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Letters and words are better identified when there are fewer available choices. How do readers use
choice-set restrictions? By analyzing new experimental data and previously reported data, the author
shows that Bayes theorem-based models overestimate readers’ use of choice-set restrictions. This result
is discordant with choice-similarity models such as R. D. Luce’s (1963a) similarity choice model, G.
Keren and S. Baggen’s (1981) letter recognition model, and D. W. Massaro and G. C. Oden’s (1979)
fuzzy logical model of perception. Other models posit that choice restrictions affect accuracy only by
improving guessing (e.g., J. L. McClelland & D. E. Rumelhart’s, 1981, interactive activation model). It
is shown that these models underestimate readers’ use of choice-set restrictions. Restriction of choice set
does improve perception of letters and words, but not optimally. Decision models that may be able to
explain this phenomenon are discussed.

The psychological processes underlying letter and word identi-
fication have intrigued psychologists for over a century (e.g.,
Cattell, 1886). One of the most studied phenomenon in letter and
word recognition concerns the role of context. Context can readily
provide constraints on the number of plausible choices in an
identification problem. For example, the word fragment so_a
provides a great amount of constraint on the possible completions
of the missing letter (it can be only d or f in English). In this article,
I address the central question of how well people can condition
their perception and subsequent decisions about letters and words
when the number of available choices is manipulated. People are
notoriously poor at conditioning their decisions on the available
choices in macroscopic decisions such as disease diagnosis or job
candidate evaluation (e.g., Phillips & Edwards, 1966; Tversky &
Kahneman, 1990). It, however, is not known to what degree they
can condition automatic processes, such as letter and word iden-
tification, on available choices. As will be shown, people are not
as adept at conditioning as would be expected from the law of
conditional probability. They, however, are better than they would
be in the worst-case scenario of using choice-set restrictions only
when guessing. Because people’s ability is in between these two
extremes, this ability is termed somewhat-efficient conditioning.
Most extant models of letter and word recognition are challenged
by somewhat-efficient conditioning.

Figure 1 shows an example of proper or ideal conditioning.
Suppose a game show contestant is asked a question about a local

beer in a small Midwestern city. The contestant is unsure of the
correct answer but is able to assign probability values to the four
choices as indicated in Figure 1. The game show host then elim-
inates Choices A and C. The law of conditional probability pro-
vides an ideal means by which contestants should revise their
beliefs. Accordingly, probabilities are normalized by the available
choices. In the example, the probabilities of the remaining choices,
B and D, sum to .20; hence, the probabilities are normalized by this
amount. These beliefs can be conceptualized as performance in-
dices—that is, if contestants have a high belief in a correct answer,
they are likely to answer correctly. The correct answer in this case
is B. Performance in the four-choice condition is quite low (.19)
but is much improved (.95) in the two-choice case. Proper condi-
tioning is useful as an ideal-observer model. It provides a means of
relating performance across conditions with different numbers of
choices.

The goal is to assess people’s ability to condition; to do so, I
asked participants to identify letters with varying numbers of
choices. Under normal viewing conditions, people are quite good
at reading letters, and performance is at or near ceiling. But when
the stimulus is presented under impoverished viewing conditions,
either as a low-level illuminant or followed by a patterned mask,
a substantial number of confusions occur. In this case, comparing
identification under conditions with different numbers of choices
provides a suitable test. For example, Rouder (2001) presented
letters in either a six-choice condition or a two-choice condition. In
the six-choice condition, participants identified the letters Q, W, E,
R, T, and Y; in the two-choice condition, participants identified the
letters W and E. The critical question concerns the change in
performance in identifying W and E in these two conditions.

Formal models of identification often specify bottom-up per-
ceptual effects, top-down bias effects, and an explicit mechanism
of incorporating choice-set size. One approach to evaluate the
veracity of these models is to stress parameter invariances. In each
model, there are parameters that represent the bottom-up, percep-
tual effect of the presented letter. Choice-set-size manipulations
are top-down in nature. Estimates of bottom-up perceptual param-
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eters should not vary significantly across different choice-set-size
conditions. In this article, I show that most models, including
Massaro and Oden’s fuzzy logical model of perception (FLMP;
Massaro & Hary, 1986; Massaro & Oden, 1979; Oden, 1979) and
McClellend and Rumelhart’s (1981) interactive activation model
(IAM), fail to predict perceptual parameter invariance with ma-
nipulation of choice-set size. In these models, perceptual param-
eters change systematically with the number of available choices,
indicating flaws in the postulated decision mechanisms.

Formal models of letter recognition tend to embed one of two
basic decision models: a threshold model or a choice-similarity
model (see Townsend & Landon, 1983). Threshold models assume
that processes occur in an all-or-none fashion and encompass
models such as the high-threshold model, the double high-
threshold model (Egan, 1975), and the low-threshold model (Luce,
1963b). Choice-similarity models (Luce, 1959, 1963a; Shepard,
1957) assume that identification processes are graded and driven
by the similarity between the stimulus and the available responses.
More substantively motivated models, such as those from Keren
and Baggen (1981), Loomis (1982), Lupker (1979), Massaro and
Oden (1979), and McClelland and Rumelhart (1981), incorporate
one of these two general decision model classes. Hence, broad
tests of the decision models are tests of these substantive models as
well. Before discussing the models and tests, I present two bench-
mark data sets.

Benchmark Data Sets

In the following sections, formal models are fit to two different
sets of data from letter-identification tasks. The first set is from
Rouder (2001), who asked participants to identify briefly presented
and subsequently masked letters. The task was absolute identifi-
cation—a single letter was presented on a trial and each letter had
a corresponding unique response. The conditions were previewed

above; Rouder presented letters Q, W, E, R, T, and Y in the
six-choice condition and letters W and E in the two-choice condi-
tion. The choice set was manipulated across blocks (a block lasted
for 50 trials). Participants observed 16 blocks (8 for each condi-
tion) in a single session. Fifteen people participated in the
experiment.

The second set comes from Townsend and Landon (1982). Their
participants also identified letters in an absolute identification task.
The letters, which were composed of line segments, were also
briefly presented and subsequently masked. In the five-choice
condition, participants observed the letters A, E, F, H, and X. There
were two different three-choice conditions; each choice set in a
three-choice condition was a subset of the five-choice condition
choice set. Each participant observed stimuli for 16 sessions.
Choice-set conditions were held constant for an entire session.
Four people participated in Townsend and Landon’s experiment.

Choice-Similarity Models of Letter Identification

Constant Ratio Rule

Choice-similarity models are, for the purposes of this article,
those models that rely on normalization to describe how choice
behavior depends on the set of available choices. Normalization
refers to the fact that the activation or evidence for a response is
divided by the activation or evidence for all available responses.
The first choice-similarity model is the constant ratio rule (Clarke,
1957). A model is a constant ratio rule model if Pri ,sj

, the proba-
bility of the ith response to the jth stimulus, can be expressed as

Pri ,sj �
Si, j

¥
k

Sk, j
, (1)

where the sum in the denominator is over all available choices and
the Ss are nonnegative and do not vary with choice set. The law of
conditional probability, demonstrated in Figure 1, is a constant
ratio rule. Equation 1 yields the correct conditioned probabilities
when the Ss are the relevant marginal probabilities. The model
displays a testable property for which it is named—the ratios of
response probabilities are constant across different choice-set
sizes. For example, in Figure 1, the ratio between the probabilities
for Choices B and D in the four-choice case is 19 (.19/.01). When
the choices are reduced, the ratio is still preserved (e.g., .95/.05 �
19). Clarke (1957) tested and accepted the constant ratio rule with
his data on phoneme confusions. More recently, Morgan (1974),
Townsend and Landon (1982), and Takane and Shibayama (1992)
have provided more stringent statistical tests of the constant ratio
rule. On the basis of these tests, they rejected the constant ratio
rule, but the reason for this failure is not clear.

To test the constant ratio rule with absolute identification data,
one can simply divide the response proportions. For example, in
Rouder’s (2001) data, the critical ratio is the proportion of W
responses divided by the proportion of E responses. There are two
such ratios, one for when W is presented and one for when E is
presented; these two ratios need not be equal. The question is
whether these two ratios vary depending on the number of avail-
able choices. To assess this question, I plotted the logarithms of the
ratios in the left panel of Figure 2. The points denoted by 1 are
from the proportion of W responses divided by the proportion of E

Figure 1. An example of the law of conditional probability.
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responses when the letter W was presented. The points denoted by
2 are the proportion of E responses divided by the proportion of W
responses when the letter E was presented. With this convention,
larger ratios are associated with better performance. The
x-coordinate of the point is the logarithm of the ratio for the
two-choice condition, and the y-coordinate is the logarithm of the
same ratio for the six-choice condition. There are 14 such points,1

1 for each participant.
If the data obey the constant ratio rule, then the logarithms of the

ratios should not vary with the number of choices, and the plotted
points should cluster around the diagonal. However, most of these
points (21 out of 28) are above the diagonal. Therefore, the
constant ratio rule does not hold. Performance was worse in the
two-choice condition than predicted by the constant ratio rule. The
interpretation is that participants did not fully condition their
identification on the reduced number of choices.

The same analysis was performed with Townsend and Landon’s
(1982) data. Altogether, there are six letter pairs (AE, AX, EX, FH,
FX, and HX) with 2 ratios per pair. This arrangement resulted in 12
ratios per participant and 48 ratios over all 4 participants. The right
panel of Figure 2 shows the logarithm of these ratios for the
three-choice2 and five-choice conditions. The points are denoted
with numerals from 1 to 4 for each of the 4 participants. As can be
seen, most of the points (39 out of 48) lie above the diagonal. This
result indicates that participants did worse with fewer alternatives
than would be expected from the constant ratio rule. The same
conclusion is reached as with Rouder’s (2001) data—participants
were not fully efficient in conditioning their identification on the
choice-set restriction.

The constant ratio rule serves as a decision mechanism in
substantive models. One example is FLMP (Massaro, 1998; Mas-
saro & Hary, 1986; Massaro & Oden, 1979; Oden, 1979). FLMP

is a model of how different sources of information are combined to
produce identification decisions. According to FLMP, participants
assess the overall match—the degree to which critical features are
present or absent in a target stimulus. Response probabilities are
given by Equation 1, with overall match being denoted by S. The
overall match represents perceptual processes and should be con-
stant across choice-set-size manipulations. Hence, the model is
formally equivalent to the constant ratio rule and is challenged by
the present analysis of Rouder’s (2001) and Townsend and Lan-
don’s (1982) data.

Another example of a substantive model that uses the constant
ratio rule is Keren and Baggen’s (1981) recognition model. This
model, which is based on Tversky’s (1977) set-theoretic approach
to similarity, does not assume letter similarity is symmetric: For
example, F might be more similar to E than E is to F. The
probability of response is given by Equation 1, with similarity
denoted by S. Because similarity is a perceptual parameter that
should be invariant to the choice-set-size manipulations, Keren and
Baggen’s model is challenged by the present analysis.

It is important to put these challenges in context. FLMP is
designed to explain how letters are represented and how multiple
sources of information may be integrated in making letter deci-
sions. The decision component is one facet of the model; the

1 Fifteen people participated in Rouder’s (2001) experiment. One is
excluded because the ratio is undefined in the six-choice condition due to
no error responses. This omission does not weaken any of the claims made
subsequently. Had a single error response occurred, then the six-choice
ratio would have been larger than the two-choice ratio for this participant.

2 There were two different three-choice conditions: one with letters A, E,
and X and another with letters F, H, and X.

Figure 2. Test of the constant ratio rule. Left: Ratios from Rouder’s (2001) data. Right: Ratios from Townsend
and Landon’s (1982) data. Ratios tended to be greater for the six- and five-choice conditions than for the two-
and three-choice conditions, respectively, indicating worse performance with fewer numbers of choices than
would have been expected under the constant ratio rule. In the left panel, the points denoted by 1 are from the
proportion of W responses divided by the proportion of E responses when the letter W was presented, and the
points denoted by 2 are the proportion of E responses divided by the proportion of W responses when the letter
E was presented. In the right panel, the points denoted by numerals 1–4 represent each of the 4 participants in
Townsend and Landon’s experiment.
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current analysis is a test of this facet and is not about the rules for
representing letters or integrating multiple sources of information.
Likewise, Keren and Baggen’s (1981) model explains how simi-
larity can be asymmetric. The negation of the decision component
is not a negation of this explanation of asymmetry.

Similarity Choice Model

As pointed out by Luce (1959, 1963a), the constant ratio rule
may fail for fairly mundane reasons. In particular, there may be
idiosyncratic response biases. To account for these biases, Luce’s
(1963a) similarity choice model (SCM) uses a weakened form of
the constant ratio rule. In SCM, the probability of response ri to
stimulus sj is given by

Pri,sj �
�i, j�i

¥
k

�k, j�k
. (2)

In Equation 2, �i, j is the similarity between stimulus si and
stimulus sj (0 � �i, j � 1). Similarity is assumed to reflect the
perceptibility of letters. Letters that are more similar are more
confusable. The � parameters reflect response biases (0 � �i � 1,
¥j �j � 1). To make the model identifiable and testable, it is
assumed that similarity is symmetric (e.g., �i, j � �j,i). If it is
further assumed that the similarity of any stimulus to itself is 1 and
that the triangle inequality condition (�i,j � �i,k �k, j, @i, j, k) holds,
then it is possible to interpret di, j � �log(�i, j) as the psychological
distance between stimuli i and j (Shepard, 1957). If the distance
between two stimuli is great, then the letters are not easily con-
fused. Psychological distance is a measure of the perceptual dis-
criminability, and its interpretation is similar to that of the d�
statistic in the theory of signal detection.

SCM is considered the leading model of letter identification
because it repeatedly fits identification data better than any com-

petitor model (e.g., Smith, 1992; Townsend & Landon, 1982).
SCM also passes an invariance test with regard to response bias.
Townsend and Ashby (1982) manipulated the payoffs for various
responses and found that the perceptual parameters, di, j, were
fairly invariant.

The question is whether the perceptual parameters, di, j,
change with choice-set size. They should not. Although invari-
ance of perceptual parameters is a critical test, no such invari-
ance is sought with response bias. Response bias may vary
across choice-set size for mundane reasons; for example, a
participant may favor the left-most response key and this key
may vary for different choice sets. Figure 3 shows the distances
from Rouder’s (2001) and Townsend and Landon’s (1982)
data.3 In the left panel, the x-coordinate of each point is the
distance between E and W in the two-choice condition; the
y-coordinate is the same distance in the six-choice condition.
There are 15 points— one for each participant. As can be seen,
14 of the 15 points lie above the diagonal, indicating a greater
distance between E and W in the six-choice condition than in
the two-choice condition. The right panel shows distances be-
tween letter pairs from Townsend and Landon’s (1982) data.
The x-coordinate of each point is the distance between two
letters (the pairs were AE, AX, EX, FH, FX, and HX) in a

3 Parameter estimation is done by minimizing the chi-square goodness-
of-fit statistic with repeated application of the simplex algorithm (Nelder &
Mead, 1965). The simplex algorithm is a local minimization routine and
may settle on local minima. To help find a global minimum, an iterative
form of simplex was constructed. The best-fitting parameters from one
cycle were perturbed and then used as the starting value for the next cycle.
Cycling continued until 500 such cycles resulted in the same minimum.
The amount of perturbation of parameter values between cycles increased
each time the routine yielded the same minimum of the previous cycle.

Figure 3. Similarity choice model (SCM) psychological distance estimates. Left: Distances from Rouder’s
(2001) data. Right: Distances from Townsend and Landon’s (1982) data. Distances tended to be greater for the
six- and five-choice conditions than for the two- and three-choice conditions, respectively, indicating worse
performance with fewer numbers of choices than would have been expected under SCM. The circles denote the
distances from each participant on a specific letter pair. Adapted from “Absolute Identification With Simple and
Complex Stimuli,” by J. N. Rouder, 2001, Psychological Science, 12, p. 320. Copyright 2001 by Blackwell.
Adapted with permission.
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three-choice condition; the y-coordinate is the same distance in
the five-choice condition. The points correspond to distances
from each participant’s performance on a specific pair of letters.
Once again, most of the points (20 out of 24) lie above the
diagonal, indicating greater distance between letters in the
five-choice condition than in the three-choice condition. Par-
ticipants did worse with fewer choices than predicted by SCM.

Chi-square goodness-of-fit test statistics were computed for
each of Rouder’s (2001) participants in the six-choice condi-
tions (there are no degrees of freedom for a test in the two-
choice condition) and for each of Townsend and Landon’s
(1982) participants in the five- and three-choice conditions. Of
the resulting 27 tests, none of the associated chi-square statis-
tics exceed its respective .05 criterion. This good fit is charac-
teristic of the previous literature. SCM fits well when only a
single condition is fit, but it fails when parameter invariance is
sought across choice-set size manipulation. This failure effec-
tively negates any support from good fits to individual confu-
sion matrices.

The failings of the constant ratio rule and SCM most likely stem
from their shared structural assumption that response activation is
normalized by the activation of all available choices. Normaliza-
tion is too efficient; it predicts better performance with fewer
choices than what was observed. The interpretation offered here,
inefficient conditioning, is itself relative. The results can also be
restated in terms of capacity. Given the performance in the two-
and three-choice conditions, performance is better than predicted
in the six- and five-choice conditions, respectively. Performance
increases with an increase in the number of stimuli—that is, it is
“super capacity.” The direction of the structural failure shown here
can be interpreted either as super capacity or inefficient condition-
ing. The latter is retained with the caveat that both are mutually
compatible.

Threshold Models

All-or-None Model

In this section, threshold models are presented and fit. For the
purposes of this article, threshold models posit that identification is
mediated by discrete states. The effect of manipulating choice-set
size is to change accuracy when the participant is in a guessing
state. Such a limited use of choice-set information produces inef-
ficient conditioning. The simplest threshold model is the high-
threshold one. For absolute identification, it is assumed that the
participant either detects the stimulus (in which case they respond
correctly) or guesses. When guessing, participants choose re-
sponses at random with no influence of the presented stimulus.
Townsend (1971a, 1971b) termed this model the all-or-none model
and showed that it provides a fairly good account of his letter
recognition data with few parameters. The all-or-none model is
given by

Pri,sj � �Dj � �1 � Dj�gi, i � j.
gi, i � j. (3)

Parameter Dj denotes the probability that the participant detects the
stimulus sj when it is presented (0 � Dj � 1). Parameter gi denotes
the probability that the participant produces response ri when
guessing (0 � gi � 1, ¥i gi � 1). In this model, the perceptual
effects of the stimuli are represented in the detection parameters.
Therefore, these parameters should be invariant to choice-set-size
manipulations.

The left panel of Figure 4 shows the detection parameters for
Rouder’s (2001) data; the right panel shows the same for
Townsend and Landon’s (1982) data. The x-axis of each point
denotes the detection parameter in the condition with a small
number of choices (two choices for Rouder’s set; three choices for

Figure 4. Test of the all-or-none model. Left: Detection estimates from Rouder’s (2001) data. Right:
Detection estimates from Townsend and Landon’s (1982) data. Detection tended to be greater for the two-
and three-choice conditions than for the six- and five-choice conditions, respectively, indicating better
perception with fewer choices. In the left panel, points denoted 1 and 2 are each participant’s estimates of
the W and E detection parameters, respectively. In the right panel, the label of the points corresponds to the
participant number.
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Townsend & Landon’s set). The y-axis of each point denotes the
detection parameters in the condition with a larger number of
choices. For Rouder’s data, there are 30 points. Points denoted 1
and 2 are each participant’s estimates of the W and E detection
parameters,4 respectively. As can be seen, most of these points (26
out of 30) lie below the diagonal, indicating better detection with
fewer choices. For Townsend and Landon’s data, the label of the
points corresponds to the participant number. Once again, the
majority of the points (20 out of 24) lie below the diagonal
indicating better detection with fewer choices. Chi-square
goodness-of-fit tests were performed on both data sets. The all-or-
none model fit well for Rouder’s data and could not be rejected for
any of the 15 participants. But, it failed at the .05 level for all 4
participants in Townsend and Landon’s five-choice condition:
�2(11, N � 1,200) � 42.0, 76.1, 28.8, and 80.5, respectively. I
discuss a possible reason for the difference in fit below. Regardless
of fit, the model fails invariance in the same direction for both data
sets, and this failure is a serious challenge to the all-or-none model.

The direction of the failure is opposite to that obtained with
choice-similarity models. According to the choice-similarity mod-
els, perception is worse than predicted with fewer choices; how-
ever, according to the all-or-none model, perception is better than
predicted with fewer choices. The choice-similarity models as-
sume that people are very efficient at conditioning perception on a
choice-set restriction, whereas the threshold models assume that
people are quite poor at it—they use the choice-set reduction only
in the guessing state and not in perception. The analyses reveal that
people are intermediary in their ability to condition on a choice-set
restriction. They are not as efficient as predicted by normalization
but are more efficient than they would be by simply restricting
guesses to available choices. Therefore, people are somewhat
efficient in letter identification.

General-Threshold Model

The all-or-none model of the previous section is a high-
threshold model. Yet, researchers often postulate low-threshold
processes on models as well (Luce, 1963b). Low-threshold pro-
cesses correspond to perceiving a letter that was not presented. The
plausibility of such processes is enhanced in letter-identification
tasks with patterned masks. Sometimes the mask is suggestive of
a letter (for example, the mask $ is suggestive of the letter S).
Participants may detect the letter as any one in a set or fail to detect
it at all. For example, if the letter E is presented, there is some
probability that the participant will detect it as an E. There is also
some probability that the participant will detect it as an F or an X.
Let Di,j denote the probability of detecting stimulus j as i. In this
case, the response is ri. Failure to detect the stimulus is possible,
and in this case, the participant guesses. When guessing, the
participant produces response ri with probability gi. This model5 is
termed the general-threshold model (GTM) and is expressed as

Pri,sj � Di, j � gi�1 � �
k

Dk, j� . (4)

In GTM, the perceptual parameters are the detection parameters,
Di, j. Therefore, the invariance of these parameters is assessed.

Unfortunately, there are more parameters in the model than
degrees of freedom in the data. To make the model identifiable,

restrictions are placed on Di, j. There are a number of options. For
simplicity, symmetry was assumed (Di, j � Dj,i) and was used in
fitting GTM. Figure 5 shows the correct-item detection parameter
estimates.6 The left panel of Figure 5 shows the estimates for
Rouder’s (2001) data (the points labeled 1 and 2 denote correct-
item detection for W and E, respectively). Detection was better
with fewer choices. The model yielded a mediocre fit (it failed at
the .05 level for 6 of 15 participants). Wrong-item detection
estimates were always near zero, indicating no evidence for false
detection. For Rouder’s data, GTM offers no advantage over the
all-or-none model.

The right panel of Figure 5 shows the same analysis for
Townsend and Landon’s (1982) data. For the five-choice condi-
tion, the detection symmetry assumption, Di, j � Dj,i, is sufficient
and yields a testable model.7 GTM fits for each participant were
quite acceptable and each of the corresponding chi-square test
statistics was below its .05 criterion. This good fit is in contrast to
the poor fit for the all-or-none model. For Townsend and Landon’s
data, GTM has nonzero wrong-item detection. Although there is
no evidence for false detection in Rouder’s data, there is such
evidence for Townsend and Landon’s. The difference is probably
due to differences in font and masks across these studies. None-
theless, the same conclusion can be reached regarding parameter
invariance—detection was better with fewer choices than with
more choices.

4 The model has 2n � 1 parameters, and the data have n(n � 1) degrees
of freedom, where n is the number of choices. A necessary condition for
identifiability is that the degrees of freedom in the data be equal to or
greater than the number of model parameters. For the case in which there
are two choices, there are three parameters in the model but only two
degrees of freedom in the data. Hence, the model is not identifiable in this
case. To overcome these difficulties, I conducted two different analyses. In
the first analysis, the detection of E in the two-choice case was fixed and
set equal to that from the six-choice case. This left the detection of W as a
free parameter and its invariance to be tested. In the second analysis, the
detection of W in the two-choice case was fixed and set equal to the
detection of W in the six-choice case. This left the detection of E as a free
parameter and its invariance to be tested. In both analyses, it is assumed
that one of the detection parameters was invariance across the choice-set-
size manipulation. If the free detection parameter varies across choice
condition (within error), then the detection-parameter invariance can be
rejected.

5 I am grateful to William Batchelder, who suggested I consider this
model.

6 Fitting the general-threshold model to the two-choice condition is
complicated as there are four parameters for only two degrees of freedom.
Consequently, some of the parameters in the two-choice condition were
fixed and set equal to their estimates in the six-choice condition. In one
analysis, detection parameters DW,W and DE,W were set equal to their
six-choice estimates, and the detection parameter DE,E was a free param-
eter. Alternatively, in the other analysis, detection parameters DE,E and
DE,W were set equal to their six-choice estimates, and the detection param-
eter DW,W was a free parameter. In both cases, response bias was free to
vary across conditions.

7 To estimate detection in the three-choice conditions, the wrong-item
detection parameters (Di, j, i � j) were fixed and set equal to their estimates
in the five-choice condition.
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IAM

Perhaps the best known model of letter and word identification
is McClelland and Rumelhart’s (1981) IAM. In this model, letters
and words are each represented by nodes. Activation flows from
feature nodes to letter nodes to word nodes and then back to letter
nodes. The model has been inordinately successful in accounting
for word-recognition phenomena (see Rumelhart & McClelland,
1982), and its core assumptions are used in current word-
recognition models, for example, Grainger and Jacob’s (1996)
multiple readout model.

The decision mechanism of IAM is a general-threshold
model. To identify letters, readers monitor the letter nodes. The
activation of a certain letter node is determined by both the
presented stimulus sequence and the activations of other letter
and word nodes. The dynamics of the model are fairly complex
and vary depending on the viewing conditions. For the case of
letter recognition, IAM computes a naming probability for each
letter. The basic idea is that at a predetermined time, one of the
letter nodes has highest activation and hence is named. In cases
in which the participant is forced to choose from a reduced
number of alternatives, either the node with the highest activa-
tion is a member of the set of choices or it is not. If it is a valid
choice, then the response corresponding to the winning letter
node is produced. If the winning node is not a choice, then the
participant guesses at random. For example, suppose a partic-
ipant is presented the letter E and given the choice set of F, Q,
and X. On some proportion of the trials, the node corresponding
to F is going to have the highest activation because it is similar
to E. In these cases, the participant will choose equally often
between all three alternatives even though F is more similar to
E. This inefficiency is necessary for McClelland and Rumelhart
(1981) to fit both naming and forced-choice identification par-
adigms. Uninformed or pure guessing is implemented in other
models as well (e.g., Anderson & Lebiere, 1998; Wagenmakers,
Zeelenberg, Schooler, & Raaijmakers, 2000).

To explore the behavior of IAM with respect to choice-set
size, I implemented the feature and letter layers of the model in
a C program. The features, letters, and the connection between
features and letters were exactly the same as those used by
McClelland and Rumelhart (1981; Figure 6 shows the feature-
to-letter mappings used in the model; these are from Rumelhart
& Siple, 1974). The word layer was not programmed as the
inputs were single letters that could not activate word nodes. All
of the parameters related to the model dynamics were very
similar to those used by McClelland and Rumelhart. The only
free parameter is the length of time (in cycles) that the stimulus
is presented before masking. Figure 7 shows the model’s accu-

Figure 5. Test of the general-threshold model. Left: Detection estimates from Rouder’s (2001) data. Right:
Detection estimates from Townsend and Landon’s (1982) data. Detection tended to be greater for the two- and
three-choice conditions than for the six- and five-choice conditions, respectively, indicating better perception
with fewer choices. In the left panel, the points labeled 1 and 2 denote correct-item detection for W and E,
respectively. In the right panel, circles denote correct-item detection for specific letters.

Figure 6. Letters introduced by Rumelhart and Siple (1974) and used by
McClelland and Rumelhart (1981). The bottom character depicts the seg-
ments used in forming the letters. Adapted from “An Interactive Activation
Model of Context Effects in Letter Perception: I. An Account of Basic
Findings,” by J. L. McClelland and D. E. Rumelhart, 1981, Psychological
Review, 88, p. 383. Copyright 1981 by the American Psychological Asso-
ciation. Adapted with permission of the author.
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racy predictions for the case in which choice-set size is manip-
ulated. The solid lines are IAM predictions. The x-axis value of
each point on the line corresponds to the predicted probability
correct for fewer choices (two choices for Rouder’s, 2001, data;
three choices for Townsend & Landon’s, 1982); the y-axis value
is the same for the condition with more choices (six choices for
Rouder’s, 2001, data; five choices for Townsend & Landon’s,
1982). The trajectory of the line is traced out by varying the
stimulus duration parameter. The advantage of this technique
for comparing data with the predictions is that the free param-
eter (stimulus duration) need not be estimated for each partic-
ipant. This simplified approach could not be used in fitting the
previous models because there were several free parameters
rather than a single one.

As can be seen, most of the points lie below the line,
indicating that IAM predicts better performance in the condition
with more choices than what was obtained. This result chal-
lenges the decision mechanism in IAM. As with the evaluation
of previous substantive models, it is important to put this
challenge in perspective. IAM explains how letters and words
are identified and how information on one level affects that on
another. The negation of the decision rule is not a challenge to
these more central aims.

The preceding analyses reveal that people are somewhat effi-
cient in using choice-set restrictions with performance intermedi-
ate to the two extremes. This intermediate level is fairly difficult to
model. Before discussing possible approaches that can predict
somewhat-efficient conditioning, I explore the scope of the phe-
nomenon. The goal of the experiment below is to assess the
efficiency of conditioning for word stimuli when the numbers of
choices are varied. Participants named briefly presented and sub-
sequently masked four-letter target words. Target words were
presented in either a two-choice condition or a naming condition.
There are about 1,200 four-letter words in the Kucera and Francis
(1967) corpus with frequencies above 2 per million. Hence, the
naming condition can be considered a choice from about 1,200
alternatives.

Experiment: Choice-Set Size and Word Stimuli

Method

Participants. Twelve University of Missouri undergraduate students
served as participants in exchange for course credit in an introductory
psychology class.

Materials. The stimuli were pairs of four-letter words. Members of a
pair were matched for frequency (Kucera & Francis, 1967, word-frequency
norms). Words of a pair may have had letters in common, but they never
occurred in the same position in the words. For example, bolt and echo
form a pair. They have the same Kucera–Francis frequency and they share
the letter o in common. The letter o, however, occurs at different positions.
Emotionally charged words, such as rape, as well as swear words were not
used. With these words eliminated, there were still 1,159 four-letter words
in the Kucera and Francis (1967) corpus.

Apparatus. Participants sat in front of a Pentium or Pentium II PC.
Stimuli were presented on a Dell 17-in CRT with a custom-written set of
C-language routines run under MS-DOS. The monitor was set to a 60-hz
refresh rate.

Design. The experiment was a 3 � 2 within-subject design. The first
factor is condition. There was a naming condition and two different
two-choice conditions. In the prestimulus cue condition, the participant
was presented the two choices before the target word was presented. In the
poststimulus cue condition, the participant was presented the two choices
after the target word was presented. The other factor was whether the first
or second member of the pair served as the target. Choice condition (three
levels) was crossed with target (two levels) and participants in a Latin-
square design.

Procedure. The structure of trials is shown in Figure 8. Each trial
started with the participant depressing the space bar. The sequence was
shown and the participant attempted to name the target word. The exper-
imenter sat behind the participant and recorded the response on a code
sheet. The participant was permitted to say “no” if they perceived no
information about the stimulus. But, participants were instructed to pro-
duce word responses as often as possible, even if they had low confidence
in their answers. The experimenter recorded the response and then asked
the participant to proceed to the next trial.

Before the test phase, participants partook in a 31-trial calibration phase
to determine individualized stimulus durations. In the calibration phase,
participants observed 6 practice trials and 31 calibration trials. Stimulus
duration for the practice trials was 100 ms, and stimulus duration for the

Figure 7. Response accuracy data and interactive activation model (IAM) predictions. The lines show the IAM
accuracy predictions for different set sizes. The letters (E and W) are accuracies from Rouder’s (2001) data (left),
and the circles are accuracies from Townsend and Landon’s (1982) data (right).

87EFFICIENCY IN PROCESSING



calibration trials was 50 ms. At the end of the calibration phase, the
experimenter received the number of correct responses. If participants
made fewer than 4 errors, then the stimulus duration was set to 33 ms; if
they made between 4 and 10 errors, then stimulus duration was set to 50
ms; and if they made more than 10 errors, then the stimulus duration was
set to 67 ms.

Immediately after calibration, the test phase began. Participants first
observed 12 practice trials. Afterward, they observed the 294 trials that
made up the critical list. The experiment was run at a leisurely pace;
participants and experimenters took breaks whenever needed. The session
lasted about 45 min.

Results

Target-naming accuracy served as the dependent variable. A
strict criterion was used to decide if a reported word was correct.
The left panel of Figure 9 shows the accuracy results in the

two-choice condition as a function of those in the naming condi-
tion. The right panel shows the same data after a logit transfor-
mation (e.g., l � log[p/(1 � p)]). The logit transform provides a
different view of the data that stresses differences near ceiling.

All-or-none model fits. It is fairly straightforward to fit an
all-or-none model given by the equation PN � D 	 (1 � D)/N. The
dashed line in Figure 9 shows the predictions for the correct
two-choice naming probability (N � 2) as a function of the correct
naming probability (N � 1,159). The line was made by systemat-
ically changing the value of detection, D. As can be seen, all points
in the panels lie above this line, indicating that participants’
relative efficiency is better than that predicted by the all-or-none
model.

SCM model fits. Producing predictions for SCM is more com-
plicated. Unlike the previous application in which full confusion

Figure 8. The structure of trials in the different choice conditions.

Figure 9. Results and model predictions for the experiment. Left: Accuracies in the two-choice condition as
a function of those in the naming condition. Right: The same after a logit transformation. SCM � similarity
choice model.
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matrices were collected, the design of the current study provides
only overall accuracies. The confusion matrices were essential in
the preceding analyses because they provided a means of estimat-
ing the similarity between pairs of items. As an alternative, the
similarity between words was calculated using the Rumelhart and
Siple (1974) feature construction of letters (see Figure 6). Each
letter is defined by 14 features and each four-letter word is defined
by the 56 features that make up individual letters. The similarity
between two words was defined as the proportion of these 56
features that matched and is denoted with vi, j. With this technique,
the font-based similarity between all pairs of four-letter words in
the Kucera and Francis (1967) corpus was computed. To derive
predictions, the following SCM model was used:

Pri,sj �
	i, j


 �i

¥
k

	k, j

 �k

. (5)

The exponent 
 reflects viewing condition such as the illuminant
of the target or its duration before masking. As viewing condition
improves, 
 increases. To derive predictions, values of 
 were
varied. For each value of 
, correct response probabilities for the
two-choice and naming trials were computed. The solid lines in
Figure 9 show these predictions. All of the data points lie below
the line, indicating that the relative efficiency of the data is not as
great as that predicted by SCM.

Discussion

The effects of manipulating choice-set size on word identifica-
tion are similar to those on letter identification. Participants are
somewhat efficient in conditioning on a choice-set restriction.
They are not as efficient as normalization would imply but are
more efficient than they would be by simply using the choice-set
restriction during guessing.

Models of Somewhat-Efficient Conditioning

The main point of the preceding analyses is that neither thresh-
old nor choice-similarity models do a good job of explaining how
letter and word identification decisions change with choice set.
Choice-similarity models condition too efficiently; threshold mod-
els are not efficient enough. These failures are fundamental and
relate to the structural assumptions of the models. In the following
section, a few modeling approaches are presented that hold the
possibility of explaining the somewhat-efficient conditioning
effect.

Simple Mixture Model

One tactic in accounting for the data is to make the choice-
similarity models less efficient. Nosofsky (1991) assumed that
behavior is the mixture of two states: one in which the stimulus is
encoded and one in which it is not. In paradigms in which stimuli
are masked, the possibility exists that participants may miss en-
tirely the stimulus presentation on some proportion of the trials.
Because the stimuli are not encoded on these trials, the similarity
of the stimuli cannot affect the response. Responses on these trials
reflect a simple guessing process. On the trials in which the
stimulus is encoded, performance is governed by SCM; errors

reflect confusions of the stimulus with similar stimuli. Overall,
performance is a mixture between a simple guessing process and
SCM. Nosofsky’s mixture model can be expressed as

Pri,sj �
D�si,sj�ri

¥
k

�sk,sj�rk

�
1 � D

N
, (6)

where D is the probability that the participant encodes the stimu-
lus. This is a proper generalization of SCM (SCM results if D �
1) with one additional parameter. To fit the mixture model, the
parameter D was fixed across choice conditions. This is reasonable
as the probability of encoding a stimulus should not depend on the
number of choices. The similarities were free to vary across choice
condition as were response biases. Rouder (2001) reported the fit
of the mixture model to his data. The encoding parameter, D, was
greater than .995 for 8 of the 15 participants. For the other 7, the
estimate varied from .50 to .96. When D was near 1.0, the esti-
mates of distance were very close to the SCM estimates. But even
when D was not near 1.0, the distance estimates were greater in the
six-choice case than in the two-choice case. Two conclusions may
be reached: (a) In the context of the mixture model, most errors are
driven by similarity rather than random guessing, and (b) when
fitted to letter-identification data, the mixture model overpredicts
the efficiency of conditioning.

The Nosofsky (1991) mixture model has not previously been fit
to Townsend and Landon’s (1982) data. To do so, I fit the different
choice conditions jointly. Similarity and response bias were free to
vary across conditions, but the encoding parameter, D, was not.
The results were quite concordant with those from fitting the
mixture model to Rouder’s (2001) data. For 3 of the 4 participants,
estimated values of D were greater than .995, and the distance
estimates were close to the SCM estimates. For the remaining
participant, the 6 five-choice distances were greater than their
corresponding three-choice condition distances. Hence, the same
conclusion is reached: When fit, the mixture model is too efficient
to account for the data.

Trial-by-Trial Process Variability

An alternative method of making the SCM less efficient is to
add trial-by-trial variability to the parameters (e.g., Van Zandt &
Ratcliff, 1995). To add trial-by-trial variability, psychological dis-
tance was decomposed into two components: one that represents
the font-based psychological distance between two letters and one
that represents the effects of viewing condition. For example, in
most fonts, the psychological distance between E and F is always
smaller than that between E and X, and this holds regardless of
viewing condition. The degradation or enhancement of viewing
condition is assumed to affect all distances uniformly:

di, j � 
�i, j, (7)

where � is the font-related distance and 
 � 0 reflects the viewing
condition. Large values of 
 correspond to good viewing condi-
tions; small values of 
 correspond to poor viewing conditions.
Incorporating the distances defined in Equation 7 into SCM yields
Equation 5 with font-based similarity given by vi, j � exp(��i, j).

To generalize SCM to include trial-by-trial variability, I as-
sumed that the parameter 
 varies from trial to trial. Variation in

 reflects variation in attention. When participants pay attention,
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the value of 
 is large, and when they do not, the value is small.
This generalization of SCM is termed the variable similarity
choice model (vSCM). Response probabilities are given by

Pri,sj � E
� 	si,sj


 �ri

¥
k

	sk,sj


 �rk�, (8)

where E
 is the expectation operator with respect to 
. If we
assume that 
 is a continuous random variable with density func-
tion f, then the model can be expressed as

Pri,sj � �
0


 � 	si,sj


 �ri

¥
k

	sk,sj


 �rk� f �
�d
. (9)

The variability of 
 determines the relative ability of the model to
condition on a choice-set restriction. When variability is small, the
model is able to condition efficiently on reduced numbers of
choices. But when it is great, conditioning is inefficient and
performance approaches that of threshold models. Figure 10 illus-
trates this property; it shows two-choice performance as a function
of letter naming (26-choice performance). In this figure, font-
based similarity, vi, j, is the proportion of features that matched in
the Rumelhart and Siple (1974) letters. Because 
 can never be
negative, it is convenient to use the logarithm scale (log 
).
Variability in parameter 
 was implemented by distributing log 

as a normal random variable. The three different curves in Fig-
ure 10 correspond to three different values of variance. The dif-
ferent points on the curves correspond to different values of the
mean. As the mean of log 
 was increased, performance in both
the two-choice and naming condition increased.8 As the variability
of the exponent increases, the relative performance in the two-
choice condition becomes progressively worse. That is, condition-
ing becomes less efficient.

To assess whether process variability is feasible, I fit the model
of Equation 9 to Rouder’s (2001) data. For computational conve-
nience in fitting the model to data, mass was placed on only two
values of 
:

f�log 
� � �1/ 2, if log 
 � 
.
1/ 2, if log 
 � �
.
0, otherwise.

(10)

In this formulation, 
 denotes the amount of variability in log 

and determines the quality of conditioning. If 
 � 0, then the
model reduces to SCM. As 
 increases, efficiency of conditioning
is reduced and, in the limit, approaches that of threshold models.

The vSCM model was fit to Rouder’s (2001) data in a nested
approach. In the general model, 
 was free to vary. In the nested
model, 
 was fixed to zero. In both cases, 
 was held constant
across the six- and two-choice conditions. There was only one
parameter for the distance between W and E that was fixed to be
the same across the six- and two-choice conditions. This last step
is different from the previous modeling approach in which two
separate distance parameters were used. The six- and two-choice
cases, when fit jointly, yield 32 degrees of freedom in the data.
There are 22 parameters in the general model yielding 10 degrees
of freedom to assess the fit per participant. Over all 15 participants,
the sum chi-square statistic is 145.9 (with 150 total degrees of
freedom). This value is quite consistent with a well-fitting model.
In the nested model (
 � 0), there are 21 parameters and 11
degrees of freedom to assess the fit per participant. Over all
participants, the sum chi-square statistic is 177.6 (with 165 total
degrees of freedom). Because the models are nested, the difference
in chi-square serves as a test of whether 
 � 0. This difference is
distributed as a chi-square with 15 degrees of freedom (1 per
participant). The observed difference, 31.8, is significant at the
p � .05 level. The fact that this difference is significantly large
implies that 
 � 0. The conclusions are that (a) the vSCM model
fits well and (b) variability is significantly larger than zero.

The preceding analysis demonstrates that vSCM can account for
somewhat-efficient conditioning. But, vSCM makes a strong pre-
diction about manipulations of stimulus duration and contrast.
When stimulus duration or contrast is varied, only the parameter 

can vary; similarity and bias must remain invariant. Although it is
possible that these predictions may hold, there is some evidence
against it. Townsend, Hu, and Kadlec (1988) noted that partici-
pants tend to weight certain features differently over the time
course of perception. Their model follows a popular notion in letter
perception that participants first identify low-frequency features
(blobs) and, afterward, identify high-frequency features (e.g.,
Bouma, 1971; Lamb & Yund, 1993, 1996; Lupker, 1979; Navon,
1977). For example, X and O may be judged as relatively similar
early in processing because they both have large extension. But,
they may be judged relatively dissimilar later in processing as one
has curvature whereas the other has an intersection point. Con-
versely, C and O may be judged dissimilar early on (O is a greater
blob) but relatively similar later on in processing (both have
curvature). Such dynamics are in contrast to the posited uniform
changes in distance in vSCM. Townsend et al. documented non-
uniform dynamics, but not for natural letters (instead, they used
simple combinations of lines). It is an open question whether such
dynamics occur in typical letter reading and identification.

General Recognition Theory Models

Many models in the literature assume that the perceptual effect
of a presented stimulus can be represented in a multidimensional

8 Naming performance is the mean over all 26 stimuli; two-choice
performance is the mean over all 650 unique combination of a stimulus and
an alternative.

Figure 10. Effect of variability of 
 on efficiency in the variable simi-
larity choice model (vSCM). As 
 becomes more variable, performance
in the two-choice condition is degraded relative to that in the naming
condition.
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psychological space. The effect is assumed to vary from trial to
trial. To make a decision, the participant partitions the psycholog-
ical space into contiguous regions with each region corresponding
to a particular response. Because the percept is variable, there is
some probability that the percept will fall in a region correspond-
ing to an error response. If the distribution of the percept is a
multivariate normal, then this approach reduces to the general
recognition theory of Ashby and Townsend (1986); if the distri-
bution is a univariate normal, then the approach further reduces to
the theory of signal detection (Green & Swets, 1966/1974).

The main goal is to assess whether there are plausible models
that can predict the somewhat-efficient conditioning. To assess
efficiency, I have constructed the following statistic, called the
performance ratio:

� � �Pi,iPj, j

Pi, jPj,i
. (11)

Overall, � is a measure of performance with larger values indica-
tive of higher accuracy. To apply the performance ratio statistic to
Rouder’s (2001) data, I estimated � for the letters W and E in the
two- and six-choice cases, respectively. If either the constant ratio
rule or SCM holds, the value of � will be constant across choice
conditions. The performance ratio is closely associated with the
SCM model; it is the method-of-moments estimator for the inverse
similarity (1/�; see Townsend, 1971a). The left panel of Figure 11
shows the performance-ratio relationship for Rouder’s data (letter
pairs W and E). The 15 Xs denote the empirical relationship for
each of the 15 participants. The diagonal shows a constant �, the
predicted relationship from SCM. All of the points, save one, are
above this line, indicating that SCM overestimates participants’
efficiency in using the choice-set restriction. The dashed line
above the diagonal shows the predicted relationship from the
all-or-none model with no guessing bias. This model underesti-
mates participants’ efficiency. The two solid lines, which show the

Figure 11. Efficiency of conditioning as shown through the performance ratio, �. In each panel, the x-axis
indicates the value of � in the condition with fewer choices, and the y-axis indicates the value of � in the condition
with more choices. Left: The results for Rouder’s (2001) experiment. Right: The results for Townsend and
Landon’s (1982) experiment; each panel denotes a performance-ratio relationship for different letter pairs. Points
denoted by Xs indicate empirical values, the dashed diagonals indicate predictions from the similarity choice
model, the dashed lines above the diagonals indicate those from the all-or-none model, and the solid lines are
predictions from general recognition models based on Gilmore et al.’s (1979) scaling (denoted with G) and on
McClelland and Rumelhart’s (1981) features (denoted with MR).
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desired somewhat-efficient conditioning, are the predictions from
the general recognition models discussed below. The six panels on
the right show the same data and model predictions for Townsend
and Landon’s (1982) data set. Each panel denotes a performance-
ratio relationship for different letter pairs. The 4 data points in each
panel correspond to the 4 participants.

The first model fit is a version of general recognition theory in
which a letter is represented by a multidimensional normal distri-
bution. The results of Gilmore, Hersh, Caramazza, and Griffin
(1979) are helpful in fitting the model. Gilmore et al. estimated the
distance between pairs of letters using SCM. These distances were
then submitted to a multidimensional scaling routine. The re-
searchers claimed that five dimensions are sufficient for an accept-
ably low level of stress in the analysis and reported the values for
all letters on these five dimensions. Therefore, five-dimensional
normals were used to represent letters with each centered on its
five-dimensional coordinates from Gilmore et al.’s multidimen-
sional scaling. For simplicity, it was assumed that the variance in
each dimension was constant and there was no covariance across
dimensions. Monte-Carlo simulation was used to make predic-
tions. On each cycle, a sample was drawn from the five-
dimensional distribution of the target letter. Response on a cycle
was the letter whose center was closest to that cycles’ five-
dimensional sample (see Ashby & Maddox, 1993). The process
was repeated for a million cycles per stimulus. For parametric
predictions, the variance of the normal was varied from .2 to 150.
As the variance became larger, the performance ratio became
smaller. The solid line labeled G in each panel in Figure 11shows
the relationship of the performance ratio as a function of the two
different choice conditions. This line is in between the two dashed
lines; hence, the model predicts somewhat-efficient conditioning.

A second model, based on the Rumelhart and Siple (1974)
letters, was also fit. Each letter was represented by 14 binary
features that were either absent or present. When a letter was
presented, sensory noise was instantiated by randomly flipping the
value of some of the features. The activation for each letter
response was the dot product of the noisy-input feature vector and
the feature vector for the response. The response with the greatest
activation was chosen on each cycle. For parametric predictions,
the probability that a feature had its value flipped was varied from
.00075 to .86. The solid line labeled MR in each panel in Figure 11
shows the relationship of the performance ratio as a function of the
two different choice conditions. This line is in between the two
dashed lines; hence, the model predicts a form of somewhat-
efficient conditioning. Overall, two different general recognition
type models can at least crudely account for the somewhat-
efficient conditioning effect.

Conclusion

The main goals of this study were to assess the degree to which
participants use choice-set restrictions in letter identification and to
use this assessment to test decision mechanisms in identification
models. The result is that participants are somewhat efficient in
their conditioning on choice-set restrictions—they are neither as
efficient as they would be by using ideal conditioning nor as
inefficient as they would be by simply using choice-set restrictions
when guessing. This intermediate result held for both letter and
word identification.

The challenge to theorists is to explain somewhat-efficient con-
ditioning. Most researchers have proposed letter-identification
theories that relied either on normalizing activation by the total
activation of available choices (e.g., Keren & Baggen, 1981;
Massaro & Oden, 1979) or on guessing among available alterna-
tives when the identification process fails to recognize the stimulus
as being in the available set (e.g., McClelland & Rumelhart, 1981).
The analyses reported here indicate that participants’ efficiency is
between these two extremes. Hence, both approaches are
insufficient.

In the last section, two different modeling approaches were
proposed to account for the somewhat-efficient conditioning re-
sult. One approach, based on Luce’s (1963a) SCM, assumes that
the similarity between any two stimuli varies from trial to trial.
This modified model, vSCM, can account for the somewhat-
efficient conditioning aspect of the data. It remains to be seen
whether this model can account for other aspects of the data with
appropriate parameter invariances such as changes in stimulus
duration, payoffs, and font. The results of Townsend et al. (1988)
provide evidence against such invariances, but their experiments
were not with natural letters. A second modeling approach is to
assume that the letter percept itself randomly varies from trial to
trial as is assumed in the theory of signal detection. Again, under
appropriate conditions, this approach too can yield somewhat-
efficient conditioning.

Historically, decision-theoretic models, such as SCM and
threshold models, have been preferred to more substantive models
because they provide better fits. In this article, it is shown that
these good fits do not extend to the one manipulation these models
were designed to account for—the manipulation of choice-set size.
Hence, there is really little reason to prefer them to more substan-
tive models that posit specific features and feature integration
processes (e.g., Townsend et al., 1988). In the end, these more
substantive models, which make strong commitments to represen-
tational issues, may encompass a more fruitful approach. One area
of future synthesis may be to implement general recognition theory
(Ashby & Townsend, 1986) in which letter representation is de-
rived in a principled manner from a substantive theory.
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