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Abstract—

 

One of exemplar theory’s central predictions concerns the
shape of typicality gradients. The typicality gradient it predicts is a
consequence of its exemplar-based comparisons and appears no mat-
ter how the theory is evaluated. However, this predicted typicality gra-
dient does not fit the empirical typicality gradients obtained in an
influential version of the dot-distortion category task, and this is true
even when the exemplar model is made more flexible and mathemati-
cally powerful. Thus, exemplar theory is disconfirmed in this domain
of categorization. In contrast, prototype theories are consistent with

 

the empirically obtained typicality gradients.

 

The exemplar theory of categorization has a distinguished history
(Estes, 1986; Medin & Schaffer, 1978; Nosofsky, 1987). It holds that
people store category members as individuated memory representa-
tions and then judge whether novel items belong to the category by as-
sessing their similarity to these representations (exemplars) in memory.
Since 1978, exemplar theory has gained influence and broadened its
reach by motivating models of, for example, recognition memory
(Nosofsky, 1991), spoken-word recognition (Goldinger, 1998), and
skill development (Palmeri, 1997). As the theory gains reach and in-
fluence, ensuring that it is an appropriate psychological description of
human cognition becomes critical.

There is concern about exemplar theory’s appropriateness. The ex-
emplar model does not predict the performance of half the participants
in category-learning tasks (Smith, Murray, & Minda, 1997), of whole
samples early in category learning (Smith & Minda, 1998), or of par-
ticipants with and without amnesia (Smith & Minda, 2001). Moreover,
exemplar models fit more poorly than comparable models do when
participants learn categories varying in size, structure, and stimulus di-
mensionality, including the categories that originally motivated exem-
plar theory (Minda & Smith, 2001, 2002). This article continues this
reevaluation of exemplar theory (see also Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 1998; Smith & Minda, 2000).

My approach is to characterize the shape of the typicality gradient
that exemplar theory predicts in a theoretically important version of
the dot-distortion category task (Knowlton & Squire, 1993; Nosofsky
& Zaki, 1998; Palmeri & Flanery, 1999; Reber, Stark, & Squire,
1998a, 1998b; Smith & Minda, 2001, 2002). The article shows that
this predicted typicality gradient appears no matter how exemplar the-
ory is evaluated and that the shape of this gradient is a natural conse-
quence of the theory’s exemplar-based processes. The article shows
that exemplar theory’s prediction is disconfirmed when it is tested
against data from the dot-distortion task, even when the exemplar
model is made more flexible and mathematically powerful. This dem-
onstration has implications for judging the appropriateness of exem-

plar theory as a psychological description of categorization. In
contrast, prototype theory is consistent with the empirically obtained
typicality gradients.

 

METHOD

Stimulus Materials

 

The stimuli used in dot-distortion category tasks are created with
an established method that generates families of dot patterns from pro-
totypes. This method originated with Posner, Goldsmith, and Welton
(1967) and has been used extensively (e.g., Blair & Homa, 2001;
Homa, Rhoads, & Chambliss, 1979; Homa, Sterling, & Trepel, 1981).
In this method, nine points are randomly selected from within the cen-
tral 30 

 

�

 

 30 area of a 50 

 

�

 

 50 grid. These nine dots are a prototype.
Then low-level and high-level distortions of the prototype are pro-
duced by displacing the prototype’s nine dots slightly or substantially,
respectively. The prototype and its distortions define a dot-pattern cat-
egory. In addition to the prototype and distortions of it, experiments
usually include random nine-dot patterns that do not belong to the cat-
egory and that participants should say do not belong. These random
items are high-level distortions of unrelated prototypes. The details of
these stimulus materials are given in Posner et al. (1967) and Smith
and Minda (2001).

 

Category Task

 

The task considered here is an influential version of the dot-distor-
tion task in which participants see 40 members of a dot-pattern cate-
gory (each a high-level distortion of the prototype) and then endorse
(or not) previously unseen probe items as belonging to that category.
These probe items are copies of the originating prototype (P), low-
level distortions of it (L), new high-level distortions of it (H), and ran-
dom items (R) outside the category. The crucial data are the average
levels of endorsement for each probe-item type.

 

Categorization Models

 

I fit categorization models to these endorsement profiles in the
usual way. The models received as inputs the psychological distance
between each probe-item type (P, L, H, and R) and the model’s as-
sumed category representation (prototype or exemplars). I took psy-
chological distance to be ln(1 

 

�

 

 the average Pythagorean distance that
corresponding dots were moved between patterns of two types). (The
addition of 1 ensured that 0 Pythagorean distance corresponded to 0
logarithmic distance.) This objective distance measure correlates be-
yond 

 

r

 

 

 

�

 

 .98 with participants’ ratings of psychological distance (Pos-
ner et al., 1967; Smith & Minda, 2001, 2002). These logarithmic
distances were estimated by randomly sampling 1 million tokens of
each pair type from dot-distortion space. For the exemplar model
(with high-level distortions the category representation), the resulting
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average distances were 1.761 (P-H), 1.866 (L-H), 2.098 (H-H), and
2.894 (R-H). For the prototype model (with the prototype the category
representation), the distances were 0.000 (P-P), 1.093 (L-P), 1.761
(H-P), and 2.850 (R-P). It was reasonable to use these average values
in studying the operating characteristics of the models given the stabil-
ity of the distortion-generating algorithm in Posner et al., given that
participants see (and presumably store) a large, representative group
of 40 training exemplars, and given that exemplar theorists have used
average distances for this purpose (Nosofsky & Zaki, 1998).

These measures of psychological distance were inverted mathe-
matically into measures of psychological similarity, so that more dis-
tance became less similarity or the reverse. I followed exemplar theory
by taking similarity to be an exponentially decaying function of dis-
tance (

 

d

 

), with distance scaled by a free sensitivity parameter (

 

c

 

).
Thus, the similarity (

 

�

 

) between a transfer item type (

 

i

 

) and the high-
level distortions (

 

h

 

) or the category prototype (

 

p

 

) was, respectively, 

or .

A choice rule received these similarities as inputs, converting them
into endorsement levels ranging from 0 to 100% and yielding the level
of category endorsement the model predicted for each probe-item
type. These levels were found by dividing psychological similarity (

 

�

 

)
by the sum of similarity and a free criterion parameter (

 

k

 

). The use of
the proportionalizing quantity 

 

k

 

 as a free parameter followed recent
applications of exemplar theory (Nosofsky & Zaki, 1998).

I evaluated the following three choice rules:

(a)

(b)

(c)

For the exemplar model’s choice rule (a), the relevant similarity was
between a probe-item type (

 

i

 

) and the high-level distortions (

 

h

 

) seen
during training. For the gamma model’s choice rule (b), a mathemati-
cally powerful version of the exemplar model’s choice rule, the same
similarity applied, but the quantities in the choice rule could be raised
to any power gamma that improved fit. The gamma parameter was this
model’s third free parameter (with sensitivity and criterion). For the
prototype model’s choice rule (c), the relevant similarity was between
a probe-item type (

 

i

 

) and the prototype (

 

p

 

). The clear similarities be-
tween the prototype model and the exemplar model in their similarity
calculations and choice rules make this pair of models balanced and
appropriate for comparing the predictions of prototype and exemplar
theory. (Ashby & Maddox, 1993, also discussed the importance of com-
paring models of categorization that are balanced and equivalently
complex.)

Standard hill-climbing methods were used to find the parameter
settings that allowed each model to recover best a categorization per-
formance profile. These methods and the modeling procedures fol-
lowed here are discussed more fully in Smith and Minda (1998, 2001).

I now sample in several ways the exemplar model’s behavior and
draw the shape of its predicted typicality gradient. This shape is not a

ηih e
cdih–

= ηip e
cdip–

=

ηih

ηih k+
-----------------

ηih
γ

ηih
γ

k
γ

+
----------------------

ηip

ηip k+
-----------------

 

result of the specific exemplar model evaluated here. This shape re-
flects the geometry of exemplar theory’s exemplar-based comparison
processes.

 

RESULTS

The Exemplar Model’s Typicality Gradient

 

As a first approach toward drawing the shape of the exemplar
model’s typicality gradient, I sampled random configurations of the
exemplar model (i.e., random values of its sensitivity and criterion pa-
rameters) and for each found the level of category endorsement pre-
dicted by the model for P, L, H, and R items. Performance profiles
were saved and catalogued if they produced performance on the P, L,
H, and R items in the range of 50% to 100%, 40% to 90%, 30% to
80%, and 20% to 70%, respectively. This let me consider only the per-
formance profiles that were possibly human. Profiles were potentially
included that contained P-L advantages (i.e., the endorsement advan-
tage of P items over L items), L-H advantages, and H-R advantages of
60% down to 

 

�

 

40%. I saved and catalogued 5,000 performance pro-
files.

Curve 1 in Figure 1 shows the averaged performance gradient of
the exemplar model over the 5,000 profiles. This typicality gradient is
one of exemplar theory’s central predictions. A tiny P-L advantage
yields to a larger L-H advantage and then a much larger H-R advan-
tage. Conversely, the gradient flattens moving toward more typical
item types. This shape is not an artifact of averaging many profiles
with different characters. The average P-L advantage was 1.2% (

 

SD

 

 

 

�

 

0.9)—all the P-L advantages were small. Even this statistic under-
states the consistent shape of the model’s performance gradient. The
sizes of the three performance advantages (P-L, L-H, H-R) were
highly correlated (minimum 

 

r

 

 

 

�

 

 .95), so that the three values were
yoked in a ratio of about 1 to 2 to 8 (precisely, 1.00 to 2.27, 

 

SD

 

 

 

�

Fig. 1. The level of category endorsement predicted by the exemplar
model for prototypes (P), low-level distortions (L), high-level distor-
tions (H), and random items outside the dot-pattern category (R). The
text describes the production of Curves 1 through 6.
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0.16, to 8.03, 

 

SD

 

 

 

�

 

 0.99). This shows that exemplar theory can stretch
or compress the overall performance gradient but cannot change that
gradient’s basic shape. The progressive flattening is always preserved.
Row 1 in Table 1 summarizes these results.

One can visualize why this typicality gradient follows from the ge-
ometry of exemplar-based comparisons. Consider what occurs in Fig-
ure 2 as a hypothetical to-be-categorized item moves in from the
random region of psychological space (e.g., Position 8), then through
the region of psychological space occupied by the shell of training dis-
tortions (Position 3), and then on toward the prototype (Position 1). At
each step, one can ask how the item’s closeness or belongingness to
the exemplar shell changes. At first (Position 8), when the item is far

away, it will gain strongly in closeness to the exemplar shell because
at this distance the shell will nearly be a point source to the item.
Closer in to the category system (Position 5), the item will close on the
exemplar shell less directly because it will approach the flanks of the
exemplar shell obliquely. If the exemplars are the category representa-
tion, the item will now gain more slowly in belongingness to their cat-
egory. Finally, as the to-be-categorized item moves inside the
exemplar shell (Position 2), it will hardly close on the exemplar shell
at all. It will move toward some of the exemplars on the opposite side
of the exemplar shell from where it entered. In compensation, though,
it will move directly away from exemplars on the side of the shell it
entered. Many other exemplars will just slide past the item in a dis-
tance-neutral fashion. If the exemplars are the category representation,
the item will hardly increase in belongingness to the category they
represent. The exemplar model simply translates these inevitable geo-
metric facts into a performance gradient.

Even so, a residual concern is that I inferred the model’s operating
characteristics based on its average behavior. An important purpose of
models is to take on specific configurations that fit empirical data sets.
For this purpose, the critical thing is how the model behaves as it tries
to fit (i.e., predict or re-create) performance profiles. Accordingly, I
generated performance profiles that included all those that are hu-
manly possible. That is, I let P, L, H, and R performance vary system-
atically from 50 to 100%, 40 to 90%, 30 to 80%, and 20 to 70%,
respectively, in 5% increments, and I let the exemplar model use its
free parameters to fit each of these 14,641 performance profiles as best
it could.

Curve 2 in Figure 1 shows the averaged performance gradient of
the exemplar model as it fit these target data patterns. The exemplar
model produced the expected typicality gradient as it fit data (Table 1,
row 2), just as it did on average (Table 1, row 1).

A concern about the preceding analysis is that it sampled data pat-
terns so inclusively that many were unlikely human data patterns. It
might be better to ask how the model behaves when it fits plausibly
human data patterns. Accordingly, I produced a corpus of hypothetical
performance profiles based on the endorsement levels participants
generally show for P, L, H, and R probe items. I built this corpus as
follows. Using seven existing performance profiles (six summarized in
Table 1, Smith & Minda, 2001, p. 994; one taken from Smith &

 

Table 1.

 

Predicted mean category endorsements by categorization models for four item types, with accompanying derived measures

 

Categorization
model

Category endorsement Advantage Advantage ratio

P L H R P 

 

�

 

 L L 

 

�

 

 H H – R (L 

 

�

 

 H)/(P – L) (H 

 

�

 

 R)/(P 

 

�

 

 L)

1. Exemplar 62.6 (8.8) 61.4 (8.7) 58.6 (8.8) 48.6 (12.1) 1.2 (0.9) 2.8 (2.2) 9.9 (8.0) 2.27 (0.16) 8.03 (0.99)
2. Exemplar 67.6 (8.6) 65.7 (8.2) 61.0 (8.0) 44.0 (13.6) 2.0 (1.3) 4.7 (3.1) 17.0 (11.1) 2.35 (0.22) 8.60 (1.32)
3. Exemplar 70.5 (4.0) 67.9 (3.8) 61.7 (3.5) 38.6 (4.9) 2.6 (0.5) 6.2 (1.2) 23.1 (4.7) 2.38 (0.08) 8.83 (0.62)
4. Exemplar 69.9 (3.9) 67.2 (3.7) 60.9 (3.4) 37.8 (4.9) 2.6 (0.5) 6.3 (1.2) 23.1 (4.6) 2.37 (0.08) 8.72 (0.58)
5. Gamma 71.7 (4.5) 68.9 (4.2) 62.2 (3.7) 36.8 (5.6) 2.8 (0.5) 6.8 (1.5) 25.3 (5.8) 2.41 (0.10) 9.02 (0.78)
6. Gamma 71.0 (4.4) 68.2 (4.1) 61.4 (3.6) 36.0 (5.5) 2.8 (0.5) 6.8 (1.5) 25.3 (5.8) 2.41 (0.10) 9.02 (0.78)
7. Exemplar 70.9 (6.1) 68.5 (5.7) 62.8 (4.4) 40.5 (3.3) 2.4 (0.5) 5.8 (1.4) 22.3 (6.8) 2.39 (0.11) 9.11 (1.03)
8. Gamma 72.4 (7.3) 69.9 (6.8) 63.5 (5.2) 38.5 (4.9) 2.6 (0.5) 6.3 (1.8) 25.1 (9.4) 2.44 (0.18) 9.51 (1.42)
9. Prototype 78.8 (5.6) 65.9 (4.4) 56.2 (3.6) 39.6 (5.0) 12.8 (2.3) 9.7 (2.4) 16.6 (4.3) 0.75 (0.08) 1.28 (0.18)

10. Prototype 79.4 (8.6) 67.6 (7.2) 57.9 (4.1) 40.5 (4.3) 11.8 (1.6) 9.6 (3.3) 17.4 (7.4) 0.80 (0.18) 1.43 (0.43)

 

Note

 

. Standard deviations are in parentheses. The text describes the formal procedures that were followed in constructing each row of the table. P 

 

�

 

prototypes; L 

 

�

 

 low-level distortions; H 

 

�

 

 high-level distortions; R 

 

�

 

 random items outside the dot-pattern category.

Fig. 2. Schematic drawing of a series of hypothetical dot distortions
(8 to 1) that approach the psychological space of a category system con-
taining a central prototype (P) and a shell of training exemplars (E).
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Minda, 2002), I found participants’ average endorsement levels for the
four probe-item types and the variability of these levels across studies.
I did this only to establish a general baseline for humans’ perfor-
mance—no methodological or theoretical screen governed the choice
of these data sets. The four average performance levels for P, L, H, and
R items, respectively, were 77.7% (

 

SD

 

 

 

�

 

 7.3), 65.8% (

 

SD

 

 

 

�

 

 8.5),
58.4% (

 

SD

 

 

 

�

 

 5.4), and 38.1% (

 

SD

 

 

 

�

 

 5.6). From this baseline, I cre-
ated 5,000 performance profiles that each represented a Gaussian dis-
turbance of the four means by their standard deviations.

Curve 3 in Figure 1 shows the average result when the exemplar
model fit these 5,000 performance profiles as best it could. The exemplar
model still produced its characteristic typicality gradient (Table 1, row 3).

The previous analysis was friendly to encouraging the exemplar
model’s flexibility. The 5,000 data patterns tended to reproduce the
steep—not flattening—typicality gradient that humans generally do
produce (12% P-L advantage, etc.). This created a general pressure for
steep—not flattening—predicted performance gradients as the model
fit the data. To be sure that this pressure was strong and sufficient, I
isolated from the 5,000 data patterns just described the 500 that had
the largest prototype effects and that should exert the ultimate pressure
on the model to produce steep performance gradients.

Curve 4 in Figure 1 shows the result when the exemplar model fit
these 500 performance profiles. The predicted performance gradient
(Table 1, row 4) was the same as in the preceding analyses. The small
P-L advantage (2.6%, 

 

SD

 

 

 

�

 

 0.5) in this case is surprising and theoret-
ically important given that the model ideally needed to produce P-L
advantages 12 times as large (31.0%, 

 

SD

 

 

 

�

 

 4.4). Clearly, it is difficult
for the exemplar model to produce the steep typicality gradient that is
required.

 

The Gamma Model’s Typicality Gradient

 

In analyzing the relationships among different models of categori-
zation, Ashby and Maddox (1993; see also Maddox & Ashby, 1993)
introduced the parameter gamma. Exemplar theory has come to rely
heavily on gamma to improve the exemplar model’s fit when the tradi-
tional model fails (Nosofsky & Johansen, 2000). Gamma can some-
times allow a model to predict steeper typicality gradients and larger
prototype-enhancement effects than it would otherwise. Accordingly, I
examined how this additional parameter would affect the model’s be-
havior in this case. Including gamma was somewhat problematic be-
cause it granted the exemplar model three free parameters as it tried to
recover only four data points—possibly making the model self-con-
firming. Moreover, adding gamma can amount to adding a prototype
process to the exemplar model, making the gamma model theoreti-
cally ambiguous and misleading psychologically (see Smith & Minda,
1998). Nonetheless, it was important to consider the gamma model
because exemplar theorists favor it strongly and because the results it
produces are illuminating.

I let the gamma model fit as best it could the 5,000 performance
profiles that were created (as described previously) through Gaussian
disturbances of the average P, L, H, and R endorsement levels that hu-
mans produced in seven studies. Curve 5 in Figure 1 (also Table 1, row
5) shows that even the mathematically powerful gamma model pro-
duced the typicality gradient expected by exemplar theory.

As I did for the exemplar model, I followed up this analysis by isolat-
ing the 500 performance profiles that had the largest prototype effects.
These profiles should exert ultimately strong pressure for the gamma
model to predict a differently shaped gradient that fits the data patterns

 

better. Curve 6 in Figure 1 (also Table 1, row 6) shows that the gamma
model still traced the characteristic shape of exemplar processing.

 

Testing Exemplar Theory’s Prediction

 

To test exemplar theory’s prediction against real data, I let the ex-
emplar and gamma models fit the five existing data sets whose meth-
ods accorded with the structure of the exemplar model used here.
(Thus, I excluded the data sets from Knowlton & Squire, 1993, Exper-
iment 2, and Palmeri & Flanery, 1999, though including them would
make no difference to this analysis.) Curve O in Figure 3 shows the
composite of the five observed profiles. Curves E and G show the av-
erage performance profiles predicted by the exemplar and gamma
models when they fit as best they could the five data sets individually
(also Table 1, rows 7 and 8). Exemplar theory predicts the wrong qual-
itative shape of typicality gradient for what participants show in a
theoretically important and common version of the dot-distortion
paradigm.

 

The Prototype Model’s Typicality Gradient

 

Prototype theory also makes a prediction regarding performance in
this paradigm. To show this, I fit a prototype model to the 5,000 per-
formance profiles that the exemplar and gamma models fit in produc-
ing rows 3 and 5 in Table 1. The resulting typicality gradient (see
Table 1, row 9)—as indexed by the levels of endorsement for P, L, H,
and R items; or the P-L, L-H, and H-R advantages; or the ratios of
these advantages—was very different from exemplar theory’s gradi-
ent. There was no overlap between the distributions of ratios predicted
by the prototype and exemplar models. To the contrary, there was a
gap of about 6 

 

SD

 

s between the maximum value of the small ratios
that the prototype model predicted and the minimum value of the large

Fig. 3. The composite observed performance profile (O) from five
dot-distortion studies whose method accorded with the structure of the
models used in the present study. Also shown is the average of the five
best-fitting predicted profiles when the exemplar model (E), the
gamma model (G), and the prototype model (P) fit these five data sets
individually.
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ratios that the exemplar model predicted. This difference between the
models may be the largest and most clearly qualitative difference be-
tween the predictions of prototype and exemplar theory that has ever
been shown.

To test the prototype model’s prediction against real data, I let it fit
the same five data sets that the exemplar and gamma models fit to pro-
duce rows 7 and 8 in Table 1. The model’s behavior is summarized in
row 10. The characteristic shape of prototype processing appears again.
Curve P in Figure 3 shows the average performance profile predicted
by the prototype model as it fit the five performance profiles individu-
ally. Prototype theory predicts the correctly shaped typicality gradient.

 

SUMMARY AND IMPLICATIONS

 

This article establishes a central prediction of exemplar theory that
would apply in other domains of categorization and in other areas where
exemplar theory has been favored (e.g., memory, speech recognition,
and skill-automaticity). In fact, exemplar theory’s typicality gradient
has a very wide-ranging intuition behind it. The theory’s basic idea is
that humans represent a cloud of individuated exemplars that are spread
out in psychological space and that are the standard of comparison for
new tokens impinging on the system. This implies that all impinging
tokens that fall within the representational space of the exemplars will
be like some exemplars and unlike others, and therefore about equally
good members of the category the exemplars represent. If therapists
store exemplars of a clinical syndrome like schizophrenia and com-
pare new cases with these, there will be no strong typicality effects in-
side the space of the exemplars and no cases of schizophrenia that
seem prototypical, because the cases that present will all be like some
former cases and unlike others.

 

1

 

 If art historians store individuated ex-
emplars of Monet, then new Monets will seem to be about equally typ-
ical Monets, and there will be no steep typicality gradient leading up
to a Monet stylistic prototype. Similarly, all members of exemplar-
based phoneme categories or speaker-token categories would be about
equally good. This is an interesting idea whether or not it is a true de-
scription of human cognition. The point here is that it is a basic predic-
tion of exemplar theory that this article shows can be tested.

Moreover, this basic prediction is at the heart of exemplar theory’s
intuitive, conceptual, and geometric basis. This is important to say at a
time when categorization models are becoming very complex and
when the goal of fitting data best sometimes trumps the goal of giving
data the best psychological description. Even if one could build an ex-
emplar model that was so mathematically powerful that it could bend
its typicality gradient in ways that violated this basic idea, it would not
be usefully or sensibly or psychologically an exemplar model any-
more because it would have forfeited the spirit, the intuition, the con-
cept, and the geometry of exemplar theory.

Prototype theory makes a different prediction that is equally wide-
ranging. Its basic idea is that humans collapse the cloud of exemplars
into the representational point at their center, and that this prototype
becomes the standard of comparison for new tokens impinging on the

system. Tokens falling within the representational space of the exem-
plars could be indefinitely similar to the prototype and belong indefi-
nitely strongly within the category it represents, because the category
representation is a single, approachable point in the space, not a cloud
of points in the space. This is the explanation of the strong prototype
effects and the steep typicality gradients shown in rows 9 and 10 of
Table 1 and Curve P in Figure 3. If therapists abstract the prototype of
schizophrenia and compare new cases with this, there will be strong
typicality effects and textbook cases. If art historians represent a Mo-
net prototype, there will be marginal and beautiful examples of his
style. This idea also raises interesting questions about human cogni-
tion in various domains, but the point here, too, is that this is a testable
prediction of prototype theory.

When the predictions of prototype and exemplar theories were
tested in the domain of dot-pattern categorization, prototype theory’s
prediction was clearly supported; exemplar theory’s prediction clearly
not. Exemplar theory’s failure is important because this is one of the
most venerable and influential categorization paradigms. Its failure is
also important because exemplar theory failed even given the mathe-
matical support of the parameter gamma. Gamma has ameliorated the
exemplar model’s failure in some cases. Here, given an appropriate
test that evaluated a sufficiently broad range of typicalities, gamma
failed to do so. Thus, in this case I was able to distinguish gamma-sup-
ported processing from prototype-based processing, and rule out that
the former was occurring. The failure of the exemplar and gamma
models here has potentially profound implications for judging the ap-
propriateness of exemplar theory as a psychological description of cat-
egorization.

However, there is no guarantee that this failure will extend to all ar-
eas of human cognition. I do not know how psychotherapists represent
their diagnostic categories or art historians their styles, and the shape
of their typicality gradients could reveal either exemplar-based or pro-
totype-based processing. An exciting possibility suggested by the
present article is that one may be able to draw the shapes of the under-
lying typicality gradients in various domains, and infer from these the
representational basis for decision making and classification within
those domains. If so, then it will be a victory for exemplar theory and
prototype theory—no matter the outcome. It will mean that the intui-
tions of both theories were faithfully translated into geometries, mod-
els, and testable predictions that allowed the theories to be differentially
supported. Theory, formal approaches, and experimentation will have
created the synergy that is cognitive science at its best.
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1. There will be typicality effects outside the exemplar space as tokens
move far away from the exemplars in memory (i.e., Positions 3–8 in Fig. 2).
There may be some typicality effects inside the exemplar space of the category
if one’s exemplar experience has included a large proportion of highly typical
exemplars. The degree of flattening of exemplar theory’s typicality gradient can
be affected by the distribution of training exemplars, but there will always be
flattening of that gradient relative to the gradient predicted by prototype theory.
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