequencies of exemplar patterns provides an op- 
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timal basis for classifying previously experienced exemplars, but storing 
exemplar frequencies requires a steeply increasing processing load rela- 
tive to feature frequencies as the number of different patterns becomes 
large. There is some evidence that human learners tend to rely on feature 
frequencies when exemplars are readily analyzable and individual fea- 
tures are diagnostic; use of memory for exemplar frequencies seems to 
come into play readily, however, when individual features are not diag- 
nostic (Estes, 1972, 1986). The major limitation on usefulness of exem- 
plar frequency is that it is of no help to the categorization of new exem- 
plars. Two kinds of augmentation of simple exemplar-frequency models 
have been introduced for the purpose of circumventing this limitation. 
One is the use of observed exemplar frequencies for estimating param- 
eters of probability distributions (Fried & Holyoak, 1984), applicable, of 
course, only when exemplars are generated by well-defined distribution 
functions. The other tactic, discussed in detail above, is to augment 
simple exemplar-frequency models so that estimates of category proba- 
bilities from exemplar information depend both on remembered fre- 
quencies and on similarities between perceived and remembered exem- 
plar patterns. 

The computation of generalized likelihoods from similarity judgments 
has the advantageous property of always being a useful mechanism re- 
gardless of the structure of the task. Generalized exemplar, or exemplar- 
similarity, models are advantageous also for learning categorizations that 
are spontaneous in the sense of not being defined for the learner by ex- 
ternal feedback. In a situation studied by Fried and Holyoak (1984), for 
example, subjects observed sequences of stimuli and tried to sort them 
into categories, knowing only that categories existed but receiving no 
informational feedback as to the correctness of their responses from the 
standpoint of the experimenter. Learning did occur, in the sense that 
subjects tended to improve over trials at assigning stimuli to subsets cor- 
responding to the experimenter-defined categories. However, the task 
had the special property that stimuli were sampled from well-defined dis- 
tributions of familiar form whose means and variances could, in prin- 
ciple, have been estimated by the subjects from their observations. And, 
this estimation procedure would depend on the subjects being able to 
hypothesize the form of the distribution (normal in Fried & Holyoak’s 
study). 

Thus it is of interest to inquire whether similar learning should be pos- 
sible in a broad class of situations where it would not be feasible to hy- 
pothesize the forms of distributions. If we were to try to answer this 
question by constructing a computer model that could accomplish the 
task, it would not be apparent how to make a start via the class of fea- 
ture-frequency models; frequencies have to be defined relative to some 
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criterion, and trying out criteria on a pure trial-and-error basis seems an 
impractically tedious approach. Proceeding in terms of an exemplar-simi- 
larity model appears more promising. If even a small number of represen- 
tations of observed exemplar patterns can be held in working memory, it 
would be possible to form a tentative classification of these on the basis 
of similarities, then classify additional exemplars observed on the basis of 
similarity to these tentative categories. It would be a straightforward task 
to determine empirically whether various classification problems would 
be learnable by this model, possibly with iteration of the procedure, and 
then investigate whether learnability by the model would predict learn- 
ability by human subjects. 

In general, it seems reasonable to conclude that the processes em- 
bodied in the feature-frequency, exemplar-frequency, and distance-based 
models are all available to human learners. It seems plausible that 
learners would have a basic priority, or preference order, but would shift 
from one mechanism to another in response to task demands. However, 
no formal model is yet available to specify when shifts should occur and 
how they are accomplished. 

Model-based analyses have shown that category learning includes 
aspects of skill learning as well as knowledge acquisition. In the formula- 
tion of their exemplar model, Medin and Schaffer (1978) allowed for the 
possibility that learners would tend to weight different stimulus attributes 
in relation to their diagnosticities or saliences, and Nosofsky (1984a, 
1984b, 1986) has added evidence that learners tend to shift dimensional 
weights toward the optimal values for a task during learning. Analyses 
discussed in this article and in Estes (1986) indicate that there is also a 
learning process with respect to the parameter S, representing effective 
similarity, which appears to have much the same character as learning 
that produces criterion adjustments in signal detection and recognition. 
The role of attentional learning can evidently be made negligible by elimi- 
nating variation in diagnosticity among features or dimensions in a task, 
but it may always be necessary for a learner to discover the appropriate 
value of s for a given situation. It would be expected, of course, that both 
aspects of skill learning would reach stable asymptotic levels with suffi- 
cient experience in a task. 

The role ofprior knowledge. In the present development, as in most of 
the related literature, it is assumed that the memory array is filled by the 
trial-by-trial output of feature analyses of presented category exemplars. 
However, it is possible that knowledge from other sources can be en- 
coded into the array format. Though it is convenient to start with anal- 
yses based on experimenter-defined features, the problem of discovering 
what features are actually used by learners in natural situations can be 
approached by already available methods such as multidimensional 
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scaling (Nosofsky, 1984b). I have no disagreement with the many investi- 
gators, for example, Murphy and Medin (1985) and Smith and Medin 
(1981), who stress the importance of the learner’s prior knowledge in nat- 
uralistic categorization learning. However, it is one thing to recognize the 
importance of knowledge acquired outside of the experimental situation 
and another to understand how the knowledge is represented in the data 
structures of the cognitive system and brought to bear on particular cate- 
gory judgments. The only serious attack on this problem, that of An- 
derson (1976, 1983) in his ACT system, is based on the idea that knowl- 
edge is stored in memory in a network of propositions. That approach 
appears to offer promise in application to category learning (Elio & An- 
derson, 1981) but it remains to be shown how propositional knowledge 
feeds into mental mechanisms that compute probability estimates and 
similar quantities that are needed to learn fuzzy categorizations in noisy 
environments. Knowledge has to be coded in a form with the essential 
properties of the memory array before such computations can be accom- 
plished, regardless of the specific mechanisms. 

It may be noted, further, that regardless of the importance of general 
world knowledge in the formation of concepts, the implications of such 
knowledge need to be checked out for any specific situation before one 
can be confident that it leads to appropriate categorizations as defined by 
the task at hand. In terms of the array model, background knowledge 
might suggest the relevant attributes on which category exemplars should 
be encoded and the relative weights to be placed on different attributes or 
pattemings of them, but there would remain the task of acquiring skillful 
categorization performance in the given situation. Interpreting this acqui- 
sition of performance capability may be the special contribution of 
models of the array family to the overall task of comprehending natural 
category learning. 

APPENDIX 1 

Categorization Probabilities in Standard and Weighted-Vector 
Exemplar Models for the Design of Table 2 

Derivations similar to the one given in the text for categorization of pattern 10 (Eq. (I)) 
yield for the probabilities of assigning the other patterns in Table 2 to category A 

f’,,(A) = 
(1 - e + es)* 

(1 - 8 + IFIS)* + [e + (1 - e)sl* ’ 
(Al) 

and 

P,,(A) = P,(A) = !‘z. WI 

To obtain the probability of a correct categorization on a category A trial, we weight the 
values of P,(A) from Eqs. (l), (Al), and (A2) by the relative frequencies of the patterns, 
from column 1 of Table 2, yielding 
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P,(A) = e(i - e) + 
e*[e + (1 - e)~]* + (1 - e)*(i - e + es)* 

’ [e + (1 - es)]* + (1 - 8 + es)* 
(A3) 

The corresponding expressions for category B are obtained similarly. 
When the storage parameter p has a value less than unity, individual features of perceived 

exemplars are stored probabilistically, and consequently the memory array will contain 
fragments of exemplar patterns. Table Al shows all of the memory vectors that might be 
stored in the two-feature example of Table 2 in canonical form, together with their asymp- 
totic relative frequencies. Computation of similarities between test exemplars and vectors in 
the array proceeds as in the simpler case of Table 2 except when a feature of the test 
exemplar is compared with a null feature (denoted by a dash [-I in the array) of a remem- 
bered exemplar. Owing to noise in the system, it is possible for a perceived feature to have 
some degree of similarity greater than zero to a null feature; a parameter t will represent this 
similarity just as s does for comparison of perceived with actually stored features. 

With this parameter added to the model, the similarities of test exemplars to the memory 
arrays are computed in the standard manner. For test exemplar 10, the similarities to the 
asymptotic A and B arrays are 

sim(lO,A) = p2[e2 + (1 - e)%* + 2e(l - e)sl 
+ 2p(i - p)[er + (1 - e)sri + (1 - p)*t* 

sim(lO,B) = p2[(l - e)* + 829 + 2e(i - ebi 
+ 2~41 - p)[(l - e)t + 8.~1 + (1 - p)*t* 

These expressions are not very edifying to look at, but they will be useful for comparisons 
with other models. Learning curves are computed trial-by-trial, just as in the simpler case of 
p = 1, with the exemplar presented on each trial being compared to the vectors of an array 
similar to Table Al except that the cell entries are current actual relative frequencies of the 
patterns rather than asymptotic probabilities. The effect of reducing the value of the storage 
parameter p is to both slow the curve of learning and lower the asymptote, as illustrated in 
Fig. 2. 

Entering the similarities in the expression for categorization probability of the exemplar 
model. 

TABLE Al 
Memory Array Resulting from Independent Storage of Features 

Category 

Pattern A B 

10 
01 
1 1 
00 
l- 
-1 
-0 
O- 
__ 

e*p* 
(i-e)*p* 
e(i-e)p* 
(i-e)ep* 
epu-p) 

wmwp) 
emp) 

(mad 
u-P)* 

(i-e)*p* 
e*p* 

(i-e)ep* 
e(i-e)p* 

u-eka-d 
ep(w 

wh4w 
ep( 1 -PI 
(I-PI2 
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P,,(A) = 
sim( I0.A) 

sim(lO,A) + sim(l0.B) ’ 

and inserting selected values of the parameters yields the pattern of categorization proba- 
bilities as a function of p. s, and f shown in Table A2. When the parameter r. reflecting 
similarity of perceived features to null (missing) features in the memory representation is 
equal to 0, so that fragmentary stored exemplars have no effect, the asymptotic categoriza- 
tion probabilities are independent of the storage probability. But if I is even slightly greater 
than 0 (see the row for I = .Ol), lowering the storage parameter produces a reduction in 
categorization probability. To the extent that the comparison process is under the control of 
the learner, it would be good strategy to distinguish clearly between complete and fragmen- 
tary memory representations and to set a criterion such that matches between perceived 
features and elements of a memory representation are not accepted on insufficient evi- 
dence. 

APPENDIX 2 

The Conditions for Equivalence of Exemplar and 
Feature-Frequency Models 

Derivation of the condition for equivalence is presented in terms of the general two-fea- 
ture design of Table I. Considering first the exemplar model, and taking pattern IO for 
illustrative purposes, the similarity of this pattern to the category A array, in terms of the 
relative frequencies of stored exemplars given in the first column of Table I, is 

sim(lO,A) = u + (I - u - v)s + vs2 

and the similarity to the B array 

sim(l0.B) = x + (I - x - y)s + ys2, 

yielding for the probability of categorizing exemplar IO as an A 

u + (I - u - v)s + v 52 
P,,(A) = 

u + x + (2 - u - ” - x - y)s + (v + y)s2 . 
(A4) 

For the feature model, the representation of the relative frequency of values of I for 
Feature I in category A is 

and category B 

jy] = (u + w) + (I - U - w)s 

TABLE A2 
Asymptotic Values of P,,,(A) in the Exemplar Model for Selected Parameter Values 

s = .4 s = .I 

1 p = .2 p = .05 p = .2 p = .05 

I.0 54 51 .56 .5l 
0.5 .5J .52 .60 .53 
0.1 .66 .5J .J6 .6l 
0.01 .J3 .69 .88 .82 
0.0 .J4 .-I4 .90 .90 
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jg] = (x + z) + (1 - x - z)s. 

Similarly, the representations for values of 0 for Feature 2 are 

m = (1 - ” - w) + (v + w)s 

and 

f&i = (1 - y - z) + 0, + Z)S. 

The probability of category A given exemplar 10 for this model is, then, 

(A3 

with the appropriate substitutions from the expressions just derived. 
Now let us consider the numerator of Eq. (AS) 

fl]m = [u + w + (1 - U - W)S] [(l - v - w) + (v + w)s] (A61 

and ask under what conditions it would be identical to the numerator of Eq. (A4). For 
equivalence to obtain, the coefftcients of each power of s would have to be equal in the two 
expressions. If we multiply out the factors on the right of Eq. (A6), the product of terms not 
involving s is (u + w)(l - v - w), which, for the models to be equivalent, must be equal to 
u, the term not involving s in the numerator of Eq. (A4). Referring to Table 1, we note that u 
+ w is the probability of a 1 for Feature 1 in category A and 1 - v - w the probability of a 0 
for Feature 2 in category A. If, and only if, the features are independent, the product of 
these is the probability of pattern 10 in category A, which is simply U. Proceeding similarly 
with the coefficients of s and sz in Eqs. (A4) and (A6), we find that in each case equality 
obtains only if independence holds. Derivations for the other patterns are analogous, so we 
conclude that the models are equivalent if and only if the features are independent. (How- 
ever, the CBD exemplar model is equivalent to the feature model regardless of indepen- 
dence.) 

APPENDIX 3 
Equivalence of Exemplar and Feature Models in 

Independent-Feature Situations with Probabilistic Feature Storage 
When Table 2 is expanded to represent the canonical memory array resulting from proba- 

bilistic feature storage, as in Table Al, computation of the learner’s estimates of feature 
frequencies proceeds just as shown in the text for the case of Table 2, except that similarities 
of perceived to null features are taken into account via the parameter t. Referring to Table 
Al, the representation of relative frequency of the Value 1 for Feature 1 in category A is 

j-# = &I + (1 - tl)s] + c(1 - c)[O + (1 - O)sl + (1 - c)t, 
= c[e + (1 - e)s] + (1 - c)r, 

and the representation for Value 0 for Feature 2 in category A is the same. Therefore, the 
learner’s probability estimate for pattern 10 in category A is 

{de + (1 - e)sl + (1 - dry. 

On expansion, this expression is seen to be identical to that for the similarity of pattern 10 to 
category A in the exemplar model (Appendix 1); and a similar computation shows that the 
probability estimate for pattern 10 in category B for the feature model is identical to the 
similarity of 10 to B in the exemplar model. Therefore the probability of category A given 
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exemplar 10 is the same in both models. Similar derivations yield analogous equivalences 
for the other patterns, and thus, given feature independence, the models are equivalent 
regardless of the feature storage probabilities or the similarity parameter values. 

APPENDIX 4 
Distance-Based Exemplar and Average-Prototype Models for the 

General Two-Feature Design of Table 1 
First, CBD versions of both models are compared, then the city-block restriction is re- 

moved. Starting with the exemplar model, and using the test pattern 10 for illustrative pur- 
poses, we find by reference to Table 1 (and assuming equally probable categories) that the 
total distance of pattern 10 from the four representations in category A is 

D ,o* = 0 * u + 2 * v + 1 . [w + (1 - u - ” - w)]. 

The distance from test exemplar 10 to the memory representation 10 is equal to 0; the 
distance to 01 is 2 (since both features mismatch) and this distance is weighted by relative 
frequency v; the distances to 11 and 00 are both 1 (since there is one mismatch in each case). 
The distances are weighted by the sum of the relative frequencies of these stored exemplars 
from the A column of Table 1. Simplifying, we have 

D ,o* = 1 - u + v, 

and, similarly, 

D ,OB = 1 - x + y. 

These quantities can now be entered in the general formula for categorization probability in 
distance-based models (Eq. (7)) to obtain the probability of categorizing exemplar 10 as an 
A: 

1 
P,,(A) = 1 + e-tiu+y-v-+) ’ 

where c is a scaling constant to be determined from the data. 
In the average prototype model, the prototype for category A is (U + w), (v + w). The 

first component is the average value of the first feature of category A 

(u + w) * 1 + (1 - U - W)‘O, 

and the second component is the average value of the second feature in category A 

(v + w) * 1 + (1 - v - w) * 0. 

The distance of exemplar 10 from the prototype is the sum of the distance from 1 to the first 
component, 1 - (U + wj, and the distance from 0 to the second component, (v + w), and 
combining these yields 

Similarly, we obtain 

D lo* = 1 - u + v. 

D ,OB = 1 - x + Y, 

and entering these quantities in Eq. (7) yields the same expression for P,,,(A) that was 
derived for the exemplar model. Analogous results hold for the other exemplar patterns, so 
we conclude that the two models are indistinguishable on the basis of categorization proba- 
bilities. 

To lift the restriction to a city-block metric, we define 4’) as the distance between a 
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perceived exemplar and a stored pattern that mismatches in exactly one feature and d(2) as 
the distance when there are mismatches in both features. In applications of the model, these 
unit distances will be treated as parameters to be determined from the data. With these 
distances replacing the city-block distances of the CBD exemplar model, the expressions 
for summed distance from test pattern 10 to the two categories become 

D 10* = 0 * u + 4’) . (1 - U - v) + 42) * v 

D 10B = 0 * y + 8) . (1 - x - y) + d2) . y, 

and the probability of categorizing 10 as an A is 

1 
P,,(A) = 1 + e-c[(v-“)mD-(x+Y-u-v)ml)l (A@ 

Examining the exponent in the denominator, we see that P,,(A) is equal to l/2 if the relative 
frequencies of the 10 and 01 patterns are equal in the two categories, that is, u = x and v = 
y; however, unlike the CBD special case, P,,(A) does not reduce to 112 when the individual 
features are invalid (U + w = x + z. and v + w = y + z). Thus the model can predict 
learning whenever some of the patterns, as distinguished from individual features, are at 
least partially valid. 

It is not obvious how to achieve a comparable generalization of the prototype model, 
since we would have to define four, rather than two, basic distances, that is, the distances 
between each of the feature values of the test exemplar and each of the components of the 
category A and B prototypes. However, we can readily compare the two models for the 
case of a Euclidean distance metric. In the exemplar model, the summed distances from test 
pattern 10 to the categories are 

D ,#)A = 0.u + (%5)-v + l*(l - U - v) 

D IOB = o*x+(V3)~y+l~(l-x-y) 

yielding 

1 
f’,,(A) = 1 + e-c~(~~~-v)+(u+v-x-Y)l ’ 

whereas for the prototype model the distances are 

D ,o* = V/(1 - u - w)2 + (v + w)2 

and 

D IOB = V/(1 - X - z)2 + 0, + z)2, 

yielding 

1 
P,,(A) = 

~-c[t/(l-x-r~+b+d2-~(/(I-u-wp+(v+w)4 ’ 

Clearly, the expressions for P,,(A) are in general not equal for the two models, and the same 
would be true for the other exemplar patterns. Numerical computations are needed to de- 
termine whether there are task designs (that is, sets of values for the parameters in Table 1) 
for which predictions from the two models differ enough to be empirically distinguishable in 
practice. 
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APPENDIX 5 
Derivation of Expected Memory Array for the Exemplar Model Given 

that One Exemplar Has Not Occurred 
Starting with the pattern probabilities in Table 1, and assuming equally probable catego- 

ries, we note that the probability that pattern 10 does not occur on any trial is %(l - u) + 
1/(1 - X) = (2 - u - x)/(2); and since the probability of an A trial on which pattern 10 does 
not occur is %(l - u), the probability of category A given that 10 does not occur is (1 - 
442 - u - x). Therefore, over the first n - 1 trials of an experiment, the expected number 
of category A trials given that pattern 10 has not occurred is ([n - l][l - uJ)/(2 - u - x). 
This quantity represents also the number of stored exemplars in the A array, and they will 
be divided among the last three rows of the array in proportion to the pattern probabilities v, 
w, and 1 - u - v - w, yielding the entries in the A column of Table 3. The entries in the B 
column are obtained similarly. 

APPENDIX 6 
Computation of Categorization Probabilities for Array Models 

This summary includes all of the models of the array family described in the article as 
applied to the task design of Table 1. Extensions to designs with exemplars defined by more 
than two features are straightforward. For brevity, the summary is limited to the case in 
which all perceived features are stored (p = 1). This case may be adequate for applications 
of the models when the number of features per exemplar is small, and reference to Table Al 
and the associated discussion in Appendix 1 will indicate how to handle cases involving 
uncertain storage @ < 1). 

Computation of categorization probabilities in all of the models is based on an array of the 
form of Table 1, but with observed frequencies as cell entries, 

A B 
10 T, T, 
01 T3 T4 
11 T, T, 
00 T, Ts 

where the Ti denote cumulative total occurrences of the row pattern in the column category 
up to the trial for which categorization probability is being computed. A default value of l/2 
is used for categorization probability on the first trial, when all of the Ti are equal to 0 (and 
in the general model with p < 1, on all trials until at least one of the Ti is greater than 0). For 
many purposes it is convenient to transform this array to one with entries ti , obtained by 
dividing I; by its current column total (i.e., the current total number of occurrences of the 
category). The quantities ti serve as estimators of the conditional pattern probabilities 
whose asymptotic values are the cell entries in Table 1. For actual computations of categori- 
zation probabilities, a value of s must, of course, be specified. If no a priori value is 
available, the standard procedure is to compute probabilities for different s values and se- 
lect the one that yields the best agreement between the model and data by a least-squares or 
other conventional criterion. 

Exemplar mode/s. For the standard exemplar model, the similarities of the current test 
exemplar to the A and B arrays are computed by expressions of the form 

Sim(lO,A) = Tl + (T5 + T,)s + T,s2 

and 

Sim(lO,B) = T, + (T6 + T,)s + T.,s*, 
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and the results are entered in the general formula 

Sim(ex,A) 
pex(A) = 

Sim(ex,A) + Sim(ex,B) ’ 

where ex denotes the test exemplar pattern. The probability of a correct categorization on a 
category A trial is then obtained from 

P,(A) = u P,,(A) + v P,,(A) + w P,,(A) + (1 - u - v - w) P,(A), (AlO) 

and the probability for a category B trial is obtained similarly. Probability of a correct cate- 
gorization on any trial, given no information as to which category will be represented, is, 
then, given by 

P(C) = rTTI P,,(A) + n2 Pa(B). (All) 

The only change in procedure required for the pure-similarity form of the exemplar model 
is to replace the Ti in the expressions for Sim(ex,A) and Sim(ex,B) with the corresponding 
ti. 

For the general distance-based exemplar model, expressions of the type Sim(ex,A) are 
replaced by expressions for distances between the test exemplar and the memory arrays, for 
example, 

D,,, = (T, + T&lo) + T#P) 

and 

D IOB = (T6 + T*)d” + T&P), 

and categorization probability is computed from expressions of the form 

In this form, the distance-based model reflects category base rates much as does the 
standard model, but in the opposite direction. Also, as the number of trials, and therefore 
also the values of the Ti , becomes large, the exponent in the denominator of Eq. (A12) also 
becomes large, and consequently the categorization probability approaches unity if&,, is 
greater than D,, and zero otherwise, regardless of the value of c. To produce a version 
closer to the standard model, we can convert this “absolute distance” model to a “relative 
distance” model by replacing the Ti by corresponding ti and weighting the exponential 
terms by the category probabilities, yielding categorization probabilities of the form 

1 
f’,,(A) = 

1 + (n2/m,)e - dK$ + rs)d(‘) + r&b 41s + t,)d(l)+ r,d(*?, ’ 
(AI3) 

(Alternatively, the 7~~ can be replaced by the current actual relative frequencies of the cate- 
gories in a trial-by-trial computation.) Now, the categorization probability approaches unity 
or zero only for large values of c, and in any given case a value of c can be chosen that 
yields categorization probabilities close to those of the standard model. The model can be 
converted to a form comparable to the pure-similarity exemplar model simply by omitting 
the ratio n&r, from Eq. (A13) and the corresponding expressions for the other patterns. 
City-block-distance and Euclidean distance versions of these models are, of course, obtain- 
able simply by replacing the unit distances 8) and d(*) by 1 and 2, respectively, for the 
city-block and by 1 and X6 for the Euclidean version. 
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The feature-frequency mode/. For the feature-frequency model, trial-by-trial computa- 
tions are based on a table of the form 

flAf2 ,I”/, 
’ x1 x2 x3 x4 
o xS x6 x7 x8 

with the xi denoting the cumulative frequency in each category of values of I and 0 for 
features 1 and 2. To compute categorization probability on any trial, these frequencies are 
used to generate the values of the learner’s feature-probability estimates, f,, of Eqs. (I 1) and 
(12). Those quantities start with default values of l/2, then are updated on each trial in terms 
of the current values of the x,: 

fA, = XI 
XI + x5 

fB, = --% 
x3 + x7 

and so on. The new estimates are then entered in the expressions for likelihoods. If the test 
pattern is IO, for example, its likelihoods on category A and category B trials, respectively, 
are 

L(A.10) = nA fA, (1 - fA2) 

and 

L(B.10) = nefB, (I - fez,, 

and the probability of categorizing it as an A is 

UA,IO) 
P,,(A) = 

L(A,lO) + L(B.10) ’ 

For a priori predictions of asymptotic categorization probabilities, the asymptotic values of 
the fAi and fer can be obtained from Table 1 as described in Appendix 1. 

Protorype models. The average prototype of a category is a vector whose components are 
the average values of each feature in exemplars of the category, in the two-feature case, 

and 

Prot(B) = (m,. m,), 

where 

in the notation defined at the beginning of this appendix. For the independent-feature case 
illustrated in Fig. 1, m, = m, = tl and m2 = m, = (1 - 6). 

For computation of trial-by-trial categorization probabilities, the values of mi are updated 
on each trial, and for a priori predictions of asymptotic probabilities, the asymptotic values 
of the r, , and hence the mi , are obtainable from Table 1. Computation of distances between 
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exemplars and prototypes depends on the metric assumed. For the city-block metric, dis- 
tances are defined as in the city-block exemplar model, and, for example, 

D ,OA = 1 - m, + m2 
D 10B = 1 - 4 + 4, 

and 

1 
P,,(A) = 1 + e-c(ml+m2-m3-md~ 

For the Euclidean metric, 

D ,OA = v\/(l - m$ + m2* 
D 10B = v/(1 - ms)2 + m4* 

(A141 

and 

REFERENCES 
Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum. 
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard Univ. 

Press. 
Bower, G. H. (1967). A multicomponent theory of the memory trace. In K. W. Spence & 

J. T. Spence (eds.), The psychology of learning and motivation: Advances in research 
and theory (Vol. 1, pp. 229-325). New York: Academic Press. 

Bower, Cl. H. (1972). Stimulus-sampling theory of encoding variability. In A. W. Melton & 
E. Martin (Eds.), Coding processes in human memory (pp. 85-123). Washington, DC: 
Winston. 

Brooks, L. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch 
& B. B. Lloyd (Eds.), Cognition and categorization (pp. 169-211). Hillsdale, NJ: Erl- 
baum. 

Busemeyer, J. R., Dewey, G. I., & Medin, D. L. (1984). Evaluation of exemplar-based gen- 
eralization and the abstraction of categorical information. Journal of Experimental Psy- 
chology: Learning, Memory, and Cognition, 10, 638-648. 

Elio, R., & Anderson, J. R. (1981). The effects of category generalizations and instance 
similarity on schema abstraction. Journal of Experimental Psychology: Human 
Learning and Memory, 7, 397-417. 

Estes, W. K. (1959). Component and pattern models with Markovian interpretations. In 
R. R. Bush & W. K. Estes (Eds.), Studies in mathematical learning theory (pp. 9-52). 
Stanford, CA: Stanford Univ. Press. 

Estes, W. K. (1972). Elements and patterns in diagnostic discrimination learning. Transac- 
tions of the New York Academy of Sciences, Series II, 34, 84-95. 

Estes, W. K. (1976). The cognitive side of probability learning. Psychological Review, 83, 
37-64. 

Estes, W. K. (1986). Memory storage and retrieval processes in category learning. Journal 
of Experimental Psychology: General, 115, 155-174. 

Estes, W. K., Burke, C. J., Atkinson, R. C., & Frankmann, J. P. (1957). Probabilistic dis- 
crimination learning. Journal of Experimental Psychology, 54, 233-239. 

Franks, J. J., & Bransford, J. D. (1971). Abstraction of visual patterns. Journal of Experi- 
mental Psychology, 90, 65-74. 

Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for 



548 W. K. ESTES 

classification learning. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 10, 234-257. 

Garner, W. R. (1974). The processing of information and structure. Potomac, MD: Erl- 
baum. 

Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Ap- 
pleton-century-crofts. 

Gordon, M. J. (1985). Learning artt3cial analogs of natural categories. Ph.D. dissertation, 
Harvard University. 

Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of 
Experimental Psychology: General, 108, 356-388. 

Healy, A. F., 62 Kubovy, M. (1977). A comparison of recognition memory to numerical 
decision: How prior probabilities affect cutoff location. Memory & Cognition, 5, 3-9. 

Hintzman, D. L. (1976). Repetition and memory. In G. H. Bower (Ed.), The psychology of 
learning and motivation: Advances in research and theory (Vol. 10, pp. 47-92). New 
York: Academic Press. 

Hintzman, D. L., & Ludlam, K. (1980). Differential forgetting of prototypes and old in- 
stances: Simulation by an exemplar-based classification model. Memory & Cognition, 
8, 378-382. 

Marr, D. (1976). Early processing of visual information. Philosophical Transactions of the 
Royal Society of London. B, 275, 483-524. 

Medin, D. L. (1983). Structural principles of categorization. In T. J. Tighe & B. E. Shepp 
(Eds.), Perception, cognition, and development: Znteractional analyses (pp. 203-230). 
Hillsdale, NJ: Erlbaum. 

Medin, D. L., Altom, M. W., & Murphy, T. D. (1984). Given versus induced category rep- 
resentations: Use of prototype and exemplar information in classification. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 10, 333-352. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psycho- 
logical Review, 85, 207-238. 

Medin, D. L., & Smith, E. E. (1981). Strategies and classification learning. Journal of Ex- 
perimental Psychology: Human Learning and Memory, 7, 241-253. 

Millward, R. B. (1980). Models of concept formation. In R. E. Snow, P-A. Federico, & 
W. E. Montagne (Eds.), Aptitude, learning, and instruction: Vol. 1. Cognitive process 
analyses of aptitude (pp. 245-275). Hillsdale, NJ: Erlbaum. 

Murdock, B. B., Jr. (1974). Human memory: Theory and data. Potomac, MD: Erlbaum. 
Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psy- 

chological Review, 92, 289-316. 
Norman, D. A., & Rumelhart, D. E. (1970). A system for perception and memory. In D. A. 

Norman (Ed.), Models of human memory (pp. 19-64). New York: Academic Press. 
Nosofsky, R. M. (1984a). Attention, similarity, and the identification-classification rela- 

tionship. Ph.D. dissertation, Harvard University. 
Nosofsky, R. M. (1984b). Choice, similarity, and the context theory of classification. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104- 114. 
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization rela- 

tionship. Journal of Experimental Psychology: General, 115, 39-57. 
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experi- 

mental Psychology, 77, 353-363. 
Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 

382-407. 
Reed, S. K. (1973). Psychological processes in pattern recognition. New York: Academic 

Press. 
Reitman, J. S., & Bower, G. H. (1973). Storage and later recognition of exemplars of con- 

cepts. Cognitive Psychology, 4, 194-206. 



CATEGORY LEARNING MODELS 549 

Shepard, R. N. (1958). Stimulus and response generalization: Deduction of the generaliza- 
tion gradient from a trace model. Psychological Review, 65, 242-256. 

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard 
Univ. Press. 

Swets, J. A. (1964). Signal detection and recognition by human observers. New York: 
Wiley. 

Townsend, J. T. (1974). Issues and models concerning the processing of a finite number of 
inputs. In B. H. Kantowitz (Ed.), Human information processing: Tutorials in perfor- 
mance and cognition (pp. 133-185). Hillsdale, NJ: Erlbaum. 

Trabasso, T., & Bower, G. H. (1968). Attention in /earning: Theory and research. New 
York: Wiley. 

Tzeng, 0. J. L., & Cotton, B. (1980). A study-phase retrieval model of temporal coding. 
Cognitive Psychology, 5, 207-232. 

Underwood, B. J. (1969). Attributes of memory. Psychological Review, 76, 559-573. 
Underwood, B. J., & Freund, J. S. (1970). Relative frequency judgments and verbal dis- 

crimination learning. Journal of Experimental Psychology, 83, 279-285. 
Wells, J. E. (1974). Strength theory and judgments of recency and frequency. Journal of 

Verbal Learning and Verbal Behavior, 13, 378-392. 
Whitlow, J. W., Jr., & Estes, W. K. (1979). Judgments of relative frequency in relation to 

shifts of event frequencies: Evidence for a limited-capacity model. Journal of Experi- 
mental Psychology: Human Learning and Memory, 5, 395-408. 

(Accepted March 25, 1986) 


